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Abstract

Research on feature relevance and feature selection problems goes back several
decades, but the importance of these areas continues to grow as more and more
data becomes available, and machine learning methods are used to gain insight
and interpret, rather than solely to solve classification or regression problems.
Despite the fact that feature relevance is often discussed, it is frequently poorly
defined, and the feature selection problems studied are subtly different. Further-
more, the problem of finding all features relevant for a classification problem has
only recently started to gain traction, despite its importance for interpretability
and integrating expert knowledge. In this paper, we attempt to unify commonly
used concepts and to give an overview of the main questions and results. We
formalize two interpretations of the all-relevant problem and propose a polyno-
mial method to approximate one of them for the important hypothesis class of
linear classifiers, which also enables a distinction between strongly and weakly
relevant features.

Keywords: Feature Relevance, Feature Selection, Interpretability,
All-Relevant, Linear Classification

1. Introduction

Feature relevance and feature selection have been active research areas for
many years [1, 2]. However, the impact of these fields only continues to grow
as data becomes more and more abundant, and insight into and interpretation
of models and frameworks are regarded as more and more important [3, 4, 5],
in particular in the light of easily fooled machine learning models [6]. Despite
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the fact that feature relevance is often discussed in the literature [2, 7], it is
frequently poorly defined, and there are subtle differences between the feature
selection problems studied in various papers. In addition, the problem of identi-
fying all features relevant to a classification problem has only recently started to
gain traction, despite its importance for interpretability and integrating expert
knowledge.

Early concepts of feature relevance were developed e.g. by Gennari, Lan-
gley and Fisher [8] and Kohavi and John [1]. The definitions by Kohavi and
John continue to be used to this day, and form the basis of our analysis. Re-
garding feature selection, one branch of research is motivated by the fact that
the presence of many irrelevant or correlated features can severely impact the
speed and generalization ability of a machine learning algorithm. The identi-
fication of feature subsets that allow for good classification performance was
the subject of the 2003 NIPS feature selection challenge [9]. A wide array of
filter, wrapper and embedded methods to solve this problem have been pro-
posed, including Lasso, Group Lasso or Cluster Elastic Net for regression and
l1- or l1 and l2-regularized SVM for classification, filters based on mutual in-
formation for nonlinear models, or techniques based on relevance learning of
variables [1, 10, 11, 12, 13, 14, 15, 16].

More recently, the problem of finding all relevant features has become a
point of interest, motivated by a desire to use machine learning not only as a
blind toolbox for classification or regression, but to understand in detail the
behavior of a machine learning model, to integrate expert knowledge, or even to
use machine learning in order to explore dependencies within the data. Unlike
popular methods such as lasso, which identify only one minimal set of relevant
features, the all-relevant feature-selection problem aims for an identification of
all features which can be relevant for a given learning task; this is of particular
interest in the case of feature correlations and redundancies where researchers
might be interested in subtle markers which are otherwise shadowed by the
more pronounced signals. The identification of all relevant features enables an
interactive expert evaluation to decide which one of a set of highly correlated
features is most reasonable in a given setting.

Methods that have been proposed for tackling the all-relevant feature-selection
problem include Boruta [17, 18], which uses random forests to calculate im-
portance measures for each feature, forward-backward selection schemes using
various relevance measures, or, recently, the calculation of relevance intervals
for linear regression and metric learning [19, 20]. To some extent, Group Lasso
and Elastic Net are also capable of giving a relevance ranking in the case of
mutually redundant features in regression problems [14]. By relying on random
forests as a universal approximator, Boruta addresses the problem of identifying
all relevant features for the given classification task as a general problem. In
contrast, Elastic Net and the relevance learning approach as proposed in the
work [19, 20] focus on feature relevance for linear regression or classification,
respectively, disregarding possible nonlinear dependencies of features and out-
put variable. Since linear models constitute a particularly relevant model class,
this restriction of feature relevances constitutes an important specialization of
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the general problem. Interestingly, the Elastic Net can be accompanied by
mathematical guarantees under which model selection consistency holds [21].
In contrast, the approach for feature relevance in metric learning by Schulz et
al. [20], which deals with classification rather than regression, regards the valid
interpretation of a specific given model only.

In this paper, we propose a novel method to identify all relevant features
for the hypothesis class of linear classifiers, and we derive a polynomial time
learning algorithm for this task. More specifically, we address the more general
problem of identifying all possible relevances of a given feature for any model
with a given shape (e.g. linear) and small error for a given classification prob-
lem. The proposed method produces relevance intervals that indicate, in the
case of linear models, the different levels of importance a feature is assigned by
some linear classifier with low error. The benefit of these relevance intervals
is that they not only offer a way to determine all relevant features, but they
also enable a clear distinction between strongly and weakly relevant features
for the given linear classification problem, a distinction that is typically missing
in raw relevance profiles. We rely on two approximations: First, we formalize
the objective as a constrained optimization problem which controls the classi-
fication error on the given data as well as the model’s generalization ability by
limiting a norm of the weights, as is common in computational learning theory
for linear systems. Secondly, we quantify the observed feature relevance by the
used feature weight, which is also a common practice for linear models. Based
on these two approximations, a mathematical formalization of the problem of
determining feature relevance bounds becomes possible.

The remainder of this paper is organized as follows: Section 2 gives an
introduction into the concept of feature relevance and formalizes the two main
feature selection problems: the minimal-optimal and the general all-relevant
problems. We introduce the new concepts of the specific all-relevant problem as
well as strong and weak relevance to a hypothesis class. In Section 3 we present
a novel method for solving the specific all-relevant problem in the case of linear
classifiers, by relying on two steps: First, an initial linear classifier is determined,
namely an l1-SVM, which enables us to find bounds for the quality which can
be reached in the given setting. Secondly, for each feature, a minimization and
maximization, respectively, of the feature relevance is computed over all linear
models with a similar quality as the initial one. We phrase these latter problems
as constrained optimization problems, and we show that they can be rephrased
as linear problems, i.e. the solution can be found in polynomial time. Section
4 contains experiments on artificial data where we demonstrate the behavior of
the model and its superiority to alternatives such as Boruta or Elastic Net for
the linear case. Further, we evaluate the stability of the model as compared to
initial SVM solutions on real-world data.

2. Feature Relevance and Feature Selection Problems

In this section we give a short introduction to the existing theory of feature
relevance and the types of feature selection problems typically encountered in
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the literature. We extend the existing theory by introducing Definitions 5 and
6 that explore relevance for hypothesis classes.

2.1. Feature Relevance Theory
First, we introduce the notation used in the remainder of this paper. The

starting point of our analyses is a binary classification data set

{(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1, 1}

made up of data vectors xi and corresponding labels yi. The (xi, yi) are as-
sumed to be independent observations of the random variables (X,Y ), X =
(X1, . . . , Xd), with distribution D over Rd × {−1, 1}. A machine learning algo-
rithm is defined by an inducer I that maps a training sample to some classifica-
tion rule or hypothesis h : Rd → {−1, 1} whereby the set Im(I) of classification
rules the inducer can map to is called the hypothesis space H of I. An inducer
typically attempts to find a classification rule that minimizes the generalization
error

LD(h) = P(x,y)∼D[h(x) 6= y] = D({(x, y) : h(x) 6= y}).

We call the X1, . . . , Xd the features of the classification problem and the j-th
entry xj of a data point x the value of feature j for x.

The study of the relevance of features to a classification problem can be
motivated by improving the prediction performance of the predictors, making
predictors quicker and cheaper or gaining a better understanding of the under-
lying processes of data generation and model functionality [2]. Due to these di-
verse motivations and the difficulty in rigorously defining relevance, the current
literature deals with a broad spectrum of interpretations of feature relevance.

Firstly, it is necessary to distinguish between two areas of possible relevance,
namely:

1. The relevance of a feature to the label variable Y , or
2. the relevance of a feature to the behavior of a particular classification rule.

Concerning the relevance of a feature to the label variable Y , in the following
we use the definitions given by Kohavi and John [1] where Sj denotes the set of
all features except Xj , i.e.

Sj = {X1, . . . , Xj−1, Xj+1, . . . , Xd},

and for S = {Xi1 , . . . , Xi|S|} ⊆ {X1, . . . , Xd} and s ∈ R|S|, S = s denotes the
event Xij = sj for j = 1, . . . , |S|.

Definition 1. A featureXj is strongly relevant to Y if there exists some xj ∈ R,
y ∈ {−1, 1} and sj ∈ Rd−1 for which P(Xj = xj , Sj = sj) > 0 such that

P(Y = y|Xj = xj , Sj = sj) 6= P(Y = y|Sj = sj).
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It is weakly relevant to Y if it is not strongly relevant, but can be made strongly
relevant by removing other features, i.e. there exists a subset of features S′ of
Sj for which there exists some xj , y and s′ with P(Xj = xj , S

′ = s′) > 0 such
that

P(Y = y|Xj = xj , S
′ = s′) 6= P(Y = y|S′ = s′).

A feature is relevant if it is either strongly or weakly relevant. Otherwise, it is
irrelevant.

The distinction between strong and weak relevance is inspired by the obser-
vation that some features may carry information on the predictor variable that is
made redundant by the information contained in other features. As an extreme
case, consider a dataset where some features are identical copies of one another,
such as a dataset with features (X1, X2, X2). Assume that the data can be
accurately classified by calculating X1+X2. Even though each feature contains
information relevant to the classification problem, calling one of the identical
copies relevant would be misleading, as would calling one of them irrelevant. In
the framework created by Definition 1, the second and third features are weakly
relevant, indicating their redundancy, while the first is strongly relevant.

The relevance of a feature to the behavior of a particular hypothesis h is
given by Nilsson et al. [22]:

Definition 2. A feature Xj is relevant to the hypothesis h if

P(h(Xj , Sj) 6= h(X ′j , Sj)) > 0

where Xj and X ′j are independent samples from the marginal distribution of
the feature Xj .

That is, a feature is considered relevant to a particular hypothesis if re-
sampling the feature according to its marginal distribution affects the behavior
of the classifier with a non-zero probability. Note that unlike Definition 1,
Definition 2 does not distinguish between strong and weak relevance. Such
a distinction would require an additional degree of freedom. In Definition 6,
we will extend the relevance framework of Kohavi and John [1] to hypothesis
classes, and in particular introduce the concepts of strong and weak relevance
to a hypothesis class.

2.2. Feature Selection Problems
So far, we have been interested in individual features and assessing their

relevance either to a target variable or to a hypothesis. Now, we turn our
attention to feature selection problems, where we investigate subsets of features
and attempt to choose subsets that fulfill some criteria. There are two types of
feature selection problems typically referred to in the literature: the minimal-
optimal feature selection problem and the all-relevant feature selection problem.
While the minimal-optimal problem is related to improving the performance of
an algorithm [2], the all-relevant problem aims at insight into the data generation
and classification processes [17]. Unfortunately, the all-relevant problem is also
computationally intractable [22].
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Minimal-Optimal
The goal of the minimal optimal problem is usually to improve prediction

performance, or to make predictors quicker and cheaper. It is typically consid-
ered in terms of a fixed machine learning algorithm and its associated hypothesis
class. It can be formalized as follows:

Definition 3. The minimal-optimal feature selection problem for the inducer
I is the problem of finding a small subset

S ⊂ {X1, . . . , Xd}

of features such that applying I to the data set restricted to S incurs a hypoth-
esis h with small generalization error LD(h) with high probability.

Note that some authors define the minimal-optimal problem as the problem
of finding a minimal-size feature subset S ⊆ {X1, . . . , Xd} such that P(Y |S) ≈
P(Y |X1, . . . , Xd). The result is a smaller feature set on which the optimal Bayes
classifier shows identical or similar performance to the original problem. How-
ever, this formulation does not take into account biases and trade-offs particular
to the inducer I, and thus may not be optimal for improving the performance
of the hypotheses learned by I. For example, if the hypothesis class of I is the
set of linear classifiers, a feature subset S on which the optimal Bayes classifier
performs well can still lead to failure of the inducer I if data restricted to S is
no longer linearly separable.

In the earlier example of the dataset with features (X1, X2, X2) and optimal
classification through calculation of X1 + X2, a minimal-optimal set consists
of either the first and second or the first and third feature. This immediately
shows that a minimal-optimal set is not necessarily unique.

An intuitive approach to solve the minimal-optimal problem in an embedded
manner for linear classifiers is to apply l0-regularization. Since this is usually
computationally intractable, l1-regularization is used as an approximation, such
as in the Lasso [11] and Elastic Net [14] methods. Nilsson et al. [22] propose
a backward-elimination wrapper approach that, for strictly positive data dis-
tributions, identifies the minimal-optimal set for the optimal Bayes classifier in
the large-sample limit in polynomial time. Ideally, an algorithm that solves the
minimal-optimal problem finds all features relevant to the best hypothesis in H
in the sense of Definition 2, and only a subset of weakly relevant features.

All-Relevant
In contrast to the minimal-optimal problem, the all-relevant problem is usu-

ally motivated by the need to identify features that are “significant” to the target
variable [17], either in order to further investigate their dependencies, e.g. to
find exploratory directions in gene micro-array research [23, 24], or in order to
enable a more interactive model design process, e.g. to design classifiers that
take into account expert knowledge and the costs of acquiring each feature.

When the goal is to further investigate dependencies between the features
and the target variable, there is no formal reason to take into account a specific
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hypothesis class or inducer, since the intended results are independent of poten-
tial machine learning applications on the data. Indeed, Definition 1 is sufficient
to define the feature set that researchers who perform this type of analysis aim
to find:

Definition 4. The general all-relevant problem is the problem of identifying all
features relevant to the target variable Y in the sense of Definition 1, that is,
all strongly and weakly relevant features.

In the literature, this problem is frequently referred to as simply the all-relevant
problem [17, 22].

While solving the general all-relevant problem is a suitable approach to gain
insight into the underlying data distribution and identify possible directions for
further research, it is not appropriate when the objective is to facilitate interac-
tive model design or analysis: features that are relevant to the target variable
cannot be leveraged by all types of models and thus are not always relevant
for model design. Furthermore, even a feature that is irrelevant to the target
variable may improve the performance of some models by effectively enlarging
the hypothesis class (although this may be an undesirable effect). An example
of this was given by Kohavi and John as the hypothesis class of linear classi-
fiers without offset (homogeneous halfspaces), which can effectively be enlarged
to include linear classifiers with offset (inhomogeneous halfspaces) by adding
an additional feature that takes a constant non-zero value. For these reasons,
we define a new all-relevant feature selection problem, taking into account a
fixed hypothesis class and leveraging the concept of relevance to a hypothesis
introduced in Definition 2.

Definition 5. The specific all-relevant problem for a hypothesis class H is the
problem of determining all features relevant in the sense of Definition 2 to some
hypothesis h ∈ H such that the generalization error LD(h) is small. More
formally, if we fix ε > 0 and define

Hε := {h | LD(h) ≤ ε},

the set of all hypotheses in H with generalization error at most ε, then the
specific all-relevant problem is the problem of identifying all features Xj such
that there exists h ∈ Hε with Xj relevant to h in the sense of Definition 2.

The specific all-relevant problem has, to the best of our knowledge, not been
formally considered. However, methods such as Boruta [18, 25] that aim at
approximating a solution to the general all-relevant problem can also be inter-
preted as an attempt to solve the specific all-relevant problem for the hypothesis
class they employ. On the other hand, it may be worthwhile to use a solution of
the specific all-relevant problem as an approximation of the general all-relevant
problem when the latter proves too difficult.

Inspired by Definition 2, we propose the following taxonomy of relevance to
a hypothesis class:
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irrelevant
to H

weakly relevant
to H

strongly relevant
to H

relevant
to h

Figure 1: The relationship between the features strongly relevant, weakly rele-
vant, and irrelevant to a hypothesis class H and the features relevant to some
h ∈ H (gray areas).

Definition 6. A feature is called strongly relevant to a hypothesis class H if
it is relevant to all h ∈ H in the sense of Definition 2. It is weakly relevant to
a hypothesis class H if it is relevant to at least one h ∈ H, but not all, and
relevant if it is either strongly or weakly relevant. It is irrelevant if it is not
relevant to any h ∈ H.

The relationship between the features strongly and weakly relevant to H and
the features relevant to a single h ∈ H is visualized in Figure 1. Using Definition
6, we can reformulate the specific all-relevant problem for the hypothesis class
H analogously to Definition 4:

The specific all-relevant problem for the hypothesis class H is the problem of
finding all features that are relevant to Hε in the sense of Definition 6.

The distinction between strongly and weakly relevant features is necessary
for application domains such as classifier design taking into account expert
knowledge and feature acquisition costs: Any hypothesis h ∈ H with low gen-
eralization error LD(h) ≤ ε must use all features that are strongly relevant to
Hε, but only some that are weakly relevant to Hε. Thus, knowledge of the set
of strongly and weakly relevant features for Hε immediately provides insight
into which trade-offs are possible, which are not, and which features cannot be
leveraged by the hypothesis class at all. However, we emphasize once more that
even though the concept of strong and weak relevance to a hypothesis class is
inspired by the concept of strong and weak relevance to a target variable, one
does not imply the other, and relevance to the target variable does not even
imply relevance to the optimal Bayes classifier, as argued by Nilsson et al. [22]:
if the optimal Bayes classifier predicts the same label for all points, it acts in-
dependently of all features, even though some features may be relevant to the
target variable.

In the following, we propose an approach to solve the specific all-relevant
problem for the hypothesis class of linear classifiers, which constitute a popular
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model choice in the biomedical domain [23].

3. All-Relevant Determination Using Relevance Bounds

In the remainder of this paper, we introduce a novel approach to solve the
specific all-relevant problem for the hypothesis class of linear classifiers, by the
name of FeReL (Feature Relevance for Linear Classification). Our method
calculates relevance bounds for each feature, which admit the discrimination
of strongly and weakly relevant features for the hypothesis class as well as the
identification of irrelevant features. We further show that our proposed relevance
bounds can be calculated by solving linear programs, and thus our method runs
in polynomial time and the results are unique.

3.1. Relevance Bound Intuition
Since we do not have access to the underlying data distribution, we must

estimate two quantities: Firstly, whether or not a feature is relevant to a par-
ticular hypothesis, and secondly, which features in the hypothesis class induce
a low generalization error. Shortly, for the relevance of a feature to a hypothe-
sis, i.e. to a hyperplane defined by a normal vector and an offset, we use as a
quantitative measure the absolute values of the normal vector entries, and for
the generalization error of a hypothesis, we use a proxy based on the l1-norm of
the normal vector as well as margin intrusions. These ideas will be described in
more detail in the remainder of this section.

The heuristics we use to compensate for the fact that the underlying data
distribution is unknown are the following: If a linear classifier, that is, a hy-
perplane, is defined by the normal vector w and offset b, we take the absolute
value |wj | as a measure for the relevance of the feature Xj . In particular, Xj is
relevant to the hypothesis (w, b) iff |wj | > 0.1 Based on this interpretation of
relevance, we define relevance intervals for each feature in the following way:

Definition 7. The relevance interval for the feature Xj is defined as[
min

(w,b)∈Hε

|wj |, max
(w,b)∈Hε

|wj |
]
.

Going back to Definition 6, a feature Xj with relevance interval [wlower, wupper]
is strongly relevant to Hε if wlower > 0, irrelevant if wupper = 0 and weakly
relevant if wlower = 0 and wupper > 0.

Determining the hypothesis class Hε = {h | LD(h) < ε} is complicated by
the fact that we cannot exactly determine the generalization error of any hy-
pothesis in our class. Furthermore, the smallest generalization error achievable
by our hypothesis class is unknown, so it is unclear how ε should be chosen.
Here, we propose the following approach:

1This is a common practice [23], and coincides with Definition 2 in many practical cases,
e.g. if the features are subject to independent and unbounded noise.
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1. Compute a baseline hypothesis h∗ using an established machine learning
algorithm, e.g. a Support Vector Machine.

2. Let ε be an upper bound for the generalization error of h∗, as given e.g.
through Rademacher complexities. Then, as a proxy for Hε, use the set
Ĥε of hypotheses with the same or a similar upper bound for the general-
ization error.

Note that our general approach is not specific to linear classifiers and can
be extended to any hypothesis class for which risk bounds can be efficiently
controlled and an accepted measure for the relevance of a feature to a given
classifier exists.

Since one application of interest is designing classifiers that use few, cheap
features, we want to encourage sparse weight vectors, and allow importance to
“shift” between features in order to gain full information about groups that can
be substituted for each other. To this end, we use an l1-regularized SVM as a
baseline linear classifier and set Ĥε to the set of hyperplanes (w, b) with similar
hinge loss and l1-norm ‖w‖1. By controlling these two quantities, Rademacher
complexities give risk bounds similar to the bounds for the original l1-regularized
SVM solution.

3.2. A Formal Relevance Bounds Method
Concretely, our method consists of the following steps: Given data

(x1, y1), . . . , (xn, yn) ∈ Rd × {−1, 1},

1. A baseline linear classifier is given by a solution to the l1-regularized SVM
optimization problem:(

w̃, b̃, ξ̃
)
∈ argmin

w,b,ξ
‖w‖1 + C

n∑
i=1

ξi

s. t. yi(w
>xi − b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n.

From this baseline classifier, we derive an upper bound on the generaliza-
tion error we allow that depends on the l1-norm µ and hinge loss ρ of the
baseline classifier. Specifically, we set

µ = ‖w̃‖1 and ρ =

n∑
i=1

ξ̃i.

2. As a proxy for Hε, we use

Ĥε := {(w, b) | ‖w‖1 ≤ (1 + δ) · µ and hinge loss ≤ ρ}.

We will demonstrate in Section 3.3 that this allows us to control an upper
bound on the generalization error of the hypotheses in Ĥε – i.e., ε itself
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– as a function of δ and and upper bound on the performance of the
baseline classifier. We enforce “≤” constraints instead of “=” constraints
for greater stability and because hyperplanes with a smaller hinge loss
and l1-norm admit the same upper bound for the generalization error.
For each feature i, the minimum feature relevance bound is then defined
as the optimal value of the optimization problem

minRel((xi, yi)
n
i=1, j) : min

w,b,ξ
|wj |

s. t. yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

n∑
i=1

ξi ≤ ρ, ‖w‖1 ≤ (1 + δ) · µ.

The maximum feature relevance bound is defined as the optimal value of
the optimization problem

maxRel((xi, yi)
n
i=1, j) : max

w,b,ξ
|wj |

s. t. yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

n∑
i=1

ξi ≤ ρ, ‖w‖1 ≤ (1 + δ) · µ.

3. A feature is relevant to the hypothesis class of linear classifiers if its max-
imum feature relevance bound is greater than zero and irrelevant other-
wise. A relevant feature is strongly relevant to the hypothesis class of
linear classifiers if the minimum feature relevance bound is also greater
than zero, and weakly relevant to the hypothesis class of linear classifiers
if the minimum feature relevance bound is equal to zero.

The maximum feature relevance bound of a feature Xj is greater than zero if
and only if there exists a hypothesis h ∈ Ĥε parameterized by normal vector
w and offset b such that |wj | > 0. The minimum feature relevance bound is
greater than zero if and only if this holds for every h ∈ Ĥε. This means that
if |wj | is a good measure of relevance and Ĥε is a good approximation of Hε,
our method solves the all-relevant problem for Hε, the class of hyperplanes that
separate data from the distribution D as well as our baseline l1-SVM solution.
We justify our choice of Ĥε using generalization bounds based on Rademacher
averages in the following section.

3.3. Generalization Bounds
We stated in subsection 3.1 that our minRel and maxRel consider the sepa-

rating hyperplanes where Rademacher complexities give similar risk bounds as
for the output of the l1-regularized SVM. To see that this is indeed the case,
recall Theorem 26.15 of Understanding Machine Learning [26]:
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Theorem 1. Suppose that D is a distribution on X×Y such that with probability
1 we have ‖x‖∞ ≤ R. Let H = {w ∈ Rd | ‖w‖1 ≤ B} and let l : H ×X × Y
be of the form l(w, (x, y)) = ϕ(〈w, x〉, y) where ϕ : R × Y → R is such that
for all y ∈ Y , the scalar function a 7→ ϕ(a, y) is η-Lipshitz and such that
maxa∈[−B·R,B·R] |ϕ(a, y)| ≤ c. Then, for any τ ∈ (0, 1) with probability of at
least 1− τ over the choice of an i.i.d. sample of size n, for all w ∈ H,

E(x,y)∼D[l(w, x, y)] ≤
1

n

n∑
i=1

l(w, xi, yi) + 2ηBR

√
2 log(2d)

n
+ c

√
2 ln(2/τ)

n

We will use Theorem 1 to show that with high probability, the generalization
error of every h ∈ Ĥε can be bounded similarly to the generalization error of
the baseline l1-SVM solution.

Consider the ramp loss

l(w, x, y) = min{1,max{0, 1− y(w>x)}}.

The ramp loss is 1-Lipshitz and maps to the interval [0, 1]. It upper bounds the
0-1 loss, so that using Theorem 1 gives

LD(w) ≤ 1

n

n∑
i=1

l(w, xi, yi) + 2BR

√
2 log(2d)

n
+

√
2 ln(2/τ)

n
(1)

for all w such that ‖w‖1 ≤ B with probability 1− τ over the choice of sample.
In particular, setting ρ =

∑n
i=1 ξ̃i to the hinge loss of the baseline classifier and

using the fact that the hinge loss upper bounds the ramp loss, (1) gives the
bound

LD(w̃, b̃) ≤
ρ

n
+ 2‖w̃‖1R

√
2 log(2d)

n
+

√
2 ln(2/τ)

n

for the generalization error of the baseline linear classifier (w̃, b̃) and

LD(h) ≤
ρ

n
+ 2(1 + δ)‖w̃‖1R

√
2 log(2d)

n
+

√
2 ln(2/τ)

n

for all h ∈ Ĥε, with probability at least 1− τ over the choice of training sample,
i.e. our choice of constraints allow the generalization error upper bound to

increase by 2δ‖w̃‖1R
√

2 log(2d)
n .

3.4. Solution via Linear Programs
In this section, we show how to calculate minimum and maximum rele-

vance bounds using linear programs. This not only shows that our method is
easy to implement, but also that the bounds defined by minRel((xi, yi)

n
i=1, j)

and maxRel((xi, yi)
n
i=1, j) are unique and can be calculated in polynomial time.

Proofs of the asserted equivalences can be found in Appendix A.
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Theorem 2. minRel((xi, yi)
n
i=1, j) is equivalent to the linear program

minLP((xi, yi)
n
i=1, j) : min

ŵ,w,b,ξ
ŵj (2)

s. t. wi − ŵi ≤ 0, −wi − ŵi ≤ 0, i = 1, . . . , d (3)

yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n (4)

d∑
i=1

ŵi ≤ (1 + δ) · µ (5)

n∑
i=1

ξi ≤ ρ (6)

and if (ŵ,w, b, ξ) is an optimal point of minLP((xi, yi)
n
i=1, j), then (w, b, ξ) is

an optimal point of minRel((xi, yi)
n
i=1, j).

Essentially, we reformulate the problem minRel((xi, yi)
n
i=1, j) by introducing

the auxiliary vector ŵ. The constraints in (3) enforce |wi| ≤ ŵi for all i =
1, . . . , d, so that ŵ upper bounds the element-wise absolute value of w. This
fact is used in constraint (5) to upper bound the l1-norm of w. At the same
time, the objective function in (2) encourages ŵj to be as small as possible, so
that ŵj = |wj |.

Theorem 3. The maximum relevance bound is equivalent to taking the maxi-
mum of the optimal values of the linear programs

maxLPNeg((xi, yi)
n
i=1, j) : (7)
max
ŵ,w,b,ξ

ŵj (8)

s. t. wi − ŵi ≤ 0,−wi − ŵi ≤ 0, i = 1, . . . , d (9)
ŵj + wj ≤ 0 (10)

yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n (11)

d∑
i=1

ŵi ≤ (1 + δ) · µ (12)

n∑
i=1

ξi ≤ ρ (13)
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and

maxLPPos((xi, yi)
n
i=1, j) : (14)
max
ŵ,w,b,ξ

ŵj (15)

s. t.wi − ŵi ≤ 0,−wi − ŵi ≤ 0, i = 1, . . . , d (16)
ŵj − wj ≤ 0 (17)

yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n (18)

d∑
i=1

ŵi ≤ (1 + δ) · µ (19)

n∑
i=1

ξi ≤ ρ (20)

That is: If (ŵ+,w+, b+, ξ+) is an optimal point of maxLPPos((xi, yi)
n
i=1, j) and

(ŵ−,w−, b−, ξ−) is an optimal point of maxLPNeg((xi, yi)
n
i=1, j), then

(wx, bx, ξx) : x ∈ argmin
{+,−}

{ŵ+
j , ŵ

−
j }

is an optimal point of maxRel((xi, yi)
n
i=1, j).

Reformulating maxRel((xi, yi)
n
i=1, j) as a single linear program is not pos-

sible as its objective is to maximize a convex function – the absolute value
function. We compensate by dividing the feasible set of maxRel((xi, yi)

n
i=1, j)

into two parts – one where wj ≤ 0 and one where wj ≥ 0. This division is
enforced by constraints (10) and (17), since ŵj ≥ 0 as a consequence of con-
straints (9) and (16). On the new feasible sets, |wj | can be written as −wj and
wj , respectively and optimization via linear programs becomes possible using
an auxiliary vector ŵ as in Theorem 2.

Using this formulation of the optimization problems as linear programs, our
method is easy to implement using any pre-existing SVM and LP solvers. In
the following Section, we test its performance on real-world and toy datasets.

4. Experiments

In the following, we show how our method, which we dub FeReL (Feature
Relevance for Linear Classification), performs on a several of datasets, both
synthetic and from the biomedical domain. We have made the Python imple-
mentation of Ferel used for these experiments available online.2

2https://github.com/cgoepfert/ferel
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Table 1: Our two data settings. They differ in sample size (size) and the num-
ber of strongly relevant (str.), weakly relevant (weak.), and irrelevant features
(irrel.).

str. weak. irrel. size

Setting A 1 2 11 512
Setting B 6 6 6 256

4.1. Comparison to other methods on data with known ground truth
In order to test our method in situations with known ground truth, we create

two synthetic data sets with new configurations of strongly relevant, weakly
relevant, and irrelevant features, as well as new sample sizes as compared to
our original analysis [27]. The objective in each case is the identification of
the all-relevant feature set, that is, of all strongly and weakly relevant features.
We compare the results of our method to those of feature selection via an l2-
regularized linear classifier (Ridge), an l1-regularized linear classifier (Lasso),
an l1 and l2-regularized linear classifier (Elastic Net), and Boruta [17, 18]. For
the linear classifiers, a feature is considered relevant if the activation of the
corresponding weight in the normal vector to the separating hyperplane is above
10−5. For Boruta, we used the Python implementation boruta_py available
online3.

Our method (Ferel) considers a feature as relevant if its maximum rele-
vance bound is above 10−5. Hyperparameters were tuned using 10-fold cross-
validation.

The data sets are created according to two different randomized settings
which are summarized in Table 1. Here, we create two weakly relevant features
by duplicating a single strongly relevant feature, thus creating features that are
informative but redundant.

For each setting, we average precision, recall and F1-measure over 10 random
instances. Reported precision and recall refer to the comparison of the selected
feature sets to the (known) set of all relevant features. Setting A simulates a
situation where most of the observed features are irrelevant to the hypothesis
class, which can cause the performance of some classifiers to degrade, but is not
uncommon in an explorative setting. Setting B simulates a balanced situation
where the solutions of the minimal-optimal problem differ markedly from the
all-relevant solution. The results can be found in Table 2. Ferel achieves the
highest F1-score in both settings. Interestingly, across all methods tested, the
recall is quite high while precision tends to be low. This means that even Lasso,
which should in theory select only a subset of weakly relevant features, selects
all strongly and weakly relevant features – but then selects several irrelevant

3www.github.com/scikit-learn-contrib/boruta_py
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Table 2: Averaged results for Setting A and Setting B.

Setting A Setting B
Precision Recall F1 Precision Recall F1

Ridge 0.21 1.00 0.35 0.67 1.00 0.80
Lasso 0.96 1.00 0.98 0.71 1.00 0.83
Elastic Net 0.40 1.00 0.56 0.90 1.00 0.94
Boruta 0.82 1.00 0.89 0.99 0.93 0.96
Ferel 1.00 1.00 1.00 0.98 0.98 0.98

features as well. The worst precision across both settings is demonstrated by
l2-regularized SVM. This is understandable since the l2-regularization does not
enforce any type of feature selection. Lasso shows a much higher precision in
Setting A, showing that it is not as adversely affected by the high number of
irrelevant features present. However, its precision drops almost to the level of
Ridge in Setting B, where the number of samples is lower, while the number
of features is higher. Ferel, which shows perfect performance in Setting A, also
shows a small decline in performance in Setting B, where it is overtaken by
Boruta concerning precision. The different qualities of results between Settings
A and B show that a detailed analysis of the behavior of our and other feature
selection methods under low sample sizes is of interest. A study of the behavior
of Ferel on one such data set can be found in the following Section.

4.2. Adrenal Dataset
In our previous work [27], we used Ferel to perform an analysis of the adrenal

gland metabolomics dataset, which has been described by Biehl et al. [28]. It
consists of 147 data points corresponding to adrenocortical carcinoma or ade-
noma, respectively, described by 32 steroid markers which relate to five different
regimes of the underlying metabolic processes. As is common in this type of
application, the data dimensionality is relatively high compared to the size of
the data set. We are therefore interested in the stability of our method across
different train-test splits. We have analyzed the stability by calculating the
standard deviation of the achieved minimum and maximum relevance bounds
as compared to the standard deviation of the entries of the baseline classifier
across 64 90-10 train-test-splits. The results are given in Figure 2. We observe
that the ratio of standard deviations is close to 1 for most features, which shows
that our method does not introduce significant instability in these cases. A
comparatively large increase of standard deviation can be observed for features
2, 9 and 31, which are considered irrelevant both by the baseline classifier and
by Ferel.

Figure 3 shows the mean minimum and maximum relevance bounds averaged
over all train-test-splits.
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Figure 2: Per-feature ratio of the standard deviation of the maximum relevance
bounds found by our method to the corresponding weight in the baseline clas-
sifier.

Figure 3: Results of Ferel on the adrenal dataset, averaged over 64 train-test
splits.
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Figure 4: Results of Ferel on the Wisconsin Breast Cancer (Diagnostic) dataset
using all features. The lower bound is 0 for all features.

4.3. Breast Cancer Wisconsin (Diagnostic) Dataset
We use Ferel to examine the Wisconsin Breast Cancer (Diagnostic) [29]

dataset from [30], which contains properties of cell nuclei from malignant and
benign tissue samples in the form of 30 features. The resulting feature relevance
profile is given in Figure 4. It indicates that every single feature is weakly rel-
evant and so, no feature is irrelevant – maybe more importantly, no feature is
strongly relevant, which suggests that any one of them could be discarded with-
out adversely affecting classification. We validated this empirically by training
a classifier on all feature subsets with 29 features. Performance was not worse
than with all 30 features. The observed relevances are not surprising, consider-
ing the relations between many of the dataset’s features. They are ten triplets
comprising mean, standard error and worst of certain features and include the
radius, perimeter and area of certain structures. When we run Ferel on reduced
versions of the dataset that contain only mean, standard error or worst features
(see Figure 5), we see that all of the mean features remain weakly relevant.
Considering only the standard error features, the 14th feature becomes strongly
relevant. It describes the standard error in area covered by the nuclei. Of the
worst features, the 22nd feature is considered strongly relevant. This feature
is the worst texture, a number that describes how irregular a nucleus’s color
is. Compared to training with all features, the F1-score drops from 0.9589 to
0.9577, 0.8889, and 0.9429, respectively. These experiments demonstrate the
benefits of our relevance taxonomy: We clearly observe features that are redun-
dant in the presence of other features become indispensable when some of the
other features are removed. The similar performance of the mean and worst
feature subsets suggest that both could contain minimal optimal sets. However,
the cost of measuring and recording the features may vary greatly between both
sets, so that simply identifying one minimal optimal set is far from ideal.

5. Conclusion

We have defined and tackled the specific all-relevant feature selection prob-
lem for the hypothesis class of linear classifiers, stating it as the problem of
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Figure 5: Results of Ferel on the Wisconsin Breast Cancer (Diagnostic) dataset.
In the first, second, and third plot, only the mean, standard error and worst
features are used, respectively – the remaining features are plotted for easier
comparison with their lower and upper bounds set to 0.
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finding minimum and maximum relevance bounds in the class of all equivalent
hypotheses as concerns hinge loss and l1-norm of the weight vector. We have
argued that this approach constitutes a sensible approximation of the specific
all-relevant problem, an approximation that is necessary as we do not have
access to the underlying data distribution. As an added benefit, our method
allows for the distinction between strongly and weakly relevant features, which
is not required as part of the specific all-relevant problem, but nonetheless pro-
vides valuable information for practitioners. Furthermore, we have shown that
the necessary search over the set of linear classifiers considered equivalent can
be efficiently performed using linear programs, which yield unique results in
polynomial time.

We have augmented our previous analyses by comparing our method with
two other all-relevant feature selection methods on new configurations of syn-
thetic data with known ground truth, with our method outperforming both. In
addition, we have tested our method on an additional real-world data set and
analyzed the stability of our method on real-world data over repeated train-test
splits. This is an important concern due to the typically high dimensionality of
data from the biomedical application domain as compared to data set size.

In practice, the proposed method opens a way for an intelligent and inter-
active analysis of linear models based on all possibly relevant features for a
classification problem, thus facilitating data introspection as well as classifier
design. Additionally, the framework we have developed for tackling the specific
all-relevant problem for a linear hypothesis class is transferable to other hypoth-
esis classes or other performance measures, such as area-under-the-curve instead
of generalization error. Area under the curve evaluation and optimization is par-
ticularly useful for imbalanced classes, as is common in the biomedical domain
where the number of healthy patients typically heavily outweighs the number
of sick patients. In the future, we will tackle these types of extensions, as well
as developing methods that automatically visualize the mutual relationships of
weakly relevant features.
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Appendix A. Proofs of Theorem 2 and 3

First, we prove a support theorem that we will use in the proofs of Theorems
2 and 3:

Theorem 4. Regard the two optimization problems

Problem 1: min
x

h1(x) s. t. x ∈ A1

and

Problem 2: min
x

h2(x) s. t. x ∈ A2 (A.1)

If there exist maps f : A1 → A2 and g : A2 → A1 such that for all x ∈ A1,
y ∈ A2:

h2(y) < h2(f(x))⇒ h1(g(y)) < h1(x) (A.2)
h1(x) < h1(g(y))⇒ h2(f(x)) < h2(y), (A.3)

then Problems 1 and 2 are equivalent, that is, one can easily be solved by solving
the other.

Proof. Let xopt be an optimal point of Problem 1. Then h2(f(xopt)) ≤ h2(y)
for all y ∈ A2, i.e. f(xopt) is an optimal point of Problem 2, because h2(y) <
h2(f(xopt)) would imply h1(xopt) > h1(g(y)) according to (A.2), which contra-
dicts the optimality of xopt. Switching the roles of Problem 1 and Problem 2
shows that if yopt is an optimal point of Problem 2, g(yopt) is an optimal point
for Problem 1.

Now, we will define the mappings f and g: For brevity, we will suppress
the arguments ((xi, yi)

n
i=1, j) to the optimization problems and refer to them

by name only. The domain of minRel and maxRel is Rd+1+n. Their feasible
sets are identical and denoted by A. The domain of minLP, maxLPPos, and
maxLPNeg is Rd+d+1+n and we denote their feasible sets by Bmin, B+

max and
B−max, respectively. The mappings f and g are defined by

f : Rd+1+n → Rd+d+1+n

(w, b, ξ) 7→ (|w|,w, b, ξ)
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and

g : Rd+d+1+n → Rd+1+n

(ŵ,w, b, ξ) 7→ (w, b, ξ)

Let A+ = {(w, b, ξ) ∈ A | wj ≥ 0} and A− = {(w, b, ξ) ∈ A | wj ≤ 0}. Clearly,
if (w, b, ξ) ∈ A, A+ or A−, then f(w, b, ξ) ∈ Bmin, B+

max or B−max, respectively
and vice versa. Thus, f and g are transformations between the feasible sets of
minRel and minLP. In the Proof of Theorem 3, we will introduce optimization
problems with feasible sets A+ and A− that can be combined to solve maxRel.
Then, it only remains to show that (A.2) and (A.3) hold in each case.

Proof of Theorem 2. The objective function of minRel is

h1(w, b, ξ) = |wj |

and the objective function of minLP is

h2(ŵ,w, b, ξ) = ŵj .

Let (w, b, ξ) ∈ A and (ŵ,w′, b′, ξ′) ∈ Bmin. Then, per definition,

h2(ŵ,w
′, b′, ξ′) < h2(f(w, b, ξ))⇔ ŵj < |wj |

which implies |w′j | < |wj | due to (3), so that h1(g(ŵ,w′, b′, ξ′)) < h1(w, b, ξ).
On the other hand,

h1(w, b, ξ) < h1(g(ŵ,w
′, b′, ξ′))⇔ |wj | < |w′j |

which by (3) implies |wj | < ŵj , so that h2(f(w, b, ξ)) < h2(ŵ,w
′, b′, ξ′).

Proof of Theorem 3. Regard the two problems

maxRelPos((xi, yi)
n
i=1, j) : min

w,b,ξ
−|wj | s. t.(w, b, ξ) ∈ A+

and

maxRelNeg((xi, yi)
n
i=1, j) : min

w,b,ξ
−|wj | s. t.(w, b, ξ) ∈ A−

Since the objective functions of maxRel, maxRelPos and maxRelNeg are identi-
cal, and the union of the feasible sets of maxRelPos and maxRelNeg is the feasi-
ble set of maxRel, maxRel can be solved by solving maxRelPos and maxRelNeg,
and taking the result that gives the higher value of |wj |. It remains to show
that maxRelPos is equivalent to maxLPPos and maxRelNeg is equivalent to
maxLPNeg. We will prove the first equivalence.

The objective function of maxRelPos is

h1(w, b, ξ) = −|wj |
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and the objective function of maxLPPos is

h2(ŵ,w, b, ξ) = −ŵj .

Let (w, b, ξ) ∈ A and (ŵ,w′, b′, ξ′) ∈ Bmin. Then,

h2(ŵ,w
′, b′, ξ′) < h2(f(w, b, ξ))⇔ −ŵj < −|wj |.

Since −w′j ≤ −ŵj by (17), this implies −w′j < −|wj |, and because w′j ≥ 0 by
(16) and (17), we have −|w′j | < −|wj |. This shows that h1(g(ŵ,w

′, b′, ξ′)) <
h1(w, b, ξ).

On the other hand,

h1(w, b, ξ) < h1(g(ŵ,w
′, b′, ξ′))⇔ −|wj | < −|w′j |.

Since w′j ≥ 0 by (16) and (17), this implies −|wj | < −w′j , and because −w′j ≤
−ŵj by (17), we have−|wj | < −ŵj . This shows that h2(f(w, b, ξ)) < h2(ŵ,w, b, ξ).

The proof of equivalence of maxRelNeg and maxLPNeg uses the same argu-
ments, with w′j ≤ −ŵj instead of −w′j ≤ −ŵj and w′j ≤ 0 instead of w′j ≥ 0.

25

Preprint – Accepted at Neurocomputing 2017 ESANN Special Issue.

25 / 25


	Introduction
	Feature Relevance and Feature Selection Problems
	Feature Relevance Theory
	Feature Selection Problems

	All-Relevant Determination Using Relevance Bounds
	Relevance Bound Intuition
	A Formal Relevance Bounds Method
	Generalization Bounds
	Solution via Linear Programs

	Experiments
	Comparison to other methods on data with known ground truth
	Adrenal Dataset
	Breast Cancer Wisconsin (Diagnostic) Dataset

	Conclusion
	Proofs of Theorem 2 and 3

