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Abstract
The irradiation-induced cross-linking of aromatic self-assembled monolayers (SAMs) is a universal method for the fabrication of

ultrathin carbon nanomembranes (CNMs). Here we demonstrate the cross-linking of aromatic SAMs due to exposure to helium

ions. The distinction of cross-linked from non-cross-linked regions in the SAM was facilitated by transferring the irradiated SAM to

a new substrate, which allowed for an ex situ observation of the cross-linking process by helium ion microscopy (HIM). In this

way, three growth regimes of cross-linked areas were identified: formation of nuclei, one-dimensional (1D) and two-dimensional

(2D) growth. The evaluation of the corresponding HIM images revealed the dose-dependent coverage, i.e., the relative monolayer

area, whose density of cross-links surpassed a certain threshold value, as a function of the exposure dose. A complete cross-linking

of aromatic SAMs by He+ ion irradiation requires an exposure dose of about 850 µC/cm2, which is roughly 60 times smaller than

the corresponding electron irradiation dose. Most likely, this is due to the energy distribution of secondary electrons shifted to lower

energies, which results in a more efficient dissociative electron attachment (DEA) process.
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Introduction
Carbon nanomembranes (CNMs) with monomolecular thick-

ness and macroscopic lateral size represent a new type of func-

tional two-dimensional (2D) materials [1]. A universal scheme

to fabricate CNMs is the irradiation-induced cross-linking of

aromatic self-assembled monolayers (SAMs), which allows for

creating a variety of functional nanomembranes by using

different molecular precursors as building blocks [2]. The prop-

erties of CNMs, such as stiffness, chemical functionality and

porosity, can be tailored through a prudent choice of the molec-

ular precursors and the fabrication conditions. CNMs are

capable of being released from the substrate and transferred

onto arbitrary substrates, e.g., solid supports and holey

substrates [3]. Mechanical properties of freestanding CNMs

were characterized by bulge test in an atomic force microscope

(AFM): biphenyl-based CNMs possess a Young’s modulus of

ca. 10 GPa and a remarkable tensile strength of ca. 600 MPa
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Figure 1: (a–d) A schematic representation of the NBPT SAM cross-linked with He+ ions and the transfer onto a Si substrate: (a) Formation of SAM
on Au; (b) Local exposure to He+ ions; (c) Transfer of CNM with a polymeric film; (d) Separation of cross-linked from non-cross-linked regions. (e) A
demonstration of lithographic CNMs in Chinese characters nanomembranes transferred on a silicon substrate.

[4]. The possibility of transferring CNMs and their high

mechanical strength make them suitable candidates for nano-

electromechanical systems (NEMS). Postsynthetic modifica-

tions, e.g., multilayer stacking [5], thermal annealing [6], chem-

ical functionalization [7], and perforation [8,9], lead to a further

tailoring of the performance of the CNMs and enable various

investigations and applications.

The cross-linking of SAMs is so far conducted by exposure to

electrons [10] and photons [11]. Electron irradiation induces the

dissociation of C–H bonds at the phenyl rings. The consequent

cross-linking between adjacent aromatic moieties is a critical

step in the formation of CNMs. Both electron beam lithography

and extreme ultraviolet (EUV) lithography have been utilized to

fabricate CNMs from SAMs [11,12]. The EUV photon induced

cross-linking is, for that matter, related to secondary electrons

generated by the photoemission process [11]. Turchanin et al.

investigated the electron induced cross-linking of biphenylthiol

(BPT) SAMs on gold with complementary spectroscopic tech-

niques and they suggested a dissociative electron attachment

(DEA) as the dominating process to which both primary elec-

trons and secondary electrons contribute [13]. However, a

detailed picture of how the spatial distribution of cross-links

evolves until a complete CNM has been formed is still missing.

Further modification and patterning of SAMs have been

achieved by using ion irradiation (e.g. Ar+, Ga+, Si+, etc.),

which leads to the desorption and the fragmentation of mole-

cules [14,15]. High energy helium ions passing through

polymer films modify the macroscopic properties of these films,

too. This is related to changes in the chemical structures of the

polymers [16,17]. Recently, the helium ion microscope (HIM)

has been employed as an imaging and measurement tool for

nanotechnology, for which the sub-nanometer sized ion probe

and its resulting high brightness lead to a higher resolution and

the small convergence angle of the ion beam leads to a larger

depth of field. As an imaging tool, this instrument has a high

surface sensitivity and is particularly advantageous to distin-

guish monolayers from the supporting substrate [18,19]. As a

tool for nanofabrication, the low proximity effect that arises

from the finite excited volume, in which the ion–material inter-

action takes place, extending deeply into the material, and the

confinement of ion scattering to the secondary electron escape

depth promise an outstanding performance of HIM [20]. So far,

various approaches have been used to exploit the capabilities of

HIM, such as ion milling [21], scanning helium ion beam litho-

graphy (SHIBL) [22], and helium ion beam induced deposition

(HIBID) [20].

Here we used 4'-nitro-1,1'-biphenyl-4-thiol (NBPT) as a molec-

ular precursor to form SAMs on a Au substrate and employed

HIM both as a nanofabrication tool to cross-link SAMs and as

an imaging tool for the ex situ observation of the crosslinking

process. As regards the nanofabrication, both supported and

freestanding CNMs were fabricated by transferring them onto a

silicon substrate and a transmission electron microscopy (TEM)

grid, respectively. As regards the investigation of the cross-

linking process, the helium ion beam was programmed to irra-

diate NBPT SAMs with a series of different doses. The sep-

aration of cross-linked and non-cross-linked SAMs was con-

ducted by transferring them onto a Si substrate with an oxide

layer. The observation was done by using HIM in doing so

taking advantage of the high surface sensitivity of the instru-

ment.

Results and Discussion
Figure 1 shows a schematic representation of the cross-linking

and transfer process. Firstly, the SAM that consists of closely

packed NBPT molecules is formed on a gold substrate;

secondly, the SAM is irradiated locally with He+ ions; thirdly,

the transfer is assisted by a layer of poly(methyl methacrylate)

(PMMA) for mechanical stabilization, which allows the dissolu-
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tion of underlying Au layer; lastly, the PMMA layer is

dissolved and only the cross-linked SAM is transferred onto

another substrate, e.g., SiO2/Si. Figure 1e demonstrates a

successful transfer of structured CNMs in Chinese characters

which means nanomembranes: the grey background is SiO2/Si

substrate and the darker features are transferred CNMs.

For the fabrication of freestanding CNMs, NBPT SAMs were

irradiated in square patterns by helium ions at 35 keV and holey

carbon-coated TEM grids were used as supporting substrates.

Figure 2a shows the HIM image of a CNM with a size of

50 × 50 µm2 on a TEM grid and the corresponding irradiation

dose is approximately 500 µC/cm2. The CNM is supported by a

holey carbon film on a grid. The holey carbon film appears

brighter and the CNM slightly darker due to the charging effect.

To identify the CNM, its three corners are marked with arrows.

Figure 2b shows the higher magnification HIM micrograph of

the CNM in Figure 2a. It is noticeable that the CNM has many

tiny holes, indicating that the crosslinking is not complete at

this dose. Figure 2c and Figure 2d show the HIM micrographs

of a CNM with an irradiation dose of ca. 1000 µC/cm2. The

CNM shows homogeneous features and no pores are visible

here, which indicates a complete crosslinking. The CNM in the

upper–left corner is damaged and the dark features arise from

the sample stage beneath the TEM grid (see Figure 2d). Notice

that imaging doses are at least one order of magnitude smaller

than the irradiation dose, no further modification of CNMs is

expected during imaging.

In order to observe the development of the crosslinking of the

SAM, the NBPT SAM was irradiated in circular regions by

helium ion beam with a series of different doses. The variations

of the irradiation dose are achieved by controlling the dwell

time of the beam. Provided that the fabrication conditions are

the same for the whole series, the irradiation dose is propor-

tional to the total irradiation time. Therefore, the dynamics of

cross-linking and growth regimes can be studied by making ex

situ observations of the development of cross-linked SAMs. To

this end, the distinction of cross-linked from non-cross-linked

regions in the SAM was facilitated by transferring the irradi-

ated SAM to a new substrate. Strictly speaking, there exists a

threshold value, which is given by the density of cross-links that

is required for a successful transfer of a monolayer. Below this

threshold, the formed supramolecular network is not dense

enough to sustain a lift-off from its initial substrate. Therefore,

the transfer distinguishes the irradiated SAMs whose density of

cross-links surpasses the threshold value from those below the

threshold. Figure 3 shows a series of HIM images of a cross-

linked SAM that have been transferred onto a SiO2/Si substrate.

Interestingly, the first step is the formation of circular shaped

nuclei, which is analogous to the nucleation for thin films or

Figure 2: Freestanding CNMs with a dimension of 50 × 50 µm2

supported by a TEM grid with a holey carbon film: (a) the HIM micro-
graph of a CNM with an irradiation dose of 500 µC/cm2, where three
arrows mark its corners; (b) the high magnification HIM micrograph
shows that the CNM contains tiny holes; (c) the HIM image of a CNM
with an irradiation dose of 1000 µC/cm2; (d) the high magnification HIM
image shows that the CNM contains no microscopic defects. (Imaging
doses: a) 0.27 µC/cm2, b) 55.9 µC/cm2, c) 3.36 µC/cm2 and
d) 33.6 µC/cm2).

polymer crystallization [23]. After a dose of 176 µC/cm2

(Figure 3a), the average diameter of the nuclei is 9.0 ± 1.7 nm,

which means that each nucleus consists of ca. 300 molecules,

and the nucleus density is approximately 450 µm−2. When the

dose is 225 µC/cm2, the nucleus density increases to approxi-

mately 930 µm−2 (see Figure 3b). The above mentioned

threshold is related to the density of the cross-links of these

smallest patches (nuclei) that are able to be transferred. After

the early stage, the nuclei start to grow in one dimension and

chainlike structures with a typical length of about 100 nm

become the dominant features, as shown in Figure 3c. Figure 3d

shows a marked change of structures, i.e., chain thickening,

which indicates that a two dimensional (2D) growth (or lateral

growth) begins to take place. Figure 3g and Figure 3h show an

incomplete CNM with tiny holes and a complete CNM without

holes, respectively. In order to make sure that all these struc-

tures are indeed CNMs and to exclude the possibility that some

features (especially the small nuclei) might be due to contami-

nations from the transfer process, the sample (irradiated SAM

on SiO2) was annealed up to 300 °C in ultra-high vacuum

(UHV). The subsequent imaging with HIM confirms that no

change of the structures occurs. It is also worth mentioning that

an excessive exposure to He+ ions (>4000 µC/cm2) leads to a

damage of the CNMs, which is attributed to the swelling of the

Au substrate from ion implantation [24].
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Figure 3: A series of HIM images showing the cross-linking of a NBPT SAM induced by helium ion irradiation, where the cross-linked SAM was trans-
ferred onto a SiO2/Si substrate after being cross-linked within a circular region with the dose given in the upper right corner of each image: (a) forma-
tion of circular shaped nuclei which are widely separated and randomly distributed. (b) more nuclei come into being and some of them start to grow
one dimensionally; (c) chainlike structures with a typical length of ca. 100 nm become the majority; (d) chain thickening indicates a two-dimensional
(2D) growth beginning to take place; (e–f) 2D growth plays a dominating role; (g) the CNM contains tiny holes; (h) the CNM forms completely and no
defects are observed, indicating the status of a complete cross-linking. The scale bars are 200 nm.

A complete cross-linking of NBPT SAMs by He+ ion irradi-

ation requires an exposure dose of approximately 850 µC/cm2,

which is roughly 60 times smaller than the corresponding elec-

tron irradiation dose (ca. 50,000 µC/cm2, 100 eV) [13]. The

energy loss of helium ions in alkanethiol SAMs on Au were

investigated by neutral impact collision ion scattering spec-

troscopy (NICISS) and the stopping power was determined to

be about 3.7 eV/Å for the ion energy of 4 keV [25]. Though the

total scattering cross–section of He+ ions by the SAM is very

small, the energy transfer could induce molecular excitation and

bond scissions, which may contribute to the cross-link forma-

tion to a certain extent. However, the tremendous dose differ-

ence can be associated with distinctive characteristics of sec-

ondary electrons that are excited by the helium ions. Firstly, the

secondary electron yield for 35 keV He+ ions impinging

perpendicularly on a Au substrate is calculated by the software

package IONiSE to be about 2.7 [26]. And this is approxi-

mately three times higher than the experimentally determined

secondary electron yield (approximately 0.85) for 100 eV elec-

trons [27]. Secondly, the energy spectrum of secondary elec-

trons excited by 35 keV He+ ions on Au showed a peak around

2 eV, with a small shoulder in the range of 5–6 eV [28]. For the

excitation by electrons at 100 eV, the energy distribution of sec-

ondary electrons shows a peak at about 5 eV [27]. It is known

that secondary electrons at energies well below the ionization

threshold could produce single strand and double strand breaks

in DNA and thus induce genotoxic effects in living cells [29].

These breaks are attributed to the DEA process, in which the

attachment of incident electrons leads to the formation of a tran-

sient molecular anion (TMA) state and this TMA decays by

electron autodetachment or by dissociation of a specific bond.

The probability of forming a TMA, i.e., the electron capture

cross section, varies inversely with the energy of the TMA state

with respect to the ground state. In addition, the life time of

TMAs increases with decreasing their energies [30]. This indi-

cates that in the case of electron irradiation in NBPT SAMs, by

analogy with strand-breaks in DNA, the DEA process is more

efficient for secondary electrons with lower energies around

2 eV.

The DEA process is endothermic, as the electron affinity of a

biphenyl molecule (3–7 kJ/mol) is much smaller than the bond

energy of C–H (ca. 430 kJ/mol) [31,32]. The characteristic

energy barriers for cross-linking arise from the activation

energy for the DEA process and the entropic barrier to form a

covalent bond among adjacent molecules. The activation energy

and the above mentioned energy-dependent DEA cross section

determine the rate coefficient of the DEA process [33]. The

entropic barrier can be associated with a conformational entropy

reduction of a molecule after being cross-linked, as a single

molecule is more flexible and thus possesses higher degrees of

freedom compared to a molecule being cross-linked and
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constrained by covalent bonds. The sequence of cross-linking

depends on the characteristic energy barriers, as the entire

region is irradiated homogeneously. A formation of nuclei

would be associated with minimum activation energies in the

SAMs. Further crosslinking prefers to occur around those

already cross-linked nuclei, instead of regions that are not cross-

linked. This implies that activation energies in cross-linked

regions are relatively smaller, as π-electrons are laterally delo-

calized due to the cross-links and the electron mobility in cross-

linked regions increases as well. The formation of interfaces

between cross-linked and non-cross-linked region could result

in entropic barriers due to steric hindrance. Note that the orien-

tation of the 1D structures appears to be closer to the horizontal

(scan) direction than to the vertical direction, which implies that

the activation energy could be slightly brought down by the

helium ion beam scanning due to the local electronic field

around the growth front. Therefore, the growth direction of the

nuclei is determined by the growth front that exhibits the lowest

activation energies as well as the lowest entropic barriers.

Lastly, the fact that a 2D growth follows the 1D growth could

be attributed to a higher entropic barrier encountered at the

sides of 1D structures. As regards the entropic barrier, an

extreme example would be that for the insurmountable entropic

barriers the crosslinking does not occur and vacancies that

contain isolated molecules are formed. XPS spectra showed that

the maximum degree of crosslinking of the BPT SAM was

approximately 90% and further crosslinking was sterically

hindered [13].

As mentioned above, three stages of the crosslinking process

were designated: the formation of nuclei, 1D growth, and 2D

growth of cross-linked regions. Figure 4 shows the percentage

of the cross-linked area as a function of the irradiation doses:

(1) the initial formation of nuclei occurs up to a surface

coverage of 6–10%; (2) the 1D growth dominates for a

coverage up to about 35%; (3) the 2D growth dominates for a

coverage above about 35%. We employed Gaussian distribu-

tions to describe the probability of surpassing the threshold

cross-linking density at a given dose. As shown in Figure 4, the

cross-linked area coverage in dependence on the exposure dose

can be described by two superimposed sigmoid functions repre-

sented by the following cumulative Gaussian distribution func-

tions

(1)

where θ is the cross-linked area coverage, D is the irradiation

dose, D1 = (204 ± 18) µC/cm2 is the mean dose of the first

Gaussian distribution, σ1 = (42 ± 24) µC/cm2 is the corres-

ponding standard deviation, and I1 = 0.22 ± 0.04 is the magni-

tude of the first cumulative Gaussian distribution. The corres-

ponding quantities of the second Gaussian distribution are D2 =

(476 ± 8) µC/cm2, σ2 = (56 ± 7) µC/cm2 and I2 = 0.78 ± 0.04.

The existence of two distinct Gaussian distributions indicates

that two types of monolayer regions for 1D and 2D growth

regimes are involved, which require different doses for cross-

linking with mean values of approximately 200 µC/cm2 and

approximately 480 µC/cm2, respectively.

Figure 4: Percentage of the cross-linked area plotted as a function of
the irradiation dose: (1) no CNM forms below the threshold dose of
approximately 160 µC/cm2; (2) the formation of nuclei occurs up to a
surface coverage of 6–10%; (3) the 1D growth dominates for a
coverage of up to about 35% and the required mean dose is approxi-
mately 200 µC/cm2; (4) the 2D growth dominates for a coverage above
about 35% and the required mean dose is approximately 480 µC/cm2.

A possible explanation for this behaviour can be found by

considering the in-plane tension of cross-linked SAMs. It is

known that free-standing CNMs from fully cross-linked NBPT

SAMs exhibit an in-plane tensile residual strain of about 1%

[4]. This strain is expected to be introduced during the cross-

linking process, as new bonds are created between neigh-

bouring molecules. Figure 3a shows the formation of small

nuclei in the initial phase of the cross-linking process. Such

island-like structures are known to partially relax compressive

as well as tensile strain by slight expansion or shrinkage, res-

pectively [34]. A 10 nm sized nucleus may shrink up to 1 Å by

relaxing a tensile strain of 1%. Consequently, the distance

between neighbouring molecules adjacent to such cross-linked

nuclei should increase, which will reduce the probability of a

new cross-link formation. This increases the mean dose for the

non-cross-linked monolayer areas near cross-linked patches to

reach the threshold cross-linking density. The two distinct

Gaussian distributions in Figure 4 can be understood to reflect
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the cross-linking of unstrained and strained regions with mean

doses of approximately 200 µC/cm2 and approximately

480 µC/cm2, respectively. A consequence of this interpretation

is that the formation of nuclei as well as the formation of 1D

structures is assigned to the cross-linking process with the lower

mean dose, i.e., to the unstrained monolayer regions. This is

obvious by Figure 3c and Figure 4. The HIM image of

Figure 3c shows the occurrence of 1D structures while the

second sigmoidal function in Figure 4 possesses a negligible

value at this dose. Therefore, cross-linked patches are not

isotropically surrounded by strained regions but in certain direc-

tions the adjacent monolayer is unstrained, which results in the

observed formation of 1D cross-linked structures with the lower

mean dose. The 2D growth of cross-linked areas is then

assigned to the higher mean dose due to the strain in these

monolayer regions.

Conclusion
Freestanding carbon nanomembranes were successfully fabri-

cated from aromatic self-assembled monolayers by using

helium ion beam lithography. Three distinct stages of the cross-

linking process, i.e., the initial nucleation, 1D growth and 2D

growth, were observed ex situ by helium ion microscopy. Such

a sequence could be related to different activation energies of

dissociative electron attachment process as well as different

entropic barriers encountered by the growth fronts. The irradi-

ation dose for a complete cross-linking with helium ions is

roughly 60 times smaller than that with electrons. Most likely,

this is due to the energy distribution of helium ion excited sec-

ondary electrons being shifted to lower energies.

Experimental
Preparation of self-assembled monolayers
For the preparation of 4'-nitro-1,1'-biphenyl-4-thiol (NBPT)

SAMs we used a 300 nm polycrystalline Au layer with (111)

crystal planes epitaxially grown on a mica substrate (Georg

Albert Physical Vapor Deposition, Germany). The substrate

was cleaned with a UV/ozone cleaner (UVOH 150 LAB FHR)

for 5 min, rinsed with ethanol, and then blown dry under a

nitrogen stream. Afterwards the substrates were immersed into

10 mL of a solution of dry and degassed dimethylformamide

(DMF) with ca. 10 mmol NBPT molecules for 72 h in a sealed

flask under nitrogen atmosphere.

Helium ion lithography and helium ion
microscopy
The experiments were conducted with a Carl Zeiss Orion Plus®

helium ion microscope at room temperature. The irradiation of

NBPT SAMs was performed by using the built-in software. The

ion beam is programmed to irradiate an array of circular

features by using a bitmap file and the dose variations are

achieved by controlling the dwell time per pixel. The helium

ion beam was operated at an acceleration voltage of 34.8 kV

and a current of 3.5 pA. Due to the discreteness of bitmap files,

the helium ion beam is intentionally slightly defocused in order

to minimize any inhomogeneities in crosslinking. One circular

feature consists of 2160 write points at a pixel distance of

10 nm. The fabrication of freestanding square CNMs was

carried out by irradiating NBPT SAMs by HIM in a repeated

scanning mode. The sizes of CNMs are the same to the field of

view (FOV) and dose variations are achieved by controlling the

total scanning time. For imaging, the helium ion beam was

operated at acceleration voltages of 36.5–37.9 kV and currents

of 0.3–0.6 pA. Images on SiO2 were acquired at a working dis-

tance of 9 mm and a tilt angle of 35° with 30 µs dwell time per

pixel. Images on grid were acquired at a working distance of

30 mm with 0.5 µs dwell time and 128 frames averaged.

Transfer of carbon nanomembranes
After helium ion irradiation, the whole NBPT CNMs were

transferred onto another substrate for further investigations

again with the HIM. For the transfer of NBPT CNMs onto a

SiO2/Si substrate the samples were spin-coated with a layer of

poly(methyl methacrylate) (PMMA) for stabilization and baked

on a hotplate at 90 °C for 5 min. The separation of the PMMA/

CNM/Au layer from the mica substrate was achieved by care-

fully dipping the sample into water. Subsequently, the Au layer

was completely etched by a gold etchant (5 wt % I2 and

10 wt % KI in water). Afterwards, the PMMA/CNM layer was

transferred to a Si substrate with an oxide layer with the thick-

ness of 300 nm and the sample was immersed into acetone for

40 min for the dissolution of the PMMA layer. For the fabrica-

tion of freestanding NBPT CNMs on a TEM grid the same

process was carried out, except for the drying process being

conducted in a critical-point dryer (CPD, Autosamdri-815B,

Tousimis, USA) to yield intact and suspended CNMs.
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