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HIGHLIGHTS 

 We explain several casework situations that can arise which require evaluation of

DNA profile replicates that span a technology change

 When a likelihood ratio is required for these types of evaluations, the classic approach

has been to pick one of the replicates

 We present the maths for the interpretation system STRmix™ to allow the

combination of replicates produced under different conditions

 We demonstrate the performance of the proposed model on situations which may be

encountered in the laboratory
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ABSTRACT 

The introduction of probabilistic DNA interpretation systems has made it possible to evaluate 

many profiles that previously (under a manual interpretation system) were not. These 

probabilistic systems have been around for a number of years and it is becoming more 

common that their use within a laboratory has spanned at least one technology change. This 

may be a change in laboratory hardware, the DNA profiling kit used, or the manner in which 

the profile is generated. Up until this point, when replicates DNA profiles are generated, that 

span a technological change, the ability to utilise all the information in all replicates has been 

limited or non-existent. In this work we explain and derive the models required to evaluate 

(what we term) multi-kit analysis problems. We demonstrate the use of the multi-kit feature 

on a number of scenarios where such an analysis would be desired within a laboratory. 

Allowing the combination of profiling data that spans a technological change will further 

increase the amount of DNA profile information produced in a laboratory that can be 

evaluated.  

KEYWORDS: Multiple DNA profiling kits; Continuous DNA interpretation; STRmix; 

modelling; DNA mixtures. 

1.0 INTRODUCTION 

DNA profile interpretation has substantially changed towards probabilistic genotyping. 

Testament to this are the number of probabilistic DNA profile interpretation systems now 

available [1-6], the recommendations that have been released by multiple advisory bodies on 

their validation [7, 8], and the vast array of published works on various models that can be 

used to describe different elements of DNA profile generation or behaviour [9-26]. 

Most of the available systems have features that carry out two standard tasks: 

1) Deconvolution of a DNA profile into sets of genotypes that could describe the profile,

weighted by some system of probabilistic modelling (whether this be in a semi-

continuous manner that uses probabilities of drop-in and drop-out or a fully

continuous system that applies probabilities for various mass parameters within the

model).

2) The calculation of a likelihood ratio (LR) when comparing one or more references to

the deconvolution and considering two competing propositions.
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These two tasks fulfil the vast majority of functions required by most forensic laboratories. 

However, as our knowledge and comfort with these systems increases, extensions to the 

above elements are starting to be explored. These have included extensions to the calculation 

of the LR to database searching [27], familial searching [28], the calculation of an LR 

comparing two mixed profiles where the propositions are whether one or more common 

contributors exist [29], or seeking information on potential familial relationships between 

donors of a mixture [30]. The deconvolution has also been extended to carry out 

deconvolutions looking for one or more common contributors to multiple evidence items 

[31].  

 

The use of multiple PCR replicates within a single interpretation has been undertaken for as 

long as probabilistic genotyping has been considered [32]. For semi-continuous systems this 

involves the accumulation of probabilities of drop-in and drop-out for each peak in each 

profile in the analysis. For fully continuous systems the use of replicates involves the 

comparison of multiple sets of observed peak heights to their expectations, built up from the 

models in the system. 

 

We present here an extension to this idea of using replicates, by considering replicates that 

have been produced under different conditions. This would be of particular use under two 

broad conditions: 

1) The forensic laboratory uses complementary DNA profiling kits that have the same 

loci, but ordered differently with respect to molecular weight i.e. as per the ESI and 

ESX profiling system. 

2) Data has been produced in one system that has then been superseded by another 

before the replicate was produced. This may be due to a change in technology such as 

the move of a laboratory to a different profiling kit, or an update in the model of 

electrophoretic instrumentation, or the decision to trial an enhancement technique, 

such as increased PCR cycles, when standard profiling has produced insufficient data. 

 

We term these replicates a ‘multi-kit’ analysis noting that it may be the same DNA profiling 

kit in use, just being used under two conditions (for example, a replicate PCR amplification 

after having moved from a 3130 capillary electrophoresis instrument to a 3500).  The 

difference in the consideration of a multi-kit analysis to a standard replicate analysis is that 

the profiles have been produced under differing conditions, meaning that they are behaving 
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differently from one another. While the same general models should apply (e.g. for stutter, 

peak height variability or drop-in, etc.) the parameter values (or their prior probabilities) 

within the models will differ between replicates. Multi-kit analyses pose additional 

challenges to standard continuous DNA interpretation systems as different parameters within 

the models may be correlated across replicates while others will not. An example of this 

would be to consider a mixed and degraded DNA sample that is profiled in two different kits. 

We would expect the relative DNA amounts of each contributor to be the same between 

replicates (they in fact must be as this is a property of the DNA extract, which precedes DNA 

profiling) where the amplification efficiencies of the loci would not be (as this is a kit related 

parameter).  

 

We outline here an extension to the theory presented in [1], that considers multi-kit analyses. 

We then demonstrate the performance of the proposed model on a number of scenarios that 

laboratories could encounter, where multi-kit analysis capabilities would prove beneficial. 

 

2.0 THEORY 

Starting with the standard theory of [1, 32] we seek the probability of the observed evidence 

given a proposition. Nuisance parameters must be considered in order to enumerate the 

probability and we term these the mass parameters (M). We do not specifically care what the 

values of these parameters are to calculate the probability (hence ‘nuisance’), although it may 

be of interest to know their values for either diagnostic purposes or for comments on higher 

level evidential considerations that rely on extrinsic properties of the DNA profile such as the 

biological source of the DNA or the activities that could have led to the presence of the DNA. 

We also do not know the values of these mass parameters and so integrate across their prior 

probability distributions, which can be achieved through the use of Markov chain Monte 

Carlo (MCMC) analysis. The mass parameters considered in [1] are template DNA (t), 

degradation (d), locus amplification efficiency (A) and replicate amplification efficiency (R). 

To extend the theory to multiple kits we introduce a fifth mass parameter, a kit multiplier (B). 

We now have: 

1. A variable tn, for each of the n contributors that may usefully be thought of as 

template amount, 

2.  A variable ,n kd , which models the decay with respect to molecular weight (m) in the 

template for each of the contributors to genotype set, jS , where j is one of the J 
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possible genotype sets the contributors can take.  This may usefully be thought of as a 

measure of degradation. Note that this term is now dependent on kit, k, although this 

dependence on kit is optional and can be fixed within the analysis so that  
, , 'n k n kd d  

under certain circumstance (explained later), 

3.  Locus efficiencies at each locus, 
l

kA  to allow for the observed amplification levels of 

each locus. Note that this term is now dependent on kit, 

4. Replicate multipliers 
,y kR .  

This effectively scales all peaks up or down between 

replicates. Note that this term is now dependent on kit, and 

5. Kit multipliers, 
kB .  This scales all peaks in all replicates up or down between kits. 

 

We write the mass variables,  , : 1,..., : 1,...,n kd n N k K  D ,  : 1,...,nt n N T , 

 : 1,..., : 1,...,l

kA l L k K  A ,  , : 1,..., : 1,...,y k kR y Y k K  R  (defining 
kY  as the 

number of PCR replicates used for kit k) and  : 1,...,kB k K B  as B.  The variables D, A, 

R, T and B are written collectively as M. 

 

Note that the degradation term is optionally kit dependant, despite it being a property of the 

DNA extract and not the manner in which the profile has been generated. We make the 

choice to introduce an optional kit dependence on degradation as a result of the type of 

samples for which this analysis will commonly be used. That is, replicates that span 

technology (e.g. profiling kit) are likely to be separated by some time, during which 

degradation will have been acting on the sample. Therefore, the degradation term should be 

free between kits. For samples where this is not the case, the degradation values for 

contributors should be similar between kits and hence the term would be fixed in those 

situations (this property could be used as an analysis diagnostic). 

 

Knowing the values of the parameters in M allows the calculation of Total Allelic Product 

(T), the total amount of fluorescence expected resulting from an allele in a DNA extract, 

which will ultimately get broken into components of fluorescence in an allelic position and its 

stutter positions on the electropherogram (EPG). Calculation of T, for a combination of 

contributor, kit, locus, replicate and allele, is achieved formulaically by: 

 , ,

, , , ,

l
n k a k kd m offsetl l l

a n y k n k y k k nT t A R B X e
 

            (1) 
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The l

nX  term in equation 1 represents a ‘dose’ and takes values of 1 or 2. The dose considers 

that if contributor n is homozygous for allele a at locus l ( 2l

nX  ), then the expected value 

for T will be twice as high than if allele a was one in a heterozygous pair. The offset marks 

the molecular weight at which degradation starts to be applied, i.e. at the offset (and 

technically before it), degradation is not acting to reduce fluorescence. This offset is usually 

set to be the lowest molecular weight peak observed in one or more electropherograms (or 

some value below it), and so only depends on the profiling kit being used. As the PCR 

occurs, some of the fluorescence that was destined for the allele will shift to stutter positions 

on the EPG. There are a number of stutter types that can occur (back stutter, forward stutter, 

half stutter, double stutter, etc.) and we will define the number of types of stutter as I, the 

stutter ratio of stutter type i, for locus l in kit k for allele a as 
,

,

l i

a k  and the position of stutter 

type i relative to the parent peak, a, as i . We can now split the total allelic product into 

components of, respectively, allele and stutter by: 

, , ,,

, , , ,

,1

l

a n y kl i

a n y k l i

a k

i

T
E





          (2) 

and 

,

, , , ,,

,, , ,
,1

i

l l i

a n y k a kl i

l ia n y k
a k

i

T
E







          (3) 

where i , indicates ‘not i’ and hence the allelic component. The total expected height of a 

peak at a locus, replicate and kit combination is then the sum of the stutter and allelic 

components of all individuals that fall on that allelic position: 

, ,

', , ', , , , , ,i

l l i l i

a y k a n y k a n y k
n n i

E E E


    where a is chosen for each i so that 'ia a   (4) 

Doing this for all contributors, alleles, loci, replicates and kits results in  k

k

Y  expected 

profiles, each of which has an observed counterpart, for which each peak height can be 

compared. Differences between observed and expected peak heights,  , , , ,Pr |l l

a y k a y kO E , are 

modelled by: 

   
2 2

, ,

10

, , , , , ,

log ~ 0, 1
i

i i il
ki ka y k

l l l
i ia y k a y k a y k

c cO
N

E E O


 
                

 
P

P      (5) 
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Where 
i

P  is the proportion of peak a that is stutter type i. The right-hand side of equation 5 

signifies modelling using a normal distribution, in the form N[mean,variance]. Note that the 

c2 parameters in the variance term also depend on kit. Each has a prior gamma distribution 

modelled by: 

   
2

~ ,i i i

k k kc    

allowing each peak height variability term to adjust according to the observed data. 

 

The functioning of the maths can be difficult to glean from formulae alone and so we show 

(in Figure 1) a flow diagram of the process for one iteration of an MCMC analysis. The top 

row of Figure 1 shows the parameters in the model. Some of these are used to build up 

expected DNA profile(s), of which some are mass parameters and others are fixed parameters 

(e.g. stutter ratios). This can be seen occurring as one moves down through Figure 1 from the 

top to approximately the centre of the diagram. Other parameters in the top row are used to 

calculate the likelihood of the observed data given the mass parameters, which can be seen 

moving vertically down through Figure 1 from approximately the centre to the bottom of the 

diagram. 

   

 

In Figure 1 all values that are used in the model are shown in the top layer as vectors of 

values (this is indicated by bolding of the font type). Parameters in squares are fixed (i.e. their 

values are set prior to the analysis) whereas values in circle are variables in the MCMC. As 

one moves through the layers of resolution from analysis to kit, replicate, locus, allele, stutter 

type and contributor each parameter within the calculation is broken into single values or 

sometimes smaller vectors of values if the initial vector was multi-dimensional. Where the 

values are split in Figure 1 demonstrates where dependencies exist between that parameters 

and the layer of resolution. At the finest level of resolution we end up with expected peak 

heights for each kit, replicate, locus, allele, contributor and stutter type combination as shown 

in equations 2 and 3. These are summed together across stutter type and contributor to obtain 

the expected heights of alleles per kit, replicate, locus and allele as per Equation 4 (and 

procedurally shown in Figure 1 in the central zone). At this stage the expected peak heights 

can be compared with their corresponding observed peak heights and (with the use of the 

variance terms that are specific to both kit and stutter type) likelihoods for each allele, locus, 

replicate and kit combination can be calculated. The product of these across each of the layers 



 

Page 8 of 19 
 

of resolution ultimately ends up with the likelihood of the data given all the mass parameter 

values in the model for that MCMC iteration. This likelihood is then used in an acceptance 

rejection algorithm to either accept or reject the proposed M. 

 

Note that Figure 1 is only a flow diagram and does not show the various prior probability 

distributions for each parameter in the model. 

 

3.0 VALIDATION METHOD 

Profiles were interpreted covering the following situations where laboratories might use 

multi-kit analyses: 

1. Single source and two person mixtures amplified using Applied Biosystems 

Identifiler™ profiles analysed using both a 3130 and 3500 CE after an instrument 

upgrade, 18 examples shown. 

2. Single source DNA amplified using both the Applied Biosystems Identifiler™ and 

MiniFiler™ multiplexes in order to improve profile quality for degraded and inhibited 

profiles, 15 examples shown. 

3. Single source DNA amplified using both the PowerPlex® ESI 17 Pro and Applied 

Biosystems NGM SElect™ multiplexes, DNA profiling kits with the same loci, most 

loci ordered differently with respect to molecular weight, 11 examples shown. 

4. In silico profiles generated using the Identifiler™ and GlobalFiler™ multiplexes, 

mimicking a two person mixture where the person of interest (POI) is partial and 

dropping out.  The GlobalFiler™ profile was deliberately degraded, modelling a time 

delay between amplifications, 11 examples shown. 

 

All profiles were interpreted using STRmix™ version 2.5.08 both as a single replicate using 

one kit and combined using multiple kits (i.e. three interpretations per sample set).  

Likelihood ratios were calculated using the African American allele frequencies from the FBI 

expanded CODIS core set [33] and a theta (FST) of 0.01.  The propositions considered were: 

Hp: the DNA originated from the person of interest and N-1 unknown contributors 

Hd: the DNA originated from N unknown contributors 

Where N was the number of contributors. 
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4.0 RESULTS 

 

A plot of the log(LR) for the single kit analysis versus the increase in the log(LR) after the 

multi-kit analysis for each dataset is provided in Figure 2. The increase is calculated by the 

difference between the LR obtained when comparing the reference to the deconvolution 

carried out using information from a single kit, and the LR obtained when comparing the 

reference to the deconvolution carried out using information from both kits. Note that an 

increase in the LR is not necessarily expected from all multi-kit analyses, just as an increase 

in the LR will not always be the results of adding replicates in a single kit analysis. Whether 

an increase or a decrease is obtained will depend on the additional information being 

provided, and how well the reference being compared can explain the observed data. In the 

experiments carried out for the mutli-kit analysis, all additions did result in an increase in the 

LR, as seen in Figure 2. 

 

We also demonstrate an in-silico multi-kit example that illustrates a degraded profile typed in 

two kits with complementary locus sizes. A toy kit example has been fabricated to 

demonstrate the effect. Figure 3 shows the two profiles. 

 

The profiles were set up so that the low molecular weight genotypes are unambiguous, the 

central molecular weight locus is ambiguous (i.e. dropout could have occurred) and there is 

very limited, or no, high molecular weight information. The genotype set weights resulting 

from the deconvolution are shown in Table 1. 

 

The missing information in one kit (due to degradation) is present in the other allowing a 

complete resolution of the donor’s genotype when deconvolution is carried out using both 

kits together. This is not a situation that could be rectified by additional replicate 

amplifications of the profile in a single kit only as it is likely the longer fragments would 

never amplify above the analytical threshold.  

 

5.0 DISCUSSION: 

Inspection of Figure 2 shows that, as expected, the increase in log(LR) after multi kit analysis 

depends on the amount of profiling data within the two profiles.  For example, the combined 

interpretation of Identifiler and MiniFiler profiles has little improvement in LR when 

compared to the single Identifiler profile interpretation but significant (up to nine orders of 
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magnitude) improvement compared to the single MiniFiler profile interpretation.  This is 

intuitive given that the eight loci within the MiniFiler kit are a subset of the Identifiler kit 

loci.  The MiniFiler profiles contained little additional profiling information compared to 

their Identifiler replicates despite targeting degraded DNA samples.   

 

The position that PCR fragments elute from capillary electrophoresis instruments can be 

deliberately affected by mobility modifiers [34]  (we term this the observed fragment sizes), 

which have been added during PCR, rather than being indicative of the fragment size as 

targeted by the primers (we term this, actual fragment size). The effect that these mobility 

modifiers have on the profile is that degradation will not have its most extreme effect (of 

reducing fluorescence) on the fragments that eluted last (i.e. the largest observed fragments). 

This is not an issue that is new to multi-kit analysis, as the presence of extreme size shifts by 

mobility modifiers in single kit analyses could be at odds with the degradation model 

employed (or indeed any model that expects a general downward trend in peak heights with 

observed fragment size). From the author’s experiences with many profiling systems, 

degradation does appear to act in the manner that would be expected if observed fragment 

size and actual fragment size were roughly aligned, suggesting that mobility modifiers may 

not be used for extreme size shifts, but rather finer scale adjustments. For these finer scale 

adjustments, the amplification efficiency multipliers that are used in our model account for 

slight deviations in expected and observed peak heights that would be caused by differences 

in observed and actual molecular weights from mobility modifiers. 

 

The inclusion of profiling information generated using a 3500 CE instrument to that 

previously generated using a 3130 CE instrument did not generally result in an increase in 

LR.  This was because the laboratory validated 3500 AT was relatively high (260 rfu all loci) 

compared to the 3130 AT (50 rfu all loci) which resulted in (on average) more profiling 

information being captured in the 3130 profiles. Having said this there were instances for 

both technologies where the addition of the replicate produced in the other technology 

provided additional information to the system and higher LRs for known contributors. This is 

expected, if for nothing else, that the addition of any replicates (produced under the same or 

different conditions) in an analysis is likely to lead to better discrimination power [26].  

 

Significant (up to 12 orders of magnitude) improvement was observed in the combined 

interpretation of ESI 17 and NGM SElect profiles compared to the single ESI 17 profile 
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interpretation. Both kits have laboratory validated analytical thresholds of 50 rfu (all loci). 

Additional profile information was available when combining the kits, despite both kits 

containing the same loci and this was due to the locus order being different so that 

degradation differently on the same locus between kits. 

 

The in silico profiles demonstrated the most significant increase in LR.  These profiles were 

manufactured deliberately to have an effect.  The person of interest was low template, 

exhibiting drop out at many loci.  The corresponding GlobalFiler profiles, despite being 

artificially degraded, had many additional alleles contributing to the increased LR. 

 

The effect was more significant (up to nine orders of magnitude) when the original single kit 

LR was low.  This was the general trend for all data sets. 

 

6.0 CONCLUSION 

We present the maths for deconvoluting a DNA profile, considering replicates that have been 

produced under different conditions. These may include being different profiling systems, or 

the same system under different laboratory protocols, or using different hardware. 

Conceptually, the combination of such replicates is similar to the combination of replicates 

produced under the same conditions, in that genotypic weights become a combination of how 

well the observed data is described in all replicates by the chosen genotype set and mass 

parameters. The extension that allows the analysis to span replicates produced under different 

conditions is simply that some of the mass parameters (particularly those that are related to 

the functioning of the PCR) are allowed to vary between kits (or amplification conditions). 

We demonstrate the performance of the maths on some examples that align with scenarios 

likely to be encountered in casework and obtain the expected results. Again the results are 

similar to validations that consider the effect of replication (e.g. [26]) and follow intuitively 

sensible trends when additional loci are considered within the analysis. 

 

The maths presented here should allow an even greater level of information to be utilised 

within forensic laboratories and under an expanded set of circumstances. 
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Figure 1: Diagrammatic representation of multi-kit profile building and evaluation 
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Figure 2: Log(LR) for the single kit analysis versus the increase in the log(LR) after the 

multi-kit analysis for each dataset 
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Figure 3: Example profiles from two profiling systems of a degraded sample 
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Table 1: Weights produced from deconvolution of DNA profiles seen in Figure 3. Q is a 

generic letter used to signify an allele that has dropped out. 

Locus Kit 1 only Kit 2 only Kit 1 and Kit 2 together 

A [10,11] – 100% - [10,11] – 100% 

B [9,9] – 98% 

[9,Q] – 2% 

[11,11] – 76% 

[11,Q] – 24% 
[9,11] – 100% 

C [19,19] – 80% 

[19,Q] – 20% 
[19,20] – 100% [19,20] – 100% 

 

 




