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Abstract 

Influenza has a negative sense, single-stranded, segmented RNA. In the context of pandemic influenza 

research, most studies have focused on variations in the surface proteins (Hemagglutinin and 

Neuraminidase). However, new findings suggest that all internal and external proteins of influenza 

viruse can contribute in pandemic emergence, pathogenicity and increasing host range. The occurrence 

of the 2009 influenza pandemic and the availability of many external and internal segments of pandemic 

and non-pandemic sequences offer a unique opportunity to evaluate the performance of machine 

learning models in discrimination of pandemic from seasonal sequences using mutation positions in all 

segments. In this study, we hypothesized that identifying mutation positions in all segments (proteins) 

encoded by the influenza genome would enable pandemic and seasonal strains to be more reliably 

distinguished. In a large scale study, we applied a range of data mining techniques to all segments of 

influenza for rule discovery and discrimination of pandemic from seasonal strains. CBA (classification 

based on association rule mining), Ripper and Decision tree algorithms were utilized to extract 

association rules among mutations. CBA outperformed the other models. Our approach could 

discriminate pandemic sequences from seasonal ones with more than 95% accuracy for PA and NP, 

99.33% accuracy for NA and 100% accuracy, precision, specificity and sensitivity (recall) for M1, M2, 

PB1, NS1, and NS2. The values of precision, specificity, and sensitivity were more than 90% for other 

segments except PB2. If sequences of all segments of one strain were available, the accuracy of 

discrimination of pandemic strains was 100%. General rules extracted by rule base classification 

approaches, such as M1-V147I, NP-N334H, NS1-V112I, and PB1-L364I, were able to detect pandemic 

sequences with high accuracy. We observed that mutations on internal proteins of influenza can 

contribute in distinguishing the pandemic viruses, similar to the external ones.  

 

 

Key Words: Association rule mining; CBA; Expert system; Hot spots; Ripper algorithm; Pandemic 

Influenza  
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Introduction 

Influenza A belongs to the Orthomyxoviridae family with a negative sense, single-stranded, segmented 

RNA. This virus has  8  segments:  HA  (hemagglutinin),  NA (neuraminidase),  NP  (nucleoprotein),  M  

(two  matrix  proteins,  M1  and  M2), NS  (two  distinct  non-structural proteins, NS1  and  NS2), PA  

(RNA  polymerase and PA-X), PB1  (RNA  polymerase  and  PB1-F2  protein), and  PB2  (RNA 

polymerase) (Horimoto and Kawaoka, 2005). 

 

Even a small number of mutations in the hemagglutinin gene of H1N1 influenza has the potential to 

change antigenic characteristics and cause a significant reduction in the immunity of human populations 

and vaccine efficiency (Strengell et al., 2011; Ebrahimi et al., 2014a; Ebrahimie et al., 2015; Tarigan et 

al., 2018). Similar to hemagglutinin and neuraminidase changes, mutation/re-assortment can also occur 

in other viral proteins including internal segments. The co-occurrence of mutations on external and 

internal segments, such as HA-E391K with PB2-K340N, has been reported (Maurer-Stroh et al., 2009a). 

Also, the co-occurrence of HA-E391K, HA-D114N, PB1-R563K, and PA-V14I in a Spanish strain is 

observed (Maurer-Stroh et al., 2009a). Detecting mutations in each influenza protein sequence, either 

external or internal, and finding the combination/patten of mutations is an important step in 

discrimination of pandemic sequences from seasonal ones.  

 

For pattern recognition in influenzas sequences, many studies have focused on visual alignment of a 

regional subset (maximum 200) of sequences and application of multivariate techniques such as 

clustering (Ebrahimi et al., 2014b). Multivariate clustering methods (e.g., UPGMA and neighbor-

joining) are routinely used to classify lineages into different categories. However, clustering methods 

ignore the quality of mutations, and all points have the same value in contributing to  final classification 

and prediction, questioning their ability to determine mutational hot spots efficiently (Ebrahimi et al., 

2014a). Immunological tests (such as ELISA or western blot) have also been used to detect decreased 

antigen-antibody responses following mutation in the key positions (Strengell et al., 2011; 

Hemmatzadeh et al., 2013; Hadifar et al., 2014; Hasan et al., 2016). Most of these studies are limited to 

one or two proteins (in particular HA and NA) and they ignore the effects of other proteins in pandemic 

occurrence (Ebrahimi et al., 2014b).  
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Sequencing a large number of influenza segments from the 2009 pandemic has provided a unique 

opportunity and a valuable source of data to examine the performance of various supervised machine 

learning models, such as CBA, in discrimination of pandemic influenza from the seasonal ones 

(Kargarfard et al., 2015). 

 

Machine learning algorithms are the method of choice for better understanding of various phenomena, 

extracting implicit, actionable and previously unknown rules and providing prediction capabilities 

(Sivathayalan, 2009; Bakhtiarizadeh et al., 2014; Shekoofa et al., 2014; Mohammadi-Dehcheshmeh et 

al., 2018). The final aim of these data mining techniques is to extract knowledge (underlying rules) from 

a dataset and converting this knowledge into a perceptible format for further use (Jamali et al., 2016; 

Ebrahimie et al., 2018; Sharifi et al., 2018). The most popular method for discovering relations in a 

dataset is “association rule generation” (Ebrahimi et al., 2010; Kargarfard et al., 2015; Kargarfard et al., 

2016). Human readable rules imply to data presented in a format which is readily interpreted by humans. 

Normally these rules follow the “IF… THEN” format. This representation of knowledge is the most 

appropriate manner for biologists and virologists to express their knowledge in finding significant 

genetic markers. For example, IF (HA-E391K) AND (HA-D114N) THEN (the mortality rate is high). 

IF… THEN rules structure is modular, relatively small, and informative. These rules can be applied as a 

basis for classification of instances (Daud and Corne, 2009). Associative classification methods are 

recent machine learning strategies to build a classifier based on rules that integrate classification with 

association rule mining. Some accurate and effective classifiers based on associative classification are: 

CBA (Classification Based on Associations)  (Bing Liu, 1998), CMAR (Classification based on Multiple 

Association Rules) (Li et al., 2001), and CPAR (Classification based on Predictive Association Rules) 

(Yin and Han, 2003). 

 

Sequencing a large number of influenza segments from the 2009 pandemic has provided a unique 

opportunity and a valuable source of data to examine the performance of various supervised machine 

learning models, such as CBA, in discrimination of pandemic influenza from the seasonal ones 

(Kargarfard et al., 2015). The main goal of this study was to identify the potential mutations associated 

with influenza pandemic occurrence by analysis of the whole viral genome/proteome, instead of analysis 

of 1 or 2 proteins. This study extends our recent findings regarding  the HA segment (Kargarfard et al., 
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2015) to all viral protein segments. This study provides the underlying knowledge for recognition of key 

mutations in the viral sequence and their co-occurrence interactions (based on association rules).  

 

 

 

Material and Methods 

 

In this study, CBA, Ripper and Decision tree algorithms were utilized for extracting the association rules 

among mutations. Figure 1 displays an overview of steps of this research. Process implementation is 

discussed in detail in the following sections. 

 

Dataset 

To select the 2009 pandemic sequences, the parameter “Include only pH1N1 proteins” was selected on 

Influenza Research Database (https://www.fludb.org/)(Squires et al., 2012). To download the seasonal 

sequences, the parameter “Exclude all pH1N1 proteins” was selected. File S1 - S10 include protein 

sequences. Table 1 represents more information about the dataset.  

To validate the findings and to prevent the overfitting of the discovered rules, another dataset containing 

all segments of H1N1 was used. None of the sequences in this dataset was involved in extracting rules 

(unseen data). We named this new dataset “test data”. The data was downloaded from Influenza 

Research Database (IRD). The HA nucleotide sequences which were used for extracting rules is 

presented at File S21. 

To execute the rule based algorithms, a dataset was generated including all segments of influenza 

sequences. Dataset contained 10 proteins because each of 7
th

 or 8
th

 segment produces two proteins. In 

addition to protein sequences, nucleotide sequences were downloaded for HA segment.  Only complete 

sequences were downloaded in this research. These sequences were separated into two groups: 

pandemic and seasonal. Pandemic sequences comprised of the 2009 flu pandemic. The data were 

downloaded from Influenza Research Database (IRD) which is a resource for the influenza virus 

research community to facilitate an understanding of the influenza virus (Squires et al., 2012) . 

 

Data Preparation  
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MUSCLE algorithm was used for multiple sequence alignment. MUSCLE stands for multiple sequence 

comparison by log-expectation. It is one of the most well-known multiple alignment software for protein 

and nucleotide sequences (Edgar, 2004). Commonly, MUSCLE  gives higher average accuracy and 

better speed compared  to the other multiple alignment tools such as CLUSTALW (Larkin et al., 2007) 

or T-Coffee (Notredame et al., 2000), by selecting the maximum amount of iterations and diagonal 

optimization. MUSCLE has three phases. At the end of each phase, the multiple alignment can be 

obtained and the algorithm can be terminated. Phase 1 is draft progressive. Phase 2 is improved 

progressive. The final phase (Phase 3) executes iterative improvement based on a variant of tree-

dependent restricted partitioning (Attaluri et al., 2009). 

The variables ‘maximum iteration’ and ‘maximum memory in MB’ at MUSCLE were set to 2 and 3000 

MB, respectively. Because of the large size of dataset, only the first two iterations of the algorithm were 

performed. After sequence alignment, data were stored in relational table; it has a set of attributes. 

Features or attributes represent the nucleotide or amino acid at each position in a sequence (for example 

Att12 means 12
th 

position of sequence).  In the case of CBA tool, data was converted into C4.5 format 

(*.data, * .names files).  

 

Rule generation  

For rule extraction in detecting pandemic sequences, first, we applied CBA, Ripper and C4.5 (decision 

tree) algorithm on different protein segments. “RapidMiner” software (2015) was used for running 

Ripper and C4.5. To obtain generalized and accurate rules, we assigned minimum support to be 10% and 

the minimum confidence to 90%.  

Rule based classification algorithms generate many rules which some of them may not be appropriate 

for our goal. We selected the rules according to the following three indications:  (1) Coverage of a rule 

(support) to be more than 10%, (2) Accuracy of a rule (confidence) to be more than 90%, (3) Length or 

number of descriptors was set two as the maximum length of the rules. In the current study, among all 

the generated rules, only the rules with high support and confidence were selected.  

 

Decision tree  

A decision tree is an expressive representation intended for classifying instances. The purpose is to 

construct a model which predicts the value of a target variable according to numerous input 
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parameters. In these tree structures, class labels are represented by leaves  and branches symbolize 

conjunctions of features which result in those class labels. A tree is usually "learned" through dividing 

the original set into subsets according to an attribute value test. This process is replicated upon every 

taken subset in the recursive approach called recursive partitioning. The recursion is finished when the 

subset of a node has all the identical value of the target feature, or when more division do not add more 

value to the predictions (Rokach, 2008). 

Many specific Decision-tree algorithms exist. Notable ones are: ID3, C4.5, and CHAID (Kass, 1980; 

Ebrahimi et al., 2011). We used C4.5 for extracting rules. At every node of the tree, C4.5 selects the 

attribute of the data that most properly divides its set of instances into subsets enriched in one class or 

the other. The division measure is the normalized information gain (difference in entropy). The feature 

with the highest normalized information gain is taken to build the decision. This process is replicated on 

the smaller subset (Quinlan, 1993). (Sharifi et al., 2018) 

 

Ripper algorithm 

In this study, we applied a propositional rule learner, Repeated Incremental Pruning to Produce Error 

Reduction (RIPPER), which is an optimized version of IREP. The algorithm is briefly described as 

follows: 

RIPPER consists of two phases. In the first phase, a rule set was built by repeatedly adding rules to an 

empty rule set until no positive examples (pandemic sequences) exist, or the error rate >= 50%. Rules 

were formed by adding antecedents greedily (or conditions) to the rule until the rule was perfect (i.e. 

100% accurate).  After a rule set was constructed, each rule was pruned incrementally and let the 

pruning of any final sequences of the antecedents. In the second phase, an optimization was performed 

on the rule set in order to decrease its size and improve its fitness to the training data. (William, 1995). 

More explanation about the Ripper algorithm is provided in Supplementary InfoFile 1. 

 

CBA Algorithm 

CBA is an integrative algorithm which has the power of both classification and association rule. This 

integration was performed by mining class association rules (CARs). The following definitions for 

association rules were used in this study: 
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1) Let D be a relational table with n attributes. 

2) Assume I be the set of all items in D, and Y be the set of class labels. 

3) A class association rule (CAR) is an implication of the form: X  y, where X  I, and y  Y. 

4) The rule XY holds in the transaction set D with confidence c, if c% of transactions in D that 

contains X also contains Y 

5) The rule XY has supports in the transaction set D if s% of transactions in D contains X Y 

given a set of transactions D (In other words, Support states how frequent the items appear in the 

database and  confidence represents the number of times which the statements have been found 

to be true) 

6) ruleitem:  <condset, y >, representing the rule: condset  y, where condset is a set of items, y  Y 

is a class label  (Agrawal and Srikant, 1994). 

CBA has 2 parts:  

1) A rule generator (called CBA-RG) is defined based on algorithm Apriori for finding association 

rules. The CBA-RG algorithm generates all frequent ruleitems by making multiple passes over 

the data.  (Agrawal and Srikant, 1994)  

2) A classifier builder (called CBA-CB). The CBA-CB algorithm builds a classifier using CARs. 

To produce the best classifier out of the whole set of rules, a minimum number of rule sets would 

be selected to cover the training dataset and minimize the lowest error rate (Bing Liu, 1998). 

In this study, I is a set of nucleotides or amino acids. For protein sequences, I includes 20 members such 

as A, R, N, D, C, Q. Every protein sequence represents a transaction (T). T is a subset of I. All the 

sequences together construct the set.  D Class labels (ci) are either pandemic or seasonal. More 

explanation about the CBA algorithm is provided in Supplementary InfoFile 1. 
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Results  

Discovered rules for each segment 

CBA outperformed the other models. Based on the rules generated by CBA, nucleotide sequences of HA 

were classified with 99.99% accuracy, and protein sequences with 99.98% accuracy. M1 sequences were 

classified with 99.77% accuracy based on the extracted rules. Table 2 represents the extracted rules on 

nucleotide sequences of HA segment and Table 3 represents the extracted rules on M1 protein sequences 

by Ripper algorithm.  

The extracted rules and their corresponding supports are provided in supplementary files (please see 

Table S1 – S9).  The accuracy of NA sequences was 99.94%; 99.73% for M2 sequences, 99.57% for NP 

sequences, 97.58% for PA sequences, 99.88% for PB1 sequences, 82.54% for PB2 sequences, 97.27% 

for NS1 sequences, and 98.77% for NS2 sequences. The extracted rules are visualized at Figure S1-S7. 

 

Discovered rules governing 2009 pandemic occurrence  

Rule 1 in Table 2 states that in 67.39 % of nucleotide sequences of HA, when 260
th 

position is not ‘T’ 

(Thymine), the sequences is pandemic. Rule 2 states that when this position is ‘T’ sequences converts to 

seasonal. Interestingly, 67.39 % of dataset is pandemic. As the result, these rules alone classify almost 

all sequences correctly. In other words, the generated rules can cover all pandemic part. 

Table 3 shows potential mutations of M1 protein sequences which are unraveled by Ripper algorithm. 

Ratio of seasonal sequences for M1 protein was 30.73%, which is similar to support of all rules related 

to seasonal class (30%). It means, all seasonal sequences were covered by these rules. For example, the 

first rule of Table 3 expresses that in 29.43% of M1 sequences, when position 147 is I, the sequence is 

seasonal. In fact, when position 147 of M1 is I, the sequences are seasonal.  Rules related to pandemic 

class can be interpreted similarly.  

Also, supplementary tables present some rules which govern sequences of the other segments. For 

example, when position 334 of NP is H, almost certainly the sequence is pandemic. We can identify 

seasonal sequences when position 364 of PB1 is L. These rules were extracted by different algorithms 

and some of them are complementary to each other. It means one rule covers related class completely; 

therefore, the complement of that rule also covers the opposite class.  

In addition, we defined a function based on extracted rule of each segment similar to following equation: 
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If more than two protein sequences exist, and the following equation is satisfied, the result will be more 

reliable and accurate than when just one protein sequence exists. 

 

                                       
     

 

 
  

 

Biological interpretation of identified rules (mutations) of different segments 

The biological importance of some of the discovered positions (rules) is presented at Table 4. For some 

of mutations, Figure 2 illustrates the contribution of each discovered mutation point (rule) in each 

segment in discriminating of pandemic sequences from seasonal ones, independently. Supplementary 

Tables confirm the Figure 2 where discrimination frequencies are above 90%. That means, these 

positions discriminated sequences with high accuracy.  

Furthermore, as presented in Table 3 and Supplementary Tables S1-S9, we report several associative 

rules (combination of mutation positions). Noticeably, when two important mutation points join each 

other (associative rules), they cover the related part more comprehensively. So, associative rules help us 

detect pandemic sequences more accurately. 

In order to gather pandemic markers in all segments, we select strains that sequences of all segment 

were available. Finally, 3723 sequences have remained which 1000 of them is seasonal and 2723 are 

pandemic. We put potential markers of each segments beside each other and select the markers with 

unique and significant role.  Figure 3 shows these positions together. As it can be inferred from Figure 3, 

30 markers of HA, NA, M1, PB1, PB2, PA, and NP segments can identify pandemic and seasonal strain 

accurately. The amino acid characteristics of these 30 markers are quite different in more than 92% 

sequences (frequency of row 1, 2 of Figure 3 were 95.51% and 92.60% for pandemic and seasonal 

sequences respectively). We discovered a pattern distinguishing seasonal strains from pandemic ones.   
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Discussion 

Pandemic mutational markers are not limited to the surface proteins (Hemagglutinin and 

Neuraminidase) and can be investigated in internal segments as well as combination of internal and 

external segments. In this study, for the first time, mutation points in all segments of H1N1 influenza 

viruses were detected in a large scale. The rules (hot spots) were extracted from more than 4000 

sequences. Visual alignment was not able to statistically detect the association rule (co-occurrence) 

between mutations. The proposed machine learning based approach successfully addressed the 

shortcoming and discovered the co-occurrence of mutations in different segment. 

 

For the first time, we determined potential hot spots by whole genome and proteome analysis in a large 

scale representing the discriminative power of of both external and internal mutations on pandemic 

discrimination. Influenza A evolves through different mechanisms, including point mutations and gene 

reassortment causing antigenic drift and antigenic shift respectively (Suzuki, 2005). Interactions occur 

between viruses of different lineages. The segmented structure of the virus facilitates gene reassortment 

when viruses from different hosts simultaneously infect a single cell (Ebrahimi et al., 2014b). The 

reassortment of genetic material between viruses with different host origins can significantly alter 

antigenic sites (Brockwell‐ Staats et al., 2009). By this mechanism, novel viruses may enter the human 

population that lacks previous immunity, potentially causing the emergence of pandemics or disastrous 

epidemics (CHENG, 2006). We highlight this point that the effect of whole segments in emergence of 

pandemic influenza needs to be considered. 

 

Three global pandemics in the 20th century emerged by antigenic shift between viruses with different 

host origin. The 1957 H2N2 pandemic was the consequence of a reassortant of five human H1N1 

segments and avian segments encoding the viral surface proteins and the PB1 protein. Similarly, the 

1968 H3N2 pandemic involved a reassortment of avian segments encoding hemagglutinin and PB1 

(Kilbourne, 2006). The viral genome of the 2009 H1N1 pandemic had a more complex reassortment 

history involving triple reassortment between hosts which mixed segments of human H3N2 (PB1), avian 

influenza A virus (PA, PB2) and classical North American swine influenza A virus (HA, NP, NS) 

(Garten et al., 2009; Smith et al., 2009). This genetic reassortment pattern allowed virus to infect human, 

swine, and birds and, in addition, it acquired the life-threatening ability to transmit from human to 

human without the need to intermediate swine or bird. 
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In previous studies, the importance of other segments (except HA, NA) was majorly ignored. Also, 

mutations were limited to a specific location and a few numbers of sequences were considered in 

previous studies. Here, we discovered the potential marker positions in a large scale study. We 

documented that other proteins of influenza virus can accurately identify pandemic phenotype even in 

absence of HA or NA segments. Our approach could discriminate sequences to pandemic and seasonal 

groups with more than 95% accuracy for PA and NP, 99.33% accuracy for NA and 100% accuracy for 

M1, M2, PB1, NS1, and NS2. If sequences of all segments of one strain are available, synchronously, 

the accuracy of our recognition will reach 100%.  

 

Machine learning has offered new possibilities in virus research such as predicting the outcome of 

therapy based on viral nucleotide attributes (KayvanJoo et al., 2014) and unravelling the underlying 

layers of subtype differentiation (Ebrahimi et al., 2014b). For discriminative pattern discovery between 

pandemic and seasonal sequences, CBA algorithm outperformed the other machine learning models. 

The distinguished power of CBA algorithm to discover and combine the mutilations from different 

segments of influenza for distinguishing of pandemic sequences was remarkable in this study. In line 

with this finding, CBA has demonstrated high performance in identification of host range of influenza 

sequence (avian, human, and swine) by combination of mutation positions in all segments of influenza 

as host discriminative rules, leading to the establishment of a novel approach for identification of 

influenza virus host range and zoonotic transmissible sequences (Kargarfard et al., 2016).  CBA is a high 

performance and robust classifier that integrates classification algorithm with association rule mining 

algorithm, the two key discriminative machine learning approaches techniques (Kargarfard et al., 2015). 

CBA find homogenous groups within heterogenous data, based on the minimum support. Then, CBA 

applies discriminative rules with high confidence in each homogenous group (Liu et al., 2001).We 

suggest to develop the similar model for H5N1, as well as mixture of all subtypes of influenza in future 

studies. Analysis of pre-pandemic strains (as a reference) in comparison with pandemic strains in future 

studies can contribute in increasing the power of discriminating rules.  

 

Conclusion 
Here, for the first time, we successfully applied rule based classification techniques to better distinguish 

between pandemic and seasonal influenza H1N1 based on whole segments of influenza. Rule based 

classification techniques provide the opportunity to first discover significant rules in respect of label 
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variable (pandemic and seasonal), and then to apply these rules in pandemic prediction of strains. 

Analysis of mutation positions in all segments of influenza genome as well as presenting a n accurate 

integrative pattern discovery algorithm (CBA model) discriminating pandemic from seasonal sequences 

by combination of mutated positions are the key point of the current study. The approach developed in 

this study can be employed in unraveling the underlying rules of influenza host range increase in future 

studies, as well as unraveling the underlying layers of pathogenicity in other viruses. The distinguished 

power of CBA algorithm to discover and combine the mutilations from different segments of influenza 

toward pandemic emergence is one of the highlights of this study, opening a new avenue for application 

of this advanced algorithm in biomedical research. 
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Figures 

 

Figure 1. A schematic view of the proposed approach of knowledge discovery and prediction of H1N1 

pandemic influenza by whole segments analysis and application of rule based classifier 

 

Figure 2. The independent contribution of some of the discovered amino acid mutation positions in 

discrimination of 2009 H1N1 pandemic from seasonal ones. The figure includes 10 charts which any 

one of them represents important positions of each segment of influenza A sequences. Also, each chart 

represents what percentage of each position were varied in pandemic and seasonal sequences. 

 

Figure 3. Significant mutated amino acid positions in all segments of influenza distinguishing 2009 

seasonal H1N1 and 2009 pandemic H1N1. These amino acid mutation points are the combination of 

important markers of HA, NA, M1, PB1, PB2, and NP segments that are different in pandemic and 

seasonal sequences. The last column of figure reflects relative frequency of the combination in the 

sequenced genomes. 
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Tables 

Table 1. Number of external and internal sequence segments of human H1N1 influenza that were used 

in this study for rule discovery towards discrimination of pandemic influenza from seasonal ones. 

 

No. Total 

sequences 

No .Seasonal 

sequences  

No. Pandemic 

sequences 

Protein name 

3535 2331 5212 HA 

6122 2255 5125 NA 

6511 2263 5136 PA 

6635 2263 5512 NP 

6533 2262 5231 PB1 

6112 2212 5312 PB2 

6155 2322 5623 M1 

6361 2613 5331 M2 

6336 2221 5653 NS1 

6163 2233 5253 NS2 
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Table 2. Rules extracted from HA nucleotide sequences of human H1N1 strain discriminating pandemic 

from seasonal sequences and their and their confidence and support, using CBA (classification based on 

association rule mining). 

 

Confidence Support Rule Class 

100% 67.39% Not (Att260 = ‘T’) Pandemic 

100% 32.58% (Att260 = ‘T’) Seasonal 
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Table 3. Rules extracted from M1 protein of human H1N1 influenza in discrimination of pandemic 

sequences from seasonal ones and their confidence and support, using Ripper algorithm. 

 

Confidence Support Rule Class 

100% 29.43% Att147 = 'I' Seasonal 

100% 29.33% Att160 = 'K' Seasonal 

99.73% 30.67% Att101 = 'R' Seasonal 

99.66% 30.63% Att166 = 'V' Seasonal 

98.09% 29.83% Att227 = 'T' Seasonal 

99.76% 68.84% Att166 = 'A' and Att203 = 'M' Pandemic 

99.50% 69.53% Att137 = 'T' Pandemic 

98.13% 70.50% Att207 = 'N' Pandemic 

98.04% 70.64% Att160 = 'R' Pandemic 

97.94% 70.13% Att227 = 'A' Pandemic 
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Table 4. Biological importance of some of the mutation positions of this study in determination of 

pandemic influenza.  

 

Segment Positions Comment (biological importance) 

HA 274 , 286 

D274 are predicted to be "hot-spot" for polymorphisms which could increase infectivity of A/H1N1 

virus. The domain 286-326 was identified to be involved in virus/receptor interaction (Veljkovic et al., 

2009) 

M1 
101,137 

,207 

The functions of 101RKLKR105 were investigated by introducing substitution into the M gene of 

influenza virus A/WSN/33. Mutations, R101S or R105S, had effect on viral replication (Liu and Ye, 

2005). Position 137 was detected as avian-human host shift markers (Miotto et al., 2010). Positions 

207 and 209 were in the C-terminal part of M1 (residues 165-252) that binds to vRNP (Baudin et al., 

2001). 

M2 43,50 
Position 43 is the possible binding site (Thr43) for the inhibitors (adamantane-based Drugs (Du et al., 

2010). Position 50 was avian-human host shift sites (Chen and Shih, 2009) 

PB1 
12, 211 

618,728 

PB1 can binds to viral promoter and interact with PB2, NP, and PA. Position 12 within PB1-PA 

binding domain (residues 1-25) and two position 618 and 728 in the PB1-PB2 binding domain 

(residues 600-757) were reported (Ohtsu et al., 2002) (Hu, 2010). A mutation occurred at position 211 

on H1N1 human influenza at New Zealand, Australia U.S.A., Asia (Daud and Corne, 2009) 

 

NS1 

 

111,112 

Positions 111,112 were in the effector domain. NS1 is a multifunctional protein contained in both 

protein-protein and protein-RNA interactions. Its C-terminal region (residues 74-237) contains the 

effector domain that prevent the substitution and exportation of the host cellular antiviral mRNAs (Lin 

et al., 2007). 

NS2 57 
At (Hu, 2010) position 57 was reported as a high significant marker like swine-human host switch 

marker. 

NA 

134, 174, 

265, 296, 

297 

The antigenic sites of N1 are residues 83-143, 156-190, 252-303, 330, 332, 340-345, 368, 370,387-

395,431-435,448-468. So sites 134, 174, 265, 296, and 297 are were at the antigenic sites of N1 

(Maurer-Stroh et al., 2009b). 

PA 257,363 
Two position 257 and 363 were in the C-terminal domain of PA (residues 257-716) which binds to 

PB1 for complex formation and nuclear transport (Yuan et al., 2009). 

NP 334 

The overall structure of nucleoprotein divided into two domains: a head and a body. The body domain 

of NP includes the binding positions for the viral polymerase. It is formed by residues 21–149, 273–

396 and 453–489. So position 334 is a binding site (Ye et al., 2006). 
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List of abbreviations 

CBA: Classification Based on Associations 

CMAR: Classification based on Multiple Association Rules 

CPAR: Classification based on Predictive Association Rules 
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Highlights 

 Knowledge extraction in influenza pandemic strains based on all segments 

 Rule based classification for discovery of mutation markers of pandemic influenza 

 Pattern discovery for discriminating pandemic strains from seasonal ones by machine learning 
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