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Highlights 

 We investigate a method to identify a common contributor in two mixed DNA

profiles

 The discrimination power is limited by the smallest DNA contribution to the profiles

 We show good ability to find pairs of profiles with a common contributor

 This tool gives the ability to provide intelligence information

Abstract 

Standard practice in forensic science is to compare a person of interest’s (POI) reference 

DNA profile with an evidence DNA profile and calculate a likelihood ratio that considers 

propositions including and excluding the POI as a DNA donor.  A method has recently been 

published that provides the ability to compare two evidence profiles (of any number of 

contributors and of any level of resolution) comparing propositions that consider the profiles 

either have a common contributor, or do not have any common contributors.  Using this 

method, forensic analysts can provide intelligence to law enforcement by linking crime 

scenes when no suspects may be available.  The method could also be used as a quality 

assurance measure to identify potential sample to sample contamination.  In this work we 

analyse a number of constructed mixtures, ranging from two to five contributors, and with 

known numbers of common contributors, in order to investigate the performance of using 

likelihood ratios for mixture to mixture comparisons.  Our findings demonstrate the ability to 

identify common donors in DNA mixtures with the power of discrimination depending 

largely on the least informative mixture of the pair being considered.  The ability to match 

mixtures to mixtures may provide intelligence information to investigators by identifying 

possible links between cases which otherwise may not have been considered connected. 

Keywords 

Forensic DNA; investigative information; mixture comparison; Continuous models; 

Likelihood ratio. 
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Introduction 

DNA databases are a powerful investigative tool, often identifying persons of interest in 

criminal investigations after comparing a crime scene profile with a large number of known 

reference profiles.  The result of a database search may be provided to investigators as 

investigative intelligence to assess in conjunction with the wider case information.  Typically, 

DNA databases consist of two sub databases: one containing profiles from known individuals 

who have either volunteered or been compelled to provide a sample (the database) and one 

containing profiles collected from samples associated with crime scenes [1] (the crime 

sample database).  Profiles can be compared to link individuals with crime scenes by 

comparing the separate databases.  In addition, crime samples can be compared with other 

crime samples within the crime sample database to link two or more crimes and recognise 

unidentified common contributors, who potentially are recidivist offenders.  Based on our 

experience, database searches in most jurisdictions are currently limited to methods based on 

counting the number of concordant and non-concordant alleles between the samples.  In 

addition, there may be a requirement for the profiles to be single-source or a single 

component resolved from a mixture, particularly when matching crime profiles. 

In recent years, likelihood ratio approaches based on probabilistic genotyping have been 

advocated for matching crime profiles to individuals [2-5].  The likelihood ratio (LR) is 

generally accepted as the most powerful and relevant statistic that gives the weight of the 

DNA evidence [3] (which can be on a log10 scale).  It is the ratio of the probability of the 

observed crime stain (O) given each of two competing hypotheses, H1 and H2, and given all 

the available information, I.  Mathematically, we express this as: 

1

2

P r( | , )
.

P r( | , )

O H I
L R

O H I
  

Suitable propositions for database searching would be: 

H1: the DNA profile has originated from the database individual and N - 1 unknown 

contributors, 

H2: the DNA profile has originated from N unknown, unrelated contributors, 

where N is the number of contributors assigned to the profile and the LR is computed for each 

database individual. 

Most database search algorithms do not calculate an LR based on probabilistic genotyping but 

simply report the number of concordant and non-concordant alleles.  For unresolvable or low-

level mixtures, however, the use of probabilistic genotyping confers considerable advantages 

[2, 4], most importantly increased power of discrimination leading to more efficient database 

searches.  More specifically, continuous models effectively take into account stochastic 

events such as heterozygote imbalance, allelic dropout, locus dropout, allelic drop-in, and 

stutter, a by-product of the PCR process, which can all complicate interpretation leading to 

uncertainty in the genotypes of the contributor(s) [6-8].   

Recently Slooten [9] described a method to calculate an LR for whether or not a common 

donor exists between two profiles, M  and 'M , where there is no longer the requirement for 

one of the profiles to be unambiguous single-source (termed mixture to mixture matching due 

to its extension of standard searching).  Although the treatment of Slooten is focused on the 
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drop model (semi-continuous), the treatment is general and, as we will show below, applying 

the theory to an approach based on a continuous model is straightforward.  Both mixtures are 

first interpreted in isolation, that is, when using the drop model, Slooten proposes to 

deconvolute the mixtures with separate dropout and drop-in parameters.  There is no 

requirement for the number of contributors to be the same between the mixtures.  The 

propositions considering that the first donor of mixture M  denoted 
1

D  is the same as the first 

donor of mixture 'M , denoted '

1
D  are: 

H1: 
'

1 1
D D  and all other donors of the mixtures are unrelated 

H2: all donors of both mixtures are unrelated, i.e. the mixtures do not have a donor in 

common 

The proposition set above considers only the first contributor to each mixture.  In order to be 

able to take donor 1, there has to be some ordering on the donors. We consider the donors to 

be in order of their modelled level of DNA contribution to a profile (from largest to smallest). 

We explain later how to assign an LR for two mixtures having any common contributor rather 

than a specific pair of contributor positions.  The key formula from Slooten is replicated 

below: 

 
 

 

   

 

1

2

'

1 1, ', '

P , ' |
, '

P , ' |

| | '

,
d c d c

g

M M H
L R M M

M M H

P D g M P D g M

p g



 

 

  Equation 2.7 from [9] 

  

where the prior probability that a person chosen at random from the population has genotype 

g  equals  p g  and the posterior probability (after deconvoluting the mixtures in isolation) 

that donor 1 of mixture M has genotype g  is denoted  1,
|

d c
P D g M , with the subscript ,d c  

emphasising the dependence on the dropout parameters, 
1

( , ), [0 ,1]
N

N
dd d   , and a drop-in 

parameter, 0 1c  . This setup assumes that alleles within and between loci are drawn 

independently, i.e. the Hardy-Weinberg and Linkage Equilibrium model, also known as the 

Product Rule model.  

Within this paper we apply Slooten’s approach of mixture to mixture matching to a number 

of complex DNA mixtures interpreted using STRmix™ [8, 10] and demonstrate the efficacy.  

STRmix™ is a continuous method of DNA profile interpretation that uses the quantitative 

information from an electropherogram (epg) such as peak heights and molecular weights to 

calculate the probability of the observed profile (O) given possible genotype combinations 

(Sj).  The genotype combination Sj describes the proposed genotypes of the N assumed 

contributors at a particular locus.  A numerical value, or weight (wj), is assigned to the 

normalised probability density  P r |
j

O S .  STRmix™ assigns a relative weight to the 

probability of the epg given each possible genotype combination at a locus.  The weights 

across all combinations at that locus are normalised so that they sum to one.  Therefore, a 

single unambiguous genotype combination at any locus would be assigned a weight of one.  

Using STRmix™ nomenclature, genotype weights are proportional to the probability of the 
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profile given a proposed genotype combination i.e.  P r |
j j

w O S .  To apply the formula 

above we need the reverse:  P r |
j

S O , which is the posterior probability of a proposed 

genotype combination and can be obtained using the general form of Bayes’ Theorem: 

 
   

   

 

 

P r | P r P r

P r | .
P r | P r P r

j j j j

j

k k k k

k k

O S S w S

S O
O S S w S

 

 
  

The posterior probabilities of genotype combinations (i.e. for all contributors considered 

jointly),  P r |
j

S O , can be used to compute posterior probabilities of genotypes for the 

contributors separately.  Specifically, the posterior probability that donor 1 has genotype g  is 

computed as: 

   
,1

: }

1

{

P r | P r |

j

j

j S g

D g M S O



   , 

where 
,j i

S  indicates the ith genotype in genotype combination j.  After computing the 

posterior probabilities, we can then apply Slooten’s equation 2.7.  The equation is explicitly 

stated for donor 1 though the extension to other donors is obvious. 

The aim of this work is to demonstrate the efficacy of mixture to mixture matching using the 

method of Slooten and applied to continuous probabilistic genotyping interpretations.  The 

results may be used to inform practices (e.g. what quality of mixture it should be applied to, 

and appropriate list management thresholds to use) when using the method in active 

casework.  We also discuss the differences in the interpretation of mixture to mixture 

matching, compared with standard LR calculations where one of the profiles is a reference 

sample. 

Method 

Choice of profiles 

Six each of two-, three-, four-, and five-person GlobalFiler™ mixtures from the publicly 

available PROVEDIt dataset [11] were analysed in GeneMapper® ID-X version 1.5 

following Kelly et al. [12].  The mixtures were selected so that where possible half of them 

shared common contributors and the other half did not.  Moreover, it was ensured that a range 

of mixtures had one, two, three, four, or five contributors in common.  The chosen mixtures 

cover a range of complexities in regards to the number of contributors, mixture proportions, 

and total template DNA amounts, and also include several samples artificially degraded using 

DNase I.  A summary of the profiles selected, the known contributors, mixture ratios, and 

total template DNA is given in the appendix (Table 1). An overview of the number of 

common contributors between the profiles is given in Figure 1. 

LR calculation 

Profiles were interpreted in STRmix™ version 2.6 using the known number of contributors 

(i.e. the experimentally designed number).  All 24 deconvoluted mixtures were then 

compared with each other resulting in 276 mixture to mixture comparisons.  When comparing 

two mixtures M  and 'M , we evaluate the following propositions: 
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H1A: '

i j
D D  and all other donors of the mixtures are unrelated, 

H2A: all donors of both mixtures are unrelated, 

where donors i and j are defined with respect to mixtures M  and 'M  respectively.  The order 

of the contributors in each mixture is by template contribution (from largest to smallest based 

on the deconvolution results of STRmix™). For these propositions, the likelihood ratio is 

denoted as 
,i j

L R .  When considering the comparison of each contributor in each mixture with 

each contributor in every other mixture the result was a total of 3,366 LRs assigned. 

Additionally, for each mixture to mixture comparison, an LR not specifying a specific 

contributor pair was computed, i.e. an LR was computed for the propositions: 

H1B: the two mixtures share one common donor, 

H2B: all donors of both mixtures are unrelated, 

which is denoted simply as LR (that is without subscripts indicating specific contributors).  

Note that H2A is the same as H2B. To evaluate this LR, it is noted that the numerator 

proposition naturally unfolds into sub-propositions for each possible pairwise comparison.  

For instance, assuming mixture M  was analysed as having N  contributors and mixture 'M  

was analysed as having 'N  contributors, we may write: 

1

, ,

1,

1

, '

,

' an d  a ll o th e r d o n o rs  o f th e  m ix tu res  a re  u n re la ted ,
B i j

N

j

i

N

H D D



 



   

i.e. as a union of mutually exclusive sub-propositions.  Moreover, to not complicate the 

analysis too much, we have assumed a uniform prior on the sub-propositions so that the LR is 

simply equal to the average of all corresponding pairwise LRs. 

,

1 ,..., 1 ,..., '

1

'
i j

i N j N

L R L R
N N  

    

This assumption means that there was no a priori belief that the common donor was more 

likely to be a particular contributor to the mixture.  Although this may not be entirely realistic 

for all cases, the effect of specifying a different prior is likely to be small.  Note that in our 

study we compare mixtures that have between 0 and 5 contributors in common.  We do this 

as we wish to know the effect of more than one contributor in common between mixtures (a 

factor that will not be known in casework samples).   

Population stratification 

The FBI extended allele frequencies [13] were used in the LR calculations separately for 

Caucasian, African American, and South Eastern Hispanic populations, without 

subpopulation correction (i.e. assuming Hardy-Weinberg equilibrium and linkage 

equilibrium). The PROVEDIt dataset [11] was constructed to consist of mixtures with donors 

originating from different and unspecified ethnicities.  In practice the true ethnic composition 

of crime scene samples is also not known and different contributors may have different or 

perhaps mixed ethnicities.  Unrepresentative allele frequency databases may lead to inflated 

LRs since the probability of the alleles shared between samples is typically underestimated 
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[14].  Therefore, we use the minimum LR among the three populations with the intention of 

understating the weight of evidence: 

 
C au cas ian A frican  A m erican S o u th  E as te rn  H isp an im i cn

m in ., ,L R L R L R L R  

Note that m in
L R  is a minimum of likelihood ratios and is not strictly a likelihood ratio itself. 

A perhaps more accurate evaluation of the evidential value would involve extending the 

calculations to include the possibility of contributors from different populations, however no 

such extension was attempted in the current work. 

 

Figure 1 Overview of the number of common contributors between the 24 profiles that were 

analysed.  The darker the colour, the greater the number of shared contributors.   

Results 

The efficacy of mixture to mixture comparison is illustrated by investigating the power of 

discrimination of the method as measured by sensitivity and specificity.  Loosely speaking, 

sensitivity relates to how likely it is that the presence of a common donor between two 

mixtures leads to a large LR, while specificity relates to how unlikely it is that a large LR is 

obtained where there are no common donors between the mixtures.  For single-source to 

mixture comparisons, sensitivity and specificity plots have been presented (e.g. [15, 16]) that 

display LRs for H1 and H2 true as a function of an explanatory variable such as the template 

DNA amount for a true contributor to the mixture or the average peak height of a true 

contributor.  Similar plots can be produced for mixture to mixture matching. We first 
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examine the ability of the method to correctly identify true links between mixed DNA 

profiles.   

An overview of the true links that were successfully identified and those that were missed 

using the method is given in Figure 2.  A true link is assumed to be identified if m in
L R  exceeds 

an arbitrary threshold of one million and otherwise it is incorrectly not identified. Inspecting 

Figure 1 and Figure 2, it is immediately clear that the majority of true links could be correctly 

identified.  Specifically, 53 out of 61 true links led to a statistic exceeding one million.  All 

missed links involve samples 14 or 21 (Appendix: Table 1).  Sample 21 has one low level 

contributor (reference 30) who has dropped out at multiple loci.  Review of the LRs for 

sample 14 across the three populations revealed that these links were correctly identified 

using the Caucasian allele frequencies (i.e. C a u c a s ia n
L R ) however the African American and 

South Eastern Hispanic allele frequencies produced LR values below 1 million, hence m in
L R  

was also below 1 million.   

The largest m in
L R  for a non-associated pair (by this we mean a pair without a common 

contributor) was approximately 3. This was for the comparison of samples 3 (two person 1:4) 

and 19 (5 person 1:1:1:1:1). For this comparison, C a u c a s ia n
L R  was the largest being 

approximately equal to 6, so the choice of allele frequencies did not matter.  Other 

comparisons, however, showed meaningful differences between the likelihood ratios 

calculated using different allele frequency sets.  Most notably,  m in
L R  for the comparison of 

samples 1 and 22 (not sharing a common donor) equals about one, while C a u c a s ia n
L R  equals 

approximately 18 thousand. The small number of inclusionary likelihood ratios suggests the 

use of a match threshold smaller than one million could be considered for mixture to mixture 

matching.  In the present study, use of a match threshold of 1,000 would have recovered the 

missed links for sample 14 whilst still avoiding adventitious links. 
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Figure 2. Overview of the true links that were correctly identified and the ones that were 

missed when links were assumed to be present if m in
L R  exceeded one million. There were no 

false associations. The largest m in
L R  for a non-associated pair was about 3. The darker the 

colour, the higher the LR. 

The graphical overviews in Figure 1 and Figure 2 allow for a side by side comparison 

because the number of samples in this study is not too large. In a practical investigative or 

quality assurance setting, however, we suspect that mixture to mixture comparisons are 

potentially implemented across too many deconvolutions for such a visualisation to be 

meaningfully interpreted.  In such cases it is perhaps more revealing to present a table of 

comparisons that yielded an LR greater than some threshold set for list management. 

Alternatively, one could construct an undirected graph with mixtures as nodes and edges 

between nodes whenever the LR exceeds some threshold. 

We present the pairwise LRs and compare those with the LRs not computed for specific 

contributor pairs in Figure 3.  A number of observations can be made from the plot.  Most 

importantly, there is good separation between the LRs obtained for comparisons where there 

is a common donor (green) and those produced where there are no common donors between 

the mixtures compared (red).  This separation demonstrates again that the sensitivity and 

specificity of the method is sufficient to discriminate mixtures that do share a donor from 

those that do not.   

To better understand the differences observed between the LRs and the pairwise LRi,j values, 

we need to acknowledge that there is often limited power to distinguish between different 
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donors in the same mixture when the template is more or less evenly divided between the 

donors.  For example, consider two mixtures, each originating from two contributors in equal 

amounts, and assume that there is one common donor between these two mixtures.  The LR 

considers the following sub-propositions in the numerator: 

 Contributor 1 from mixture 1 is contributor 1 from mixture 2 

 Contributor 1 from mixture 1 is contributor 2 from mixture 2 

 Contributor 2 from mixture 1 is contributor 1 from mixture 2 

 Contributor 2 from mixture 1 is contributor 2 from mixture 2 

Since the mixtures are from equally contributing donors, there will be an approximately equal 

weight attached to the genotype sets comprising the same genotype pairs but in the reverse 

order.  In other words, each genotype is about as good an explanation for contributor 1 as for 

contributor 2 in both mixtures.  Therefore, even though there is only one contributor in 

common in our example, it would be expected that all four LRi,j values (for the four sub-

propositions listed above) would yield equivalent pairwise LRs (i.e. 
1 ,1 1 , 2 2 ,1 2 , 2

L R L R L R L R   ).   

The  LR (without specifying specific contributors) considers the mixture comparison as a 

single comparison rather than a number of comparisons for each component pair, akin to the 

difference between sub-sub-source and sub-source LRs as described in Taylor et al. [17].  By 

assuming a uniform prior on which contributor pair is the common donor, the LR can be 

obtained by averaging the pairwise LRi,j values.  By doing this we expect to see two trends in 

LR produced by mixture comparisons that mean the results differ slightly from standard 

specificity and sensitivity experiments.   

 First, the comparison of mixtures that do not have any contributors in common will 

tend to be closer to LR=1 than seen in standard specificity and sensitivity tests 

(particularly when both mixtures have a low-level contributor).  The reason for this is 

that there are multiple component pairs being compared, and (again, particularly if 

there is a low-level contributor in at least one of the mixtures) then the largest LRi,j 

(which will be the bounding value for LR) will dominate the average and is expected 

to be approximately neutral.  Therefore, if we compared the LRi,j values from the 

contributor component pairs to the average across all pairs, we would expect a shift of 

the large exclusions to a value of LR=1.   

 Secondly, for those mixtures with multiple contributors in common, we expect LR to 

more closely align with the largest of the pairwise LRs, resulting in LR showing, in 

general, a more noticeable shift to higher values from the corresponding pairwise LRi,j 

values.   

Figure 3 shows two sets of data; the green points show the comparison of LRi,j to LR for H1A 

true and H1B true values. The red points show the comparison of LRi,j to LR for H2A true and 

H2B true values.  Note that we do not plot comparisons of LRi,j to L R  for H2A true and H1B true 

values as this data is not helpful to the interpretation of trends (note that this means a plot 

such as in Figure 3 can only be produced knowing the donors that the mixtures have in 

common).  In Figure 3 all LRs for are calculated using the African American population 

database.  The choice of the African American database (as opposed to the Caucasian or 

South Eastern Hispanic) was arbitrary.  A minimum of the three databases was not used as 

we could consider a minimum on either variable, and these may not be the same database.  In 
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any event, the results of Figure 1 are mainly produced to observe a general trend of results 

from the production of LR from LRi,j.  The two trends just described can be seen in Figure 3.  

Note that for the pairs with a true common donor(s), only those that have more than one 

contributor in common show a significant shift from the x = y line. 

 

Figure 3: Comparison of log10(LRi,j) (from contributor component pairwise comparisons), 

compared with the log10(LR) (across all components). The size of the green symbols 

represents the number of contributors in common. The green points show the comparison of 

LRi,j to LR for H1A true and H1B true values. The red points show the comparison of LRi,j to LR 

for H2A true and H2B true values.  

The second consideration when plotting sensitivity and specificity for mixture to mixture 

matching is the appropriate dependant variable.  Taylor [16] plotted H1 true LRs against the 

amount of input DNA from a known contributor used to construct the mixtures examined.  

This was relatively simple as there was only one DNA amount to consider.  DNA template 

amount was found to significantly affect the ability to discriminate between true and false 

donors, with LRs trending towards one as template amount decreased.  For the mixtures used 
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in the present study the targeted input amount of DNA for each contributor can be determined 

using information regarding the total template amount and mixture ratio for each sample.  

When comparing mixtures, we consider the same limiting factor of input DNA on the m in
L R , 

i.e. the lowest DNA donation by the contributor to the two mixtures will be the limiting factor 

in the discrimination power, and hence minimum donation is the value that should be used for 

displaying the results of sensitivity and specificity plots.  This is further complicated when 

there are multiple contributors in common.  In this instance there will be multiple pairs of 

donations, each with their own minimum and maximum template DNA amounts.  In these 

cases, the discrimination power of the m in
L R  will be the maximum of the minimums in the 

pairs of DNA donation amounts1.  This will now be the appropriate value used for displaying 

the results of sensitivity and specificity plots m in
L R  values for pairs with a common 

contributor.  For pairs without a common contributor, we use the minimum amount of DNA 

for any contributor in either mixture being compared (as this is the most likely contributor 

position to give rise to false inclusions). 

Additionally, Taylor [16] demonstrated the effect of profile complexity on sensitivity and 

specificity by separating the plots produced according to the known number of contributors, 

N, of each of the mixtures examined.  When considering mixture to mixture comparisons 

each mixture will have its own N which may or may not equal that of the other mixture.  As 

such, plotting the m in
L R  values produced according to the number of contributors is not 

straightforward and we have instead plotted all data on a single graph regardless of profile 

complexity.  We would expect however that profile complexity will affect the discriminatory 

power of mixture to mixture comparisons with the more complex of the two mixtures under 

comparison being the limiting factor.  

Figure 4 shows the results of the sensitivity and specificity plot, constructed within the 

limitations just described.  The m in

1 0
lo g L R  values are the minimum obtained from calculations 

in all three population databases.  In order to provide some information on profile 

complexity, the size of the symbols in Figure 4 represent the summed number of contributors 

between the two mixtures being compared.  The lines shown on Figure 4 are loess lines [18, 

19] and are present to assist in observing visual trends. The disjunction in the loess lines 

comes from the categorical nature of the DNA amounts (particularly in the green points). As 

expected, the highest m in
L R  values for the lower three matching contributor pair DNA 

amounts are from the smallest summed N, i.e. four. This is not the case for higher DNA 

                                                 

1 For example, samples 9 and 14 have two common contributors (29 and 50). Contributor 29 donates 

approximately 0.031 ng to sample 9 (obtained by the ratio of 1:4:1 in sample 9 where contributor 29 represents 

the terminal 1, and a total input of 0.186 ng, i.e. 0.186 x 1/(1+4+1) ~ 0.031) and 0.125 ng to sample 14. The 

minimum of these two values (0.031 ng and 0.125 ng) is 0.031ng, which will likely be the donation that limits the 

discrimination power for contributor 29. Contributor 50 donates 0.124 ng to sample 9 and 0.125 ng to sample 14. 

The minimum amount of DNA for contributor 50, and limiter of LRi,j size, is 0.124 ng. The minimum contribution 

by contributor 29 is 0.031 ng and the minimum contribution by contributor 50 is 0.124 ng. The contribution that 

will limit the size of the LR comparing samples 9 and 14 will be the maximum of these minimum values, which 

in this case is 0.124 ng. Therefore, the comparison between samples 9 and 14 for the LR is plotted at 0.124 ng. 

To put this another way, if we renumber the donors such that M and M’ have the first k donors in common, then 

LR will be determined by the strongest 
,i j

L R . For a particular common donor, j, the expected 
,i j

L R  correlates 

with the smallest contribution of donor j to either M or M’. Therefore, the explanatory variable is set as the 

maximum value over all i, of the minimal template contribution of donor i to M or M’. 
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amounts as there were no two-person to two-person comparisons with the maximum of 

minimum DNA from common contributions this high. 

Finally, we compute the average LRs obtained for profile pairs without a common contributor 

as a sanity check. As with any likelihood ratio, we expect the likelihood ratios produced from 

mixture to mixture comparisons to adhere to Turing’s lemma that “the expected factor for a 

wrong hypothesis in virtue of any experiment is 1.”  (from Good [20], quoting Turing) as 

demonstrated for standard profile comparisons in [21].  We do not strictly sample from the 

denominator proposition, because we have assumed the Product Rule model for the separate 

LR calculations, which is not realistic for this dataset. In this instance, the average of the L R  

across all mixture comparisons that had no common contributors was 291, 3 and 0.16 using 

the Caucasian, South Eastern Hispanic, and African American population databases, 

respectively. These numbers are plausibly close to 1 and suggest that the system is not 

overstating the evidence to a great extent. 

We note that users of probabilistic genotyping systems are likely to be familiar with the 

concept of adventitious matching (although the term ‘matching’ does not sit well in the 

context of mixed DNA profiles), in two ways; the results of multiple comparison between a 

reference and numerous profiles in a database [22], and also the multiple comparisons of a 

reference to different components to a mixture [23]. The latter issue is also present in mixture 

to mixture comparisons, with the difference that both profiles being mixed will lead to more 

comparisons than the more traditional comparison of a reference to a mixture. The first issue 

is also relevant here, since comparing every mixture to every other mixture will rapidly lead 

to a large number of LRs as the number of comparisons grows quadratically with the number 

of mixtures. For the single source analogue, it has been demonstrated that as databases grow 

larger there will eventually be pairs of profiles sharing a number of alleles that is surprisingly 

large to some [24]. When conducting very many mixture to mixture comparisons, one will 

ultimately find strong adventitious results even though those are very rare when viewed in 

isolation. 

 

Figure 4: m in

1 0
lo g ( )L R values for mixture comparisons across the varying input DNA amounts. 

The size of the symbol represents the summed number of contributors shared between the 
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two mixtures. Red points represent L R  values for comparisons of mixtures for which there 

are no contributors in common. Green points represent LR values for comparisons of 

mixtures for which there is at least one contributor in common. 

Conclusion 

We have shown that mixture to mixture comparisons function in the same way as standard 

comparisons of reference to evidence profiles, i.e.: 

 As the amount of DNA decreases, the m in
L R  contracts around one. This trend is less 

pronounced than for the comparison of reference profiles to mixed samples, due to the 

complicating nature of the mixture to mixture comparisons as outlined in our work.  

Nevertheless, a trend can be seen in Figure 4 in the datapoints where there are one or 

more contributors in common from m in

1 0
lo g ( ) 2 0L R   at 0.25 ng, decreasing to 

m in

1 0
lo g ( ) 5L R   at 0.05 ng. This behaviour is known from previous studies comparing 

reference profiles to mixed profiles [15, 16, 25]. Our study simply shows the strength 

of that trend for comparison of two mixed profiles. 

 As the complexity of the comparison (i.e. the combined number of contributors in the 

two mixtures being compared) increases, the m in
L R  contracts around one. This 

conclusion may need to be drawn (at least in part) by a thought experiment. Consider 

a scenario where two matching profiles being compared are complete and single 

source (the simplest of comparisons). We can calculate an LR in the way that has been 

possible for decades, which would be equal to the inverse of the match probability. 

Now consider adding a contributor to one of these profiles, and we have a standard 

comparison of a reference to a two person mixture, we know that the LR must be 

equal to or less than the LR from the single source example. There will be instances 

when the LRs are virtually the same (i.e. when we are talking about a case of the two 

person profile having a clear matching major contributor), but the general trend 

(across all two person mixtures) would be a lower LR than the single source example. 

We would expect (and has been shown [16]) this trend of yielding less informative 

LRs to continue if we kept adding more contributors to the mixed sample. By 

extension we would also expect the same trend to continue if we then started adding 

contributors to the remaining single source profile, with the general trend being less 

informative LRs as more contributors are added. Again there are properties of profiles 

that would lead to extremes within this trend such as a common major donor would be 

less affected by adding contributors, and the greatest effect on informativeness will be 

obtained by adding contributors of approximately the same intensity as the common 

contributor. The trend that has just been described is only weakly observable in our 

study. This is most easily seen in Figure 4 for the DNA amounts where comparisons 

of two-person mixtures to two-person mixtures are carried out (~0.06 ng and 0.125 

ng). In these two areas the comparisons arising from two-person mixtures to two-

person mixtures can be seen at m in

1 0
lo g ( ) 2 0L R  , whereas the comparisons of more 

complex mixtures tend to be below this, and in some instances at m in

1 0
lo g ( ) 0L R  . 

There are a couple of differences that must be kept in mind: 
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 The comparisons cannot be carried out between components of mixtures and 

designated as being H1A or H2A true tests in a meaningful manner.  Instead we 

recommend the average LR across all contributor component comparisons be used. 

 When L R  is used there is a strong drive for H2B true LRs towards one (more 

pronounced than for standard H2 tests comparing reference profiles to evidence 

samples).  For mixtures with a single contributor in common, the difference between 

LRi,j for the known common contributor component to LR is minimal.  When there is 

more than one contributor in common, the smaller LRi,j value(s) for the known 

common contributor component comparisons will be driven towards the largest LRi,j 

value for the known common contributor component comparison. Again, this is not 

surprising behaviour as the expectation for all individual H2 comparisons is LR = 1, 

hence the average of multiple H2 LRs will tend to contract around this mean.  

We note that the mathematics published by Slooten considers the propositions: 

 H1B: the mixtures have one common contributor 

 H2B: the mixtures have no common contributors 

A more general form would be to consider propositions: 

 H1C: the mixtures have M common contributor(s) 

 H2C: the mixtures have N common contributors(s) 

where 0N   and ,M N  and test multiple values for M and N as required by the case 

circumstances.  We do not attempt the generalisation of the mathematics of Slooten to 

accommodate such propositions, but the general structure would be the same, simply with 

multiple genotype sets being considered. However, the results of our study show that the 

benefit of this added complexity may not be warranted, as the effect of multiple contributors 

in common, over a single contributor in common is only slight, if noticeable at all. Any trend 

to increase the LR with increased common contributors is likely to arise from the averaging 

process alone. For example, consider comparing two four-person mixtures, and for simplicity 

consider that all four components in both mixtures have completely and unambiguously 

resolved genotypes. First, consider that the two mixtures have a single common contributor, 

and comparison of the mixture components that hold this donor yields a 
1 0

lo g ( )L R  of 20. All 

other comparisons lead to 0L R  and so the total (by averaging across all component 

comparisons) is 2 0
1 0 / 1 6  i.e. 

1 0
lo g ( ) 1 8 .8L R  . Now consider the situation that all four 

contributors between the two mixtures are in common. Therefore four component yield 

1 0
lo g ( ) 2 0L R   and 12 LRs of 0. Now the total (averaged) LR is 2 0

4 1 0 / 1 6  i.e. 
1 0

lo g ( ) 1 9 .4L R  . 

Taking the effect of different levels of contribution out of consideration, this thought 

experiment demonstrates the very minor effect that adding more common contributors to a 

mixture to mixture comparison will have on the component average LR.  

In this paper we have demonstrated the efficacy of assigning likelihood ratios for common 

contributors when comparing mixed DNA profiles.  Possibly the most obvious use for 

mixture to mixture comparison is to provide intelligence to law enforcement on potentially 

linked crimes, for which no suspect has yet been identified.  Another use would be in a 

quality assurance context, i.e. searching samples within laboratory processing batches to 

determine whether sample to sample contamination may have occurred.  The method could 
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also be used when comparing weak and partial single-source reference samples to mixed 

DNA profiles.  Traditionally, a common practice has been to ignore loci that are partial and 

only carry out the comparison using loci that are complete in the reference. 
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 Appendix:  

Table 1: Summary of profiles interpreted, number of contributors, known contributors, mixture ratios, and total template DNA added to PCR   

 

No. Sample File N Contributors 
Mixture 

ratio 

Total template 

(ng) 

1 B01_RD14-0003-31_32-1;1-M1a-0.25GF-Q1.2_02.15sec.hid 2 31, 32 1:1 0.25 

2 C01_RD14-0003-31_32-1;1-M2a-0.126GF-Q1.2_03.15sec.hid 2 31, 32 1:1 0.126 

3 G05_RD14-0003-48_49-1;4-M2c-0.625GF-Q0.7_07.15sec.hid 2 48, 49 1:4 0.625 

4 C10_RD14-0003-39_40-1;2-M2c-0.375GF-Q1.0_03.15sec.hid 2 39, 40 1:2 0.375 

5 C04_RD14-0003-42_43-1;9-M2a-0.75GF-Q0.5_03.15sec.hid 2 42, 43 1:9 0.75 

6 E04_RD14-0003-42_43-1;9-M2a-0.31GF-Q0.5_05.15sec.hid 2 42, 43 1:9 0.31 

7 A10_RD14-0003-30_31_32-1;4;4-M2d-0.567GF-Q0.6_01.15sec.hid 3 30, 31, 32 1:4:4 0.567 

8 C09_RD14-0003-30_31_32-1;4;4-M2a-0.75GF-Q0.6_03.15sec.hid 3 30, 31, 32 1:4:4 0.75 

9 A08_RD14-0003-49_50_29-1;4;1-M3a-0.186GF-Q0.5_01.15sec.hid 3 49, 50, 29 1:4:1 0.186 

10 B06_RD14-0003-44_45_46-1;2;2-M2c-0.625GF-Q0.8_02.15sec.hid 3 44, 45, 46 1:2:2 0.625 

11 F05_RD14-0003-44_45_46-1;2;2-M2a-0.625GF-Q0.6_06.15sec.hid 3 44, 45, 46 1:2:2 0.625 

12 F01_RD14-0003-36_37_38-1;2;1-M2c-0.5GF-Q0.6_06.15sec.hid 3 36, 37, 38 1:2:1 0.5 

13 H10_RD14-0003-48_49_50_29-1;4;4;4-M2d-0.75GF-Q0.7_08.15sec.hid 4 48, 49, 50, 29 1:4:4:4 0.75 

14 B01_RD14-0003-50_29_30_31-1;1;2;1-M2a-0.625GF-Q0.5_02.15sec.hid 4 50, 29, 30, 31 1:1:2:1 0.625 

15 E10_RD14-0003-48_49_50_29-1;4;4;4-M2c-0.5GF-Q0.6_05.15sec.hid 4 48, 49, 50, 29 1:4:4:4 0.5 

16 C03_RD14-0003-44_45_46_47-1;1;4;1-M2d-0.75GF-Q0.8_03.15sec.hid 4 44, 45, 46, 47 1:1:4:1 0.75 

17 D03_RD14-0003-44_45_46_47-1;1;4;1-M2d-0.441GF-Q0.8_04.15sec.hid 4 44, 45, 46, 47 1:1:4:1 0.441 

18 C04_RD14-0003-36_37_38_39-1;2;2;1-M2a-0.75GF-Q0.7_03.15sec.hid 4 36, 37, 38, 39 1:2:2:1 0.75 

19 C06_RD14-0003-30_31_32_33_34-1;1;1;1;1-M2a-0.315GF-Q0.7_03.15sec.hid 5 30, 31, 32, 33, 34 1:1:1:1:1 0.315 

20 F06_RD14-0003-30_31_32_33_34-1;1;1;1;1-M1d-0.625GF-Q1.5_06.15sec.hid 5 30, 31, 32, 33, 34 1:1:1:1:1 0.625 

21 D03_RD14-0003-48_49_50_29_30-1;1;2;4;1-M3a-0.567GF-Q0.8_04.15sec.hid 5 48, 49, 50, 29, 30 1:1:2:4:1 0.567 

22 A08_RD14-0003-36_37_38_39_40-1;9;9;9;1-M2a-0.5GF-Q0.7_01.15sec.hid 5 36, 37, 38, 39, 40 1:9:9:9:1 0.5 

23 C09_RD14-0003-36_37_38_39_40-1;9;9;9;1-M1e-0.75GF-Q2.7_03.15sec.hid 5 36, 37, 38, 39, 40 1:9:9:9:1 0.75 

24 B01_RD14-0003-43_44_45_46_47-1;1;2;1;1-M2a-0.75GF-Q0.8_02.15sec.hid 5 43, 44, 45, 46, 47 1:1:2:1:1 0.75 
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