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Abstract: 

 Surrogate methods for rapid calculation of femoral strain are limited by the scope of the 

training data. We compared a newly developed training-free method based on the 

superposition principle (Superposition Principle Method, SPM) and popular surrogate 

methods for calculating femoral strain during activity. Finite-element calculations of femoral 

strain, muscle, and joint forces for five different activity types were obtained previously. 

Multi-linear regression, multivariate adaptive regression splines, and Gaussian process were 

trained for 50, 100, 200, and 300 random samples generated using Latin Hypercube (LH) and 

Design of Experiment (DOE) sampling. The SPM method used weighted linear combinations 

of 173 activity-independent finite-element analyses accounting for each muscle and hip 

contact force. Across the surrogate methods, we found that 200 DOE samples consistently 

provided low error (RMSE < 100 µε), with model construction time ranging from 3.8 to 63.3 

hours and prediction time ranging from 6 to 1236 seconds per activity. The SPM method 

provided the lowest error (RMSE = 40 µε), the fastest model construction time (3.2 h) and the 

second fastest prediction time per activity (36 s) after Multi-linear Regression (6 s). The SPM 

method will enable large numerical studies of femoral strain and will narrow the gap between 

bone strain prediction and real-time clinical applications. 
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Introduction 

         Quantifying femoral strain in real time or near-real time is important for different 

biomechanical applications such as predicting femoral strains over multiple activities and 

trials (Martelli et al., 2015b; Phillips et al., 2015), in statistical studies using hundreds 

(Martelli et al., 2015c) to thousands of loading cases (Martelli et al., 2015a), and providing 

biofeedback to patients while exercising (Pizzolato et al., 2017). Over the last 40 years, finite-

element analysis has been shown to be a powerful tool for predicting femoral strains (Taylor 

and Prendergast, 2015). However, building the model, generating a solution, and interpreting 

the results are time- and labour-intensive (Liang et al., 2018; Panagiotopoulou et al., 2014). 

There are several bottlenecks in the process, including generating the model from clinical 

images through to the solution phase. Various groups have developed methods to rapidly 

segment and generate the finite element models from CT scans (Carballido et al., 2015; 

Pauchard et al., 2016; Younes et al., 2014). The next major bottleneck is the solution phase. 

         To reduce the computational cost of finite-element analyses, several surrogate methods 

have been used in computational biomechanics, including Artificial Neural Networks (Cilla 

et al., 2017; Eskinazi and Fregly, 2015; Taylor et al., 2017), Multi-linear Regression 

(Fitzpatrick et al., 2014), Multivariate Adaptive Regression Splines (Friedman and Roosen, 

1995; Wang et al., 2014), Kriging (O'Rourke et al., 2016; Walter and Pandy, 2017) and 

Gaussian process modelling (Seeger, 2004). Multivariate Adaptive Regression Splines is an 

extension of the multi-linear regression method, which can be used to model the 

nonlinearities between variables by partitioning the training datasets into separate linear or 

cubic splines known as ‘basis functions’ (Friedman and Roosen, 1995). Gaussian process 

modelling, which provides a trade-off between fitting the data and smoothing, can handle 

noisy training datasets while capturing the precise trend of the data (Wang and Shan, 2007). 

Artificial Neural Networks provide an effective solution when the optimum number of 



  

5 

 

artificial neurons needed for building the network structure can be determined a priori, for 

example, using trial-and-error approaches (Cilla et al., 2017; Tu, 1996). Kriging is best suited 

for nonlinear problems, but typically requires large training sets and is computationally 

expensive (Eskinazi and Fregly, 2015). Therefore, Multi-linear Regression (MLR), 

Multivariate Adaptive Regression Splines (MARS), and Gaussian process (GP) methods 

appear to be the best suited for predicting femoral strain during activity. However, the 

performance of each surrogate model is application-dependent and bounded by the scope of 

training data (Forrester and Keane, 2009; Jin et al., 2001). For example, a surrogate model 

trained on data for level walking is unlikely to be as effective in predicting musculoskeletal 

loading patterns for activities with a higher degree of variability such as stumbling and 

jumping.  

By leveraging the linearity of most models used to predict femoral strain (Fitzpatrick 

et al., 2014; Liang et al., 2018; Martelli et al., 2014), the superposition principle can provide a 

solution that may outperform current surrogate methods while being applicable to every 

possible motor task or activity, without training. In the most general case, a muscle’s 

contribution to femoral strain can be described by calculating the strain tensor generated by 

three independent nominal force vectors applied to each of the muscle’s attachment points, 

and is therefore not related to a specific frame of motion. The displacement of the joint 

contact area during motion can be modelled by discretising the patch on the joint surface 

spanned by the joint contact force into a finite number of nodes. The strain tensor generated 

by the hip contact force can then be described by calculating the strain tensor generated by 

three independent nominal force vectors applied to each node in the patch. Femoral strain for 

a given frame of motion can be calculated by (1) matching the centre of pressure for the 

specific frame of motion using, for example, musculoskeletal modelling, and (2) determining 

the weights for the strain tensor generated by each nominal force component as the ratio 
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between the amplitude of the actual force component and that of the nominal force applied. 

This model, henceforth referred to as the Superposition Principle Method (SPM), does not 

require training, and can be generated independently from motion analyses experiments.  

 The aim of the present study was to develop an SPM model for one representative 

individual and to compare its performance to that of MLR, MARS, and GP for the prediction 

of femoral strain for a range of activities and trials. Motion data and a finite-element model of 

the right femur for one healthy volunteer were obtained from a previous study (Ziaeipoor et 

al., 2018) to calculate the femoral strain as the reference. The strain error and the CPU time 

required for solving the elastic problem of the femur by SPM, MLR, MARS, and GP methods 

were computed and compared. We hypothesized that the Superposition Principle Model 

(SPM) would outperform popular surrogate methods for the calculation of femoral strain 

during activity in relation to both accuracy and total computational time required. 

 

Methods 

Muscle and joint forces and femoral strain during activity 

 Muscle and joint reaction forces and the femoral strain field were calculated 

previously for one healthy participant (68 years of age, 53 kg weight, 157 cm height) 

executing five different tasks (Ziaeipoor et al., 2018). Marker-trajectory and ground-reaction-

force data were obtained for normal walking (5 trials), fast walking (5 trials), stair ascent (4 

trials), stair descent (4 trials) and chair sitting (1 trial). The full-body 12-segment 

musculoskeletal model actuated by 92 Hill-type muscle–tendon units proposed by Delp et al. 

(2007) was scaled to the participant mass and anthropometry using measurements of body 

weight and segment lengths acquired during a static trial (Figure1). Dynamic simulations 

were performed using OpenSim to calculate muscle and joint forces for 50 uniformly 



  

7 

 

distributed frames across each trial. The muscle and joint reaction forces calculated at each 

time frame were applied to a finite-element model of a femur using a custom routine 

(Martelli et al., 2015b). Joint angles, muscle forces and joint reaction forces were computed 

using the inverse kinematics, static optimization, and joint reaction analysis tools available in 

OpenSim (Delp et al., 2007). The finite-element model of the femur was a locally isotropic, 

unstructured mesh consisting of 213,559 nodes and 143,534 elements that was fully 

constrained distally (Figure 1). The geometry and locally-isotropic material properties of the 

mesh were obtained from a previous study (Martelli et al., 2015b) using calibrated computed-

tomography images and a published bone density to Young modulus relationship (Morgan et 

al., 2003). Details of this procedure are given by Schileo et al. (2007). The femur model was 

fully constrained distally to satisfy equilibrium according to earlier studies (Behrens et al., 

2009; Zhou et al., 2017). The equivalent strain at the element centroid was computed using 

the linear-elastic solver implemented in Abaqus (Dassault Systems, USA). Thus, the full 

dataset comprised of muscle and joint reaction forces and femoral strains for 1000 frames (50 

frames per trial for 20 trials, in total).  

Surrogate methods 

  Two sampling methods, Latin Hypercube (LH) and Design of Experiment (DOE), 

were used to generate training sets from the original data. Latin Hypercube provided random 

samples while DOE provided samples that best spanned the variation in the original data 

(Giunta et al., 2003). Training datasets of four different sizes (i.e., 50, 100, 200, and 300) 

required for developing MARS and GP methods were obtained for each mesh element and 

MLR was trained by taking the data from our earlier work (Ziaeipoor et al., 2018). All 

surrogate methods were implemented using custom code in Matlab (The Mathworks Inc., 

Natick, USA). 
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Superposition principle model 

  A new method termed the Superposition Principle Model (SPM) was developed by 

leveraging the load-strain linear response in common finite-element models ensuring that 

every solution in the model can be expressed as a linear combination of a base of independent 

solutions. The SPM model was essentially a look-up table composed by a set of strain fields 

generated by nominal force vectors, each arbitrarily set to 100 N, applied to each muscle 

attachment and application point of the hip contact force. Finally, the strain tensor during a 

generic frame of motion was calculated as the sum of strain fields in the look-up table 

weighted by the ratio between the force intensity provided by the OpenSim model and the 

nominal force intensity (100 N). 

For the 24 muscles in the model acting on the femur, the femoral strain in the look-up 

table was calculated by applying the nominal force along each of the three coordinate axes 

for each of the 24 muscle-attachment sites, resulting in 72 strain fields.  

The displacement on the hip centre of pressure during movement was modelled by 

identifying the node patch on the femoral head spanned by the hip centre of pressure. The 

centre of pressure was assumed to be the intersection between the sphere that best fit the 

femoral head surface (i.e., the hip centre henceforth) and the hip contact force vector passing 

through the hip joint centre. The patch was composed by 101 nodes within the envelope of 

the trajectories of the hip joint centre of pressure across activities. For each node in the patch, 

the SPM model was completed by the strain field calculated using a nominal force vector 

          pointing to the hip joint centre. This condition represents a frictionless ball and socket 

joint consistent with a very low coefficient of friction characterising natural joints (Pawlak et 

al., 2015).  

The total strain tensor     generated by both muscle and hip contact forces for a generic 

frame i of activity was given by:  
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                 ,  Eq. 1  

where          is the magnitude of the force component k, muscle j, frame i, obtained using 

models of human motion (Martelli et al., 2015b);            is the strain tensor generated by a 

nominal force fn applied at the muscle attachment point j along the coordinate axis k; fhi is 

the magnitude of the hip contact force obtained using models of human motion (Martelli et 

al., 2015b) for frame i; and the nominal strain tensor                 was generated by a force 

vector           of magnitude fn applied to the node z at the femoral head surface. The node 

index z was dynamically determined by best matching the orientation of the hip contact force 

in the musculoskeletal model and that of the force          .  

Assessment of performance 

The equivalent von Mises strain was calculated from the predicted strain tensor     to 

provide a compact assessment of the models’ performance relevant to both tensile and 

compressive states. The strain error was calculated as the difference between the strain 

predicted by the surrogate and SPM methods and corresponding finite-element calculations 

of strains. For each surrogate method studied, the sample size and sampling method 

providing minimal strain error were identified. Surrogate and SPM models were compared 

using linear regression. The strain error was assessed at three levels: by pooling all the 

activities and trials together; activity-by-activity by amalgamating all the trials of each 

activity; and frame-by-frame. The Root Mean Square Error (RMSE) and 95
th
 percentile of the 

strain error distribution were used as indicators of mean and peak error. The coefficient of 

determination (R
2
) and slope were used as indicators of goodness of fit. To gain insight into 

the source of error in the SPM method, the contribution to the total strain error in the SPM 

model of each muscle force and joint reaction force was calculated separately. Model 

efficiency was assessed using a standard desktop computer (Intel Core i7 processor, 8 CPUs, 
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32 GB RAM). Total CPU time included the time required for constructing the models, the 

time needed to execute the FE simulations in the training set, and the training time. The time 

required for predicting strain during an entire activity (50 frames) and the total time required 

for predicting strain for all the 1000 frames, including both model construction and 

prediction, were also compared. 

Results 

  The DOE sampling method was superior to the LH method for each training sample 

size, with both methods showing only a marginal improvement in the mean and peak errors 

above 200 training samples (Table 1). Specifically, RMSE varied from 134 µε to 99 µε, 187 

µε to 100 µε, and 91 µε to 53 µε for MLR, MARS, and GP, respectively, when 200 training 

samples were used. RMSE improved on average by less than 10 µε when the training sample 

size was increased to 300 samples. Peak error obtained for the MLR method with 200 

training samples remained less than 521 µε, thus assessment of the performance of MLR, 

MARS and GP was based on the DOE method with a training sample size of 200 (Table 1). 

Overall, SPM was found to be the most effective, showing the lowest mean (RMSE = 

40 µε) and peak (PE = 256 µε) errors. By comparison, mean errors were 99, 100, 53 µε while 

peak errors were 521, 414, 316 µε for MLR, MARS and GP, respectively. Across activities, 

the strain error remained relatively constant showing a peak error consistently below 300 µε 

for all methods, except when MLR and MARS were applied to the chair rise task, where the 

peak error was higher than 350 µε. SPM performed best for the chair rise task (RMSE = 6 µε; 

PE = 47 µε) and showed similar performance to that of GP for the remaining activities 

(RMSE < 30 µε; PE < 172 µε) (Figure 2).  

Comparing the performance of SPM and GP within a given activity, both models 

predicted femoral strains that were highly correlated to results obtained from corresponding 

finite-element calculations. The coefficient of determination (R
2
) was 0.97  1.00 for SPM 
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and 0.88  0.99 for GP. The slope of the linear regression was 0.96  1.08 for SPM and 0.83 

 1.04 for GP. The GP model showed higher mean and peak errors during early and late 

stance, reaching 153 µε and 380 µε, respectively, during late stance (Figure 3). The SPM 

model showed mean and peak errors of 0 – 96 µε and 0 – 257 µε, respectively, and presented 

a pattern across the different frames not visibly related to a specific gait phase (Figure 3). The 

strain error distribution was located for the most part in the distal femur for both SPM and GP 

(Figure 4). The strain error measured for SPM was entirely associated with the hip contact 

force and zero error was observed for all muscle forces. 

The SPM model provided the fastest construction time and the second fastest 

prediction time (Figure 5). Constructing the SPM model took 3.2 hours for solving 173 finite-

element simulations. Constructing the surrogate methods took 3.66 hours for solving the 200 

finite-element analyses in the training set and 0.15, 59.7 and 0.8 hours for training MLR, 

MARS, and GP, respectively. Predicting the femoral strain for an entire activity (50 frames) 

took approximately 36 s for SPM, and 6 s, 357 s and 1236 s for MLR, MARS, and GP, 

respectively.  

When comparing the total time required by SPM, MLR, MARS, GP and a full finite-

element analysis for predicting femoral strain for an increasing number of frames, SPM 

showed the fastest prediction time for all 1000 frames (3.4 hours) and outperformed a full 

finite-element analysis when 176 frames or more were analysed. MARS and GP always 

underperformed SPM due to a greater amount of time required for constructing the model and 

predicting strain whereas the number of frames above which the MLR model outperformed 

the SPM model was 3660 (Figure 5).  

 

Discussion 
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 We developed a superposition principle model (SPM) and compared its performance 

to that of multi-linear regression (MLR), multivariate adaptive regression splines (MARS) 

and Gaussian process (GP) for estimating the full-field strain in one human femur across a 

range of daily activities. The SPM model did not require training and showed the highest 

accuracy, the lowest total time for predicting femoral strain for all 1000 frames studied, the 

lowest model construction time, the lowest number of frames above which it outperformed 

corresponding full finite-element analyses, and the second-fastest prediction time relative to 

the MLR method. Thus, the SPM method offers a training-free approach while providing the 

highest accuracy and lowest prediction time for most foreseeable biomechanical applications.  

The models studied for fast prediction of femoral strain produced an average strain 

error (RMSE = 40  100 µε) over corresponding finite-element calculations that is 

comparable to the average strain error in current finite-element models (RMSE = 113 µε; 

Schileo et al. (2007)) hence supporting the use of SPM, MLR, MARS and GP models as 

valid alternatives to full finite-element analyses. Among the models analysed in the present 

study, SPM showed the lowest error (RMSE = 40 µε), the fastest model generation time (3.2 

hours), and the second-fastest prediction time per activity (36 s) after MLR (6 s), supporting 

the SPM method as a valid alternative for biomechanical applications requiring fast strain 

prediction time. The MLR method may outperform SPM when several thousands of loading 

cases are examined.  

Differently from surrogate models, the SPM model can be developed independently 

from muscle and joint force analyses and later used to analyse any activity and without 

training, which incurs a high computational cost when developing a surrogate method. 

Therefore, SPM is a training-free method not bounded by the scope of the available motion 

data, often obtained by combining motion experiments and musculoskeletal modelling. Also, 

SPM provides the strain parameter of interest, i.e., the von Mises strain in the present study, 
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through calculation of the full strain tensor, while surrogate methods are trained separately 

for each parameter in output. While this may explain the slower prediction time of SPM 

compared to MLR, the difference in the computational cost between these two methods 

decreases when multiple strain parameters are of interest.  

Another difference between SPM and surrogate methods concerns the origin of error. 

The SPM error reported here originated completely from the different algorithm used in the 

present study for defining the node of application of the hip contact force and that in the 

study of reference (Martelli et al., 2015b). Specifically, in the present study the node of 

application of the hip contact force was determined by matching the direction of the hip 

contact force vector calculated using OpenSim and the direction passing through the node 

and the hip centre whereas, in the study of reference, the node of application of the hip 

contact force was the node on the femoral head surface closest to the intersection between the 

hip contact force vector calculated using OpenSim and the femoral head surface. The 

different algorithms led to a mismatch between the point of application of the hip contact 

force in the two studies of up to the element edge length (2 mm in average) and to zero-error 

when the hip force vector was applied to the same node in both studies. Thus, the accuracy of 

the SPM method can be improved using a smaller element size while the accuracy of 

surrogate methods can only be moderately improved by increasing the training set size above 

200 (Table 1).  

Confidence in the validity and reliability of the present results may be gained through 

a comparison with previous studies. For example, the size of the training set in the present 

work is in agreement with earlier studies that used 100  200 samples for training a MLR method 

(Fitzpatrick et al., 2014), 200  500 samples for training an Artificial Neural Network (Taylor et al., 

2017) and 300 samples for training a Kriging-based method (O'Rourke et al., 2016). Also, and in 

agreement with earlier studies (Giunta et al., 2003; Wang et al., 2014), we found that DOE 
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sampling systematically reduces both the mean and peak errors for all methods, particularly 

MARS (Table 1), as a broader distribution of samples is generated. These observations 

support the validity of the surrogate methods developed here. The principle of superposition 

has been long used in musculoskeletal modelling studies for determining the contribution of 

individual muscles to joint motion and loading, commonly referred to as muscle-induced 

acceleration analysis (Kersh et al., 2018; Pandy, 2001; Pandy and Zajac, 1991). The present 

study applies the same principle to the strain tensor in the human femur by combining the 

strain tensor generated by each separate force applied to the model rather than fitting the data 

by training a surrogate model. Therefore, SPM is better suited than surrogate models for 

studying the causal relationships between muscle force, joint contact force and femoral strain.  

One limitation of the present study is that the time required for predicting strain for 

the 50 frames of an entire activity (i.e., 36 s for SPM and 6 s for MLR) was higher than the 

real-time duration of normal activities. Truly real-time analyses may be possible using 

alternative programming languages such as C++ or Fortran (Aruoba and Fernández, 2015) 

and/or by determining the optimal mesh size and frame rate for the desired model accuracy 

and speed. A second limitation is that the SPM method was developed for an intact femur and 

may not outperform other surrogate models when highly non-linear problems such as joint 

replacement models and material non-linearity are of interest. Other surrogate methods might 

be better suited for addressing these types of problems. Finally, the SPM model was 

developed for one single femur, which may limit generality of the conclusions. However, the 

SPM method presented here can be generally applied to every linear-elastic and non-linear 

contact problem. Furthermore, the large range of loading conditions spanned by each model, 

separately generated for each element in the mesh, across a range of normal activities 

provides confidence on the SPM method’s superiority over alternative surrogate methods.  
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Conclusion 

In summary, we developed a Superposition Principle Method (SPM) for rapid 

prediction of femoral strain by leveraging the linear properties of common finite-element 

models of femoral strain and compared its performance to that of surrogate models, including 

MLR, MARS and GP. SPM required the lowest model generation time and provided the 

highest accuracy, the fastest total prediction time for all 1000 frames of motion studied, the 

second-fastest prediction time per activity, and did not require training. Thus, SPM offers the 

best performance among surrogate methods in predicting femoral strains over multiple 

activities and trials, in statistical studies using hundreds to thousands of loading cases and, in 

clinical trials, where, for example, biofeedback is used in rehabilitation exercise. MLR may 

be advantageous when several thousands of loading conditions are examined.  

 

Ethics 

Not required. 

 

Conflict of interest statement 

We have no competing interests. 

 

Acknowledgements  

This work was supported by the Australian Government Research Training Program 

Scholarship (AGRTPS) for Mr. Hamed Ziaeipoor and the Australian Research Council 

[DP180103146, FT180100338]. 

  



  

16 

 

References 

Aruoba, S.B., Fernandez, V., J., 2015. A comparison of programming languages in macroeconomics. 

Journal of Economic Dynamics and Control 58, 265-273. doi:10.1016/j.jedc.2015.05.009 

 
Behrens, B.A., Nolte, I., Wefstaedt, P., Stukenborg-Colsman, C., Bouguecha, A., 2009. Numerical 

investigations on the strain-adaptive bone remodelling in the periprosthetic femur: Influence of the 

boundary conditions. Biomedical Engineering 8. doi:10.1186/1475-925x-8-7 

 

Carballido, G.J., Bonaretti, S., Saeed, I., Harnish, R., Recker, R., Burghardt, A.J., Keyak, J.H., Harris, 

T., Khosla, S., Lang, T.F., 2015. Automatic multi-parametric quantification of the proximal femur 
with quantitative computed tomography. Quantitative Imaging in Medicine and Surgery 5, 552-568.  

doi: 10.3978/j.issn.2223-4292.2015.08.02 

 

Cilla, M., Borgiani, E., Martínez, J., Duda, G.N., Checa, S., 2017. Machine learning techniques for 
the optimization of joint replacements: Application to a short-stem hip implant. Plos One 12. 

doi:10.1371/journal.pone.0183755 

 
Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, 

D.G., 2007. OpenSim: open-source software to create and analyze dynamic simulations of movement. 

IEEE Transactions on Biomedical Engineering 54, 1940-1950. 
 

Eskinazi, I., Fregly, B.J., 2015. Surrogate modeling of deformable joint contact using artificial neural 

networks. Medical Engineering & Physics 37, 885-891. doi:10.1016/j.medengphy.2015.06.006 

 
Fitzpatrick, C.K., Hemelaar, P., Taylor, M., 2014. Computationally efficient prediction of bone–

implant interface micromotion of a cementless tibial tray during gait. Journal of Biomechanics 47, 

1718-1726. doi:10.1016/j.jbiomech.2014.02.018 
 

Forrester, A.I., Keane, A.J., 2009. Recent advances in surrogate-based optimization. Progress in 

Aerospace Sciences 45, 50-79. doi:10.1016/j.paerosci.2008.11.001 
 

Friedman, J.H., Roosen, C.B., 1995. An introduction to multivariate adaptive regression splines. 

Statistical Methods in Medical Research 4, 197-217. doi:10.1177/096228029500400303 

 
Giunta, A., Wojtkiewicz, S., Eldred, M., 2003. Overview of modern design of experiments methods 

for computational simulations. 41st Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.2003-649 

 
Jin, R., Chen, W., Simpson, T., 2001. Comparative studies of metamodelling techniques under 

multiple modelling criteria. Structural and Multidisciplinary Optimization 23, 1-13.  

doi:10.1007/s00158-001-0160-4 

 
Kersh, M.E., Martelli, S., Zebaze, R., Seeman, E., Pandy, M.G., 2018. Mechanical loading of the 

femoral neck in human locomotion. Journal of Bone and Mineral Research 33, 1999-2006. 

doi:10.1002/jbmr.3529 
 

Liang, L., Liu, M., Martin, C., Sun, W., 2018. A deep learning approach to estimate stress 

distribution: a fast and accurate surrogate of finite-element analysis. Journal of the Royal Society 
Interface 15, 20170844. doi:10.1098/rsif.2017.0844 

 

Martelli, S., Kersh, M.E., Schache, A.G., Pandy, M.G., 2014. Strain energy in the femoral neck during 

exercise. Journal of Biomechanics 47, 1784-1791. doi:10.1016/j.jbiomech.2014.03.036 
 

Martelli, S., Calvetti, D., Somersalo, E., Viceconti, M., 2015a. Stochastic modelling of muscle 

recruitment during activity. Interface Focus 5, 20140094. doi:10.1098/rsfs.2014.0094 



  

17 

 

 

Martelli, S., Kersh, M.E., Pandy, M.G., 2015b. Sensitivity of femoral strain calculations to anatomical 
scaling errors in musculoskeletal models of movement. Journal of Biomechanics 48, 3606-3615. 

doi:10.1016/j.jbiomech.2015.08.001 

 

Martelli, S., Valente, G., Viceconti, M., Taddei, F., 2015c. Sensitivity of a subject-specific 
musculoskeletal model to the uncertainties on the joint axes location. Computer Methods in 

Biomechanics and Biomedical Engineering 18, 1555-1563. doi:10.1080/10255842.2014.930134 

 
Morgan, E.F., Bayraktar, H.H., Keaveny, T.M., 2003. Trabecular bone modulus-density relationships 

depend on anatomic site. Journal of Biomechanics 36, 897-904. doi:10.1016/s0021-9290(03)00071-x 

 
O'Rourke, D., Martelli, S., Bottema, M., Taylor, M., 2016. A computational efficient method to assess 

the sensitivity of finite-element models: An illustration with the hemipelvis. Journal of Biomechanical 

Engineering 138, 121008. doi:10.1115/1.4034831 

 
Panagiotopoulou, O., Wilshin, S.D., Rayfield, E.J., Shefelbine, S.J., Hutchinson, J.R., 2014. What 

makes an accurate and reliable subject-specific finite element model? A case study of an elephant 

femur. Journal of The Royal Society Interface 9, 351-361. doi: 10.1098/rsif.2011.0323 
 

Pandy, M.G., 2001. Computer modeling and simulation of human movement. Annual Review of 

Biomedical Engineering 3, 245-273. doi:10.1146/annurev.bioeng.3.1.245 
 

Pandy, M.G., Zajac, F.E., 1991. Optimal muscular coordination strategies for jumping. Journal of 

Biomechanics 24, 1-10. doi:10.1016/0021-9290(91)90321-d 

 
Pauchard, Y., Fitze, T., Browarnik, D., Eskandari, A., Pauchard, I., Enns-Bray, W., Pálsson, H., 

Sigurdsson, S., Ferguson, S.J., Harris, T.B., Gudnason, V., Helgason, B., 2016. Interactive graph-cut 

segmentation for fast creation of finite element models from clinical ct data for hip fracture 
prediction. Computer Methods in Biomechanics and Biomedical Engineering 19, 1693-1703. 

doi:10.1080/10255842.2016.1181173 

 

Pawlak, Z., Urbaniak, W., Hagner-Derengowska, M., Hagner, W., 2015. The Probable explanation for 
the low friction of natural joints. Cell Biochemistry and Biophysics 71, 1615-1621.  

doi:10.1007/s12013-014-0384-8 

 
Phillips, A.T., Villette, C.C., Modenese, L., 2015. Femoral bone mesoscale structural architecture 

prediction using musculoskeletal and finite element modelling. International Biomechanics 2, 43-61. 

doi:10.1080/23335432.2015.1017609 
 

Pizzolato, C., Reggiani, M., Saxby, D.J., Ceseracciu, E., Modenese, L., Lloyd, D.G., 2017. 

Biofeedback for gait retraining based on real-time estimation of tibiofemoral joint contact forces. 

IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 1612-1621. 
doi:10.1109/tnsre.2017.2683488 

 

Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L., Viceconti, M., 2007. Subject-specific finite 
element models can accurately predict strain levels in long bones. Journal of Biomechanics 40, 2982-

2989. doi:10.1016/j.jbiomech.2007.02.010 

 
Seeger, M., 2004. Gaussian processes for machine learning. International Journal of Neural Systems 

14, 69-106. doi:10.1142/s0129065704001899 

 

Taylor, M., Perilli, E., Martelli, S., 2017. Development of a surrogate model based on patient weight, 
bone mass and geometry to predict femoral neck strains and fracture loads. Journal of Biomechanics 

55, 121-127. doi:10.1016/j.jbiomech.2017.02.022 



  

18 

 

 

Taylor, M., Prendergast, P.J., 2015. Four decades of finite element analysis of orthopaedic devices: 
Where are we now and what are the opportunities? Journal of Biomechanics 48, 767-778. 

doi:10.1016/j.jbiomech.2014.12.019 

 

Tu, J.V., 1996. Advantages and disadvantages of using artificial neural networks versus logistic 
regression for predicting medical outcomes. Journal of Clinical Epidemiology 49, 1225-1231. 

doi:10.1016/s0895-4356(96)00002-9 

 
Walter, J.P., Pandy, M.G., 2017. Dynamic simulation of knee-joint loading during gait using force-

feedback control and surrogate contact modelling. Medical Engineering & Physics 48, 196-205. 

doi:10.1016/j.medengphy.2017.06.043 
 

Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., Miao, C., 2014. An evaluation of adaptive surrogate 

modeling based optimization with two benchmark problems. Environmental Modelling & Software 

60, 167-179. doi:10.1016/j.envsoft.2014.05.026 
 

Wang, G.G., Shan, S., 2007. Review of Metamodeling Techniques in Support of Engineering Design 

Optimization. Journal of Mechanical Design 129, 370-380. doi:10.1115/1.2429697 
 

Younes, L.B., Nakajima, Y., Saito, T., 2014. Fully automatic segmentation of the femur from 3D-CT 

images using primitive shape recognition and statistical shape models. International Journal of 
Computer Assisted Radiology and Surgery 9, 189-196. doi:10.1007/s11548-013-0950-3 

 

Zhou, J.-J., Zhao, M., Liu, D., Liu, H.-Y., Du, C.-F., 2017. Biomechanical property of a newly 

designed assembly locking compression plate: Three-dimensional finite element analysis. Journal of 
Healthcare Engineering, Article ID: 8590251. doi:10.1155/2017/8590251 

 

Ziaeipoor, H., Martelli, S., Pandy, M., Taylor, M., 2018. Efficacy and efficiency of multivariate linear 
regression for rapid prediction of femoral strain fields during activity. Medical Engineering & 

Physics, (In press). doi:10.1016/j.medengphy.2018.12.001 

 

 

 

  



  

19 

 

 

 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

20 

 

 

 

Figure 2 

 

 

  



  

21 

 

Figure 3 

 

 

  



  

22 

 

Figure 4 

 

 

 

 

 

 

 

 

 

 



  

23 

 

Figure 5 
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Figure captions 

 

Figure 1. From the left hand side the CT images and superimposed the young modulus map 

in the finite-element model of the femur, a schematic representation of  the motion capture 

experiment (b), the musculoskeletal model used for computing muscle and joint reaction 

forces (c) and, a schematic representation of the FE model and its boundary conditions (d). 

Muscle forces (red arrows), muscle attachment points (orange circles), hip reaction force and 

point of application (pink dashed line and small red circle), femoral head centre (red circle) 

and distal constraint (red triangles) are displayed.  

   

 

Figure 2. The strain error (median, 50
th

 percentile and range) calculated for the different 

methods (MLR, MARS, GP, SPM) for each activity separately. 

 

Figure 3. Comparison of the strain error in the SPM and GP methods for normal walking. 

Hip contact force during stance (a), frame-by-frame root mean square error (RMSE) (b), and 

peak error (c). Forces are expressed in body weight (BW). The femoral head was removed to 

minimize the localized effect of the point load representing the hip contact force applied to 

the femoral head.  

 

Figure 4. Error distribution in the SPM (top) and GP (bottom) methods for the stance phase 

of normal walking.  

 

Figure 5. Total CPU time required by the full finite-element analysis and for model 

construction (i.e., solving 200 finite-element analysis and training) and predicting femoral 

strain using MLR, MARS and GP. 
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Tables 

 

Table 1. Mean and peak error for the different surrogate modelling methods (Multivariate 

Linear Regression (MLR), Multivariate Adaptive Regression Splines (MARS) and Gaussian 

Process (GP)) for increasing training set and different sampling methods, including Latin 

hypercube (LH) sampling and Design of Experiment (DOE). These reported errors are based 

on pooled data.  

Training 
dataset 

Methods 

LH DOE 

              

 

        
(mean) 

  

Training 

time (h) 
              

        
(mean) 

Training 

time (h) 

  MLR 1,082,306 227,315 0.14 911 134 0.14 

50 MARS 1,234,000  9,348,000 6.8 851 187  6.9 

  GP 674 111 0.2 495 91 0.2  

  MLR 1021 132 0.14 697 109 0.14 

100 MARS 1422 508  23.0 678 133  22.7 

  GP 461 75 0.3  556 83  0.3 

  MLR 540 108 0.15 521 99 0.15 

200 MARS 785 170  60.8 414 100 59.7 

  GP 519 73 0.9  316 53 0.8 

  MLR 537 107 0.15 493 94 0.15 

300 MARS 441 106 93.5 385 90 91.7  

  GP 528 62  2.9 280 46  2.1 

*One processor used for training MARS and four processors used for MLR and GP 

 

 

 




