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Abstract 31 

Multivariate Linear Regression-based (MLR) surrogate models were explored to reduce the 32 

computational cost of predicting femoral strains during normal activity in comparison with 33 

finite element analysis. The musculoskeletal model of one individual, the finite-element 34 

model of the right femur, and experimental force and motion data for normal walking, fast 35 

walking, stair ascent, stair descent, and rising from a chair were obtained from a previous 36 

study. Equivalent Von Mises strain was calculated for 1000 frames uniformly distributed 37 

across activities. MLR surrogate models were generated using training sets of 50, 100, 200 38 

and 300 samples. The finite-element and MLR analyses were compared using linear 39 

regression. The Root Mean Square Error (RMSE) and the 95
th

 percentile of the strain error 40 

distribution were used as indicators of average and peak error. The MLR model trained using 41 

200 samples (RMSE < 108 µε; peak error < 228 µε) was used as a reference. The finite-42 

element method required 66 secs per frame on a standard desktop computer. The MLR model 43 

required 0.1 sec per frame plus 1848 secs of training time. RMSE ranged from 1.2% to 1.3% 44 

while peak error ranged from 2.2% to 3.6% of the maximum micro-strain (5020 με). 45 

Performance within an activity was lower during early and late stance, with RMSE of 4.1% 46 

and peak error of 8.6% of the maximum computed micro-strain. These results show that 47 

MLR surrogate models may be used to rapidly and accurately estimate strain fields in long 48 

bones during daily physical activity. 49 

 50 

Keywords: musculoskeletal; finite-element; surrogate model; human gait 51 

 52 

 53 

 54 
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1. Introduction  55 

 56 

 Quantifying femoral strain distribution is important for studying bone adaptation [1-3], 57 

diagnosing individuals most at risk of femoral fracture [4-6], and optimizing the 58 

biomechanical behaviour of implantable devices [7, 8]. Over the last few decades, finite-59 

element analysis has been used extensively to quantify the entire femoral strain field [9-11], 60 

and there is growing interest in using this method to characterise strain distributions in 61 

multiple individuals [12, 13] and across multiple trials and tasks [14]. In addition, there is 62 

need to investigate the influence of the musculoskeletal (MS) modelling process on femoral 63 

strain predictions, by performing probabilistic analyses to account for uncertainties in the MS 64 

model input parameters [14-16] and examining alternative muscle recruitment strategies [17]. 65 

Unfortunately, the computational cost of performing such analyses can be prohibitive, thus 66 

new methods are needed to accurately and rapidly estimate the femoral strain field to enable 67 

large-scale studies of 100’s to 1000’s of simulations to be performed. 68 

       Surrogate models represent a viable solution in that they can be trained using finite 69 

element calculations of femoral strain for a limited number of training sets and then used to 70 

rapidly provide femoral strain estimates for an arbitrary frame of motion or an entire activity. 71 

A variety of surrogate models have been used by the biomechanics community including 72 

Multivariate Linear Regression [18, 19], Bayesian modelling [20], Artificial Neural Networks 73 

[18, 21, 22], Random Forest [23] and Kriging [24-26], either for linear problems, (e.g., 74 

assessment of femoral neck fracture during a single load case [18]) or for non-linear problems 75 

(e.g., modelling the contact between bone and implant [19]). Most studies predict a single 76 

scalar outcome, such as joint moments and muscle forces [27]; contact forces and contact 77 

pressure [21, 25, 26, 28-30]; femoral neck strain and fracture load [18]; implant micro-78 

movement and stress shielding [20, 31]. Multivariate Linear Regression has been used for 79 
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predicting femoral neck strain [32], fracture load [18] and the micro-movement at the bone-80 

implant interface [19]. However, the error and computational advantage of MLR over finite-81 

element models remains unclear for the calculation of strain over the femoral volume and 82 

across normal activities of daily living. 83 

The aim of this work was to explore the use of MLR for predicting femoral strain fields 84 

for a range of activities of daily living. Muscle forces, joint reaction forces and femoral strain 85 

were calculated for a single individual performing five tasks using a previously developed 86 

musculoskeletal and finite-element model [16]. A MLR surrogate model was trained using 87 

femoral strain, muscle forces, and joint reaction forces for a limited number of randomly 88 

selected frames of motion and then used to estimate femoral strain for multiple motor tasks. 89 

Model performance was assessed by comparing MLR estimates of the femoral strain field to 90 

corresponding results obtained from finite-element calculations. 91 

 92 

 2. Materials and Methods 93 

2.1 Data 94 

A full-body musculoskeletal model, finite-element model of the femur of the dominant 95 

leg, marker trajectories, and ground reaction forces for a single healthy participant (female, 96 

68-year-old, 53 kg weight, 157 cm height) were obtained from a previous study [16]. All 97 

experimental and computational methods are described in detail by Martelli et al. (2015) and 98 

Dorn et al. (2012), respectively. Briefly, marker trajectories and ground reaction forces were 99 

recorded for five trials of each of the following five tasks: walking at the self-selected speed 100 

(normal walking), fast walking, stair ascent, stair descent, and rising from and sitting down 101 

on a chair (chair rise). Trials with incomplete marker trajectories were discarded, resulting in 102 

five trials each for normal walking, fast walking and stair descent; four trials for stair ascent; 103 

and one trial for chair rise. A participant-specific musculoskeletal model was created by 104 
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scaling the generic model described by Dorn et al. (2012) using the segment lengths and body 105 

mass measured during a static trial.  106 

The marker trajectories were labelled using a VICON motion capture system (Vicon, 107 

Oxford, UK), saved as c3d files, and then converted into OpenSim format using MOtoNMS 108 

[34]. Joint angles, muscle forces, and joint reaction forces were calculated using, 109 

respectively, inverse kinematics, static optimization and joint reaction analysis tools available 110 

in OpenSim [35]. The finite-element model of the right femur was a locally-isotropic, linear-111 

elastic model whose geometry and element-by-element material properties were extracted 112 

from calibrated computed-tomography images following a well-established procedure [36]. 113 

The finite-element model was loaded by applying muscle forces and the hip joint reaction 114 

force for 50 frames uniformly distributed over each activity. The FE model was kinematically 115 

constrained distally (Figure 1). The musculoskeletal and finite-element models were coupled 116 

using custom software [16]. The equivalent von Mises strain was calculated at each element 117 

centroid for a total of 1000 frames (20 trials, 50 frames per trial) as a compact indicator of 118 

both compressive and tensile strain states.  119 

2.2 Multi-variate linear regression surrogate model 120 

A Latin Hypercube (LH) sampling method was used to create the training set, which 121 

comprised of muscle forces, joint reaction forces and femoral strains for randomly selected 122 

frames of motion (Figure 1). The process was repeated to generate four training sets 123 

consisting of 50, 100, 200 and 300 frames, respectively. Training sets of similar size have 124 

been used to develop surrogate models in previous studies [19, 24]. The surrogate model, 125 

relating the applied forces to the equivalent von Mises strain, was developed by fitting a 126 

MLR model for each element. The model took the form:  127 
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where      is the equivalent von Mises strain at element j for frame k, and    is the coefficient 128 

for the force i at frame k. The total number of forces applied to the finite-element model was 129 

25, which included all the muscle forces in the musculoskeletal model acting on the femur 130 

and the hip reaction force. The strain field for all 1000 frames of motion was calculated using 131 

the calculated coefficients ci in the MLR model and corresponding muscle and joint reaction 132 

forces. Performance of the MLR surrogate models was assessed by calculating the coefficient 133 

of determination (R
2
)
 
and the slope of the linear regression between the strains predicted by 134 

the surrogate and finite-element models. CPU times needed to complete the finite-element 135 

analysis, train the MLR models, and calculate femoral strain using the MLR models were 136 

compared on a standard desktop computer (8 CPUs Intel
® 

Core(TM)
®

 3.4 GHz processor, 32 137 

GB RAM). Strain error was calculated using the finite-element strain as a reference and 138 

evaluated using the Root Mean Square Error (RMSE) as well as the 95th percentile of the 139 

strain error distribution as an indicator of peak error. These parameters were analysed frame-140 

by-frame within each trial (i.e.                 
 ) by amalgamating all frames for each 141 

trial (i.e.                 
 ) and for each activity (i.e.         

 ). 142 

 143 

 3. Results  144 

 The trial-by-trial comparison showed that the coefficient of determination and slope 145 

were close to unity for the training datasets greater than 50 (      
  = 0.84  0.94; 146 

           = 0.97  0.99). The prediction error of the surrogate model was a function of the 147 

size of the training set. Increasing the size of the training set from 100 to 200 frames reduced 148 

the average RMSE across trials from 132  to 108  while a relatively small decrease in 149 
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RMSE to 107  was obtained by increasing the training set size to 300 samples (Table 1). 150 

Based on these observations, the remainder of the results are presented only for the MLR 151 

model trained using 200 samples.  152 

CPU time for predicting the full femoral strain for all 1,000 frames was 66,000 secs using 153 

the finite-element model alone (i.e., 55 minutes were necessary for predicting femoral strain 154 

for an entire activity of 50 frames). Training the MLR model required 13,200 secs for 155 

completing the 200 finite-element simulations in the training set, 528 secs for training and 156 

100 secs for predicting all 1,000 frames, which corresponds to 5 secs for predicting femoral 157 

strain for an entire activity (50 frames). The MLR-based surrogate model was faster than 158 

finite-element analysis for solving 209 frames or more (Figure 2). 159 

   Similar performance of the MLR model was observed for all activities. The median       160 

varied between 80 µε for normal walking and 124 µε for chair rise. Peak       varied from 161 

163 µε for stair ascent to 389 µε for chair rise (Figure 3).  162 

   The performance of the MLR model is presented for a selected trial of normal walking as 163 

an exemplar activity (Figures 4 and 5). Close visual agreement was observed between the 164 

strain distributions estimated by the surrogate model and those predicted by the FE model 165 

(Figure 4). The average RMSE and peak error were 78 and 181 µε, respectively, across 166 

different frames. RMSE reached 207 µε during early stance and 140 µε during late stance 167 

while the corresponding peak errors reached 433 µε and 391 µε, respectively, for early and 168 

late stance (Figure 5). The peak error was 8.6% of peak equivalent strain in the diaphysis, 169 

ranging from approximately 2920 to 5020 µε during the stance phase of gait. The average 170 

coefficient of determination and slope were 0.97 and 0.99, respectively. 171 

 172 

4. Discussion 173 



8 

 

Finite element analysis has been used extensively in orthopaedic biomechanics 174 

research [37], but there are a number of barriers involved in the translation of FE modelling 175 

to the clinic. One problem is that predicting the full femoral strain for multiple tasks using a 176 

coupled FE-musculoskeletal modelling approach is computationally expensive. The current 177 

study represents a first step in overcoming this barrier, by demonstrating that reliable 178 

estimates of strain distributions may be obtained rapidly. Surrogate models offer a potentially 179 

powerful alternative as they provide predictions of bone strains in seconds rather than hours. 180 

The present study evaluated the performance of a multivariate linear regression surrogate 181 

model in approximating the full strain field of an intact femur during five different activities 182 

of daily living.  183 

We found that reliable predictions of femoral strain could be obtained across all five 184 

activities by training the surrogate model using 200 samples. The surrogate model closely 185 

reproduced the FE results at a low computational cost, with typical solution times of 5 secs 186 

per activity (50 frames) compared to 55 minutes needed for a finite-element analysis.  187 

The predicted strains from the MLR model were in close agreement with those 188 

obtained using the finite-element model. The peak error in the MLR model was 8.6% of the 189 

peak equivalent strain (5020 µε), which is comparable to the error (i.e., 4.2 – 8.3% of peak 190 

strain on average) caused by material properties and geometry errors committed while 191 

generating the finite-element models from calibrated computed-tomography images [38]. 192 

Furthermore, the average RMSE was 78 µε, which is consistent with the average error (113 193 

obtained when finite-element models are used to predict experimentally measured 194 

cortical strains [38]. Therefore, MLR models represent valid surrogates of finite-element 195 

calculations of femoral strain during activity. The training sample size was similar to that 196 

reported in previous surrogate modelling studies in biomechanics: Fitzpatrick et al. (2014) 197 

required 100 – 200 samples for a MLR-based surrogate model; Taylor et al. (2017) needed 198 
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200 – 500 samples to train an artificial neural network; and Lin et al. (2009) required 300 199 

samples to develop a kriging-based surrogate model. This supports the validity of the MLR 200 

model developed in the present study.  201 

The current study is not without limitations. Firstly, Latin Hypercube sampling was 202 

used to generate the training datasets, but generating more uniformly distributed samples 203 

using other potential techniques may improve model accuracy. Secondly, the performance of 204 

the surrogate model was lowest during early stance where the coefficient of determination 205 

was only 0.53. This error is likely caused by the non-linear behaviour of the model, arising, 206 

for example, from the displacement of the hip centre of pressure during motion. Different 207 

surrogate methods (e.g. MARS, Gaussian Process and Artificial Neural Networks) may 208 

further improve model performance. Thirdly, the prediction time of the MLR model (0.1 sec 209 

per frame) was much faster than that of the finite-element model, although the MLR required 210 

200 finite-element simulations for generating the training set and 528 secs for training the 211 

model. Thus, the MRL model is computationally advantageous relative to the finite-element 212 

model only when 209 frames of motion or more are to be analysed (Figure 2). Fourth, only 213 

normal activities were included in the reference study [16] to limit the risk of injury for the 214 

participants while executing demanding (e.g., sprinting) or para-physiological (e.g., falling) 215 

activities. Therefore, the validity of the present conclusion is limited to normal locomotion. 216 

Fifth, the MLR model was developed for a single healthy individual possibly limiting the 217 

generality of the present conclusions. However, the strain range predicted by the model (0 – 218 

5020 ) spans a large portion of physiologically admissible strains [39] and the loading 219 

conditions did span a broad range of normal activities, providing confidence on the 220 

performance of the MLR model over a relevant range of femoral strain and boundary 221 

conditions of the femur. 222 

 223 
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5. Conclusions 224 

A Multivariate Linear Regression model was successfully developed for a single individual 225 

and used to rapidly predict the full femoral strain field for a range of activities of daily living. 226 

The MLR model was able to predict the femoral strain field for each studied activity within 227 

an error comparable to the intrinsic error in finite-element models based on clinical CT 228 

images and was computationally advantageous when 209 loading cases or more were 229 

analysed. Hence, MLR enables large statistical studies of femoral strain during activity.  230 

 231 
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Figure Captions 

 

 

Figure 1. Flowchart illustrating the linear-based surrogate modelling approach used in the 

present study. 

 

Figure 2. CPU time required by the finite-element model and MLR model plotted against the 

number of frames.  

 

Figure 3. Box plots used to quantify the accuracy of model-predicted strains obtained from 

MLR surrogate modelling. The black box represents the range of the error between the 25
th

 

and 75
th

 percentiles while the red horizontal dashed line represents the median error. The 

black dashed line represents the 95
th

 percentile of       for each activity. 

 

Figure 4. Contour plots showing the calculated femoral strain fields for normal walking 

obtained by applying finite element modelling (FEM) and MLR surrogate modelling. Results 

are shown at 25% intervals of the stance phase. 0% and 100% indicate the stance phase.  

 

Figure 5. Evaluating the performance of the MLR surrogate model for normal walking: (a) 

pattern of the hip joint reaction force; (b) coefficient of determination (      
 ); (c) peak 

error and root mean square error (         ) at each frame. BW in part (a) refers to body 

weight; the red dots shown in part (b) represent the frames used to train the surrogate model 
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Tables. 

 

Table 1. Effect of the size of training datasets on the accuracy of model-predicted femoral 

strains. Model accuracy was evaluated by computing the mean and peak error and the mean 

of coefficient of determination. These reported errors are based on pooled data. 

 
Training 

Datasets 
Mean  
RMSE 

(µε) 

Peak 
RMSE 

(µε) 

Mean 

   

Training  
Time (min) 

 

50 

 

 

227 

 

408484 

 

 

0.84 

 

8.5 

 

100 

 

 

132 

 

326 

 

 

0.92 

 

8.7 

 

200 

 

 

108 

 

228 

 

0.94 

 

8.8 

 

300 

 

107 

 

201 

 

0.94 

 

8.9 
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