
Archived at the Flinders Academic Commons: 
http://dspace.flinders.edu.au/dspace/ 

‘This is the peer reviewed version of the following article: 
Enemark, T., Peeters, L. J. M., Mallants, D., & Batelaan, O. 
(2019). Hydrogeological conceptual model building and 
testing: A review. Journal of Hydrology, 569, 310–329. 
https://doi.org/10.1016/j.jhydrol.2018.12.007 

which has been published in final form at 
https://doi.org/10.1016/j.jhydrol.2018.12.007

© 2018 Elsevier BV. This manuscript version is made 
available under the CC-BY-NC-ND 4.0 license:
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/211799117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dspace.flinders.edu.au/dspace/


Accepted Manuscript

Hydrogeological conceptual model building and testing: A review

Trine Enemark, Luk J.M. Peeters, Dirk Mallants, Okke Batelaan

PII: S0022-1694(18)30938-7
DOI: https://doi.org/10.1016/j.jhydrol.2018.12.007
Reference: HYDROL 23316

To appear in: Journal of Hydrology

Received Date: 27 July 2018
Revised Date: 6 November 2018
Accepted Date: 4 December 2018

Please cite this article as: Enemark, T., Peeters, L.J.M., Mallants, D., Batelaan, O., Hydrogeological conceptual
model building and testing: A review, Journal of Hydrology (2018), doi: https://doi.org/10.1016/j.jhydrol.
2018.12.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jhydrol.2018.12.007
https://doi.org/10.1016/j.jhydrol.2018.12.007
https://doi.org/10.1016/j.jhydrol.2018.12.007


  

1

1 Hydrogeological conceptual model 
2 building and testing: A review
3

4 Trine Enemark a,b  (corresponding author); trine.enemark@csiro.au

5 Luk JM Peeters a; luk.peeters@csiro.au

6 Dirk Mallants a; dirk.mallants@csiro.au

7 Okke Batelaan b; okke.batelaan@flinders.edu.au

8 a CSIRO Land and Water, Gate 4 Waite Rd, Locked Bag 2, Glen Osmond SA 5064 Australia; 

9 b National Centre for Groundwater Research and Training, College of Science & Engineering, 
10 Flinders University, Adelaide, SA 5001, Australia 

11



  

2

12 Abstract

13 Hydrogeological conceptual models are collections of hypotheses describing the 

14 understanding of groundwater systems and they are considered one of the major sources of 

15 uncertainty in groundwater flow and transport modelling. A common method for 

16 characterizing the conceptual uncertainty is the multi-model approach, where alternative 

17 plausible conceptual models are developed and evaluated. This review aims to give an 

18 overview of how multiple alternative models have been developed, tested and used for 

19 predictions in the multi-model approach in international literature and to identify the 

20 remaining challenges. 

21 The review shows that only a few guidelines for developing the multiple conceptual models 

22 exist, and these are rarely followed. The challenge of generating a mutually exclusive and 

23 collectively exhaustive range of plausible models is yet to be solved. Regarding conceptual 

24 model testing, the reviewed studies show that a challenge remains in finding data that is both 

25 suitable to discriminate between conceptual models and relevant to the model objective. 

26 We argue that there is a need for a systematic approach to conceptual model building where 

27 all aspects of conceptualization relevant to the study objective are covered. For each 

28 conceptual issue identified, alternative models representing hypotheses that are mutually 

29 exclusive should be defined. Using a systematic, hypothesis based approach increases the 

30 transparency in the modelling workflow and therefore the confidence in the final model 

31 predictions, while also anticipating conceptual surprises. While the focus of this review is on 

32 hydrogeological applications, the concepts and challenges concerning model building and 

33 testing are applicable to spatio-temporal dynamical environmental systems models in general.
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37 1 Introduction

38 Groundwater model conceptualization is a crucial first step in groundwater model 

39 development (Anderson et al., 2015a). It provides a systematic, internally consistent overview 

40 of system boundaries, properties and processes relevant to the research question, bridging the 

41 gap between hydrogeological characterization and groundwater modelling. 

42 As the conceptualization is related to the fundamentals of the problem definition, it is 

43 considered one of the major sources of uncertainty in numerical groundwater modelling 

44 (Gupta et al., 2012). Estimating parameters through calibration with an inadequate conceptual 

45 model may lead to biased parameter values (Doherty and Welter, 2010). Biased parameter 

46 values are especially problematic when extrapolating to predictions that are of a different type 

47 than the calibration data, represent a different stress regime, or have a longer timeframe than 

48 the calibration period (White et al., 2014). Not accounting for conceptual model uncertainty 

49 can potentially greatly underestimate total uncertainty and give false confidence in model 

50 results, as vividly illustrated in Bredehoeft (2005).  

51 To develop conceptual models, two major approaches have been traditionally applied: (i) the 

52 consensus model approach (Brassington and Younger, 2010) and (ii) the multi-model 

53 approach (Neuman and Wierenga, 2003) (Fig. 1). The development of conceptual models is 

54 based on the available geological and hydrological information, which are observed data, 

55 such as water levels, borehole information and tracer concentrations, but often also include a 

56 component of soft knowledge, such as geological insights or expert interpretation. 
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57

58 Fig. 1. Iterative process for the conceptual modelling process via the consensus or multi-model approach. Modified from 
59 Environment Agency (2002) and Suzuki et al. (2008). Each model test step involves introducing new data and thereby 
60 identifying new plausible models uncovering conceptual surprises, and rejecting other models that are inconsistent with the 
61 new data. 

62 In the single consensus conceptual model approach all available observations and knowledge 

63 is iteratively integrated into a single conceptual model (Barnett et al., 2012; Izady et al., 

64 2014), providing a staircase of confidence (Gedeon et al., 2013). In this case, the conceptual 

65 model represents the current consensus on system behaviour (Brassington and Younger, 

66 2010). 

67 As illustrated in Schwartz et al. (2017), conceptual model uncertainty is generally accounted 

68 for in the consensus approach by increasing the complexity of the model. Increasing 

69 complexity effectively turns conceptual model uncertainty into parameter uncertainty by 

70 adding more processes to the model and/or increasing resolution in space and time. Increasing 

71 the degrees of freedom means that non-uniqueness increases, which is often balanced through 

72 optimal model complexity favouring the simplest model that can adequately reproduce 

73 historical conditions (Young et al., 1996). The main advantage is that it comprehensively 

74 captures conceptual issues in the model. The main drawback is that models quickly become 

75 intractable and too computationally demanding to carry out parameter inference. Another 
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76 mechanism that is often applied to account for conceptual uncertainty, is conservatism, 

77 favouring the conceptualization that will result in the largest impact (Wingefors et al., 1999). 

78 Although inherently biased, the main advantage is that introducing conservative assumptions 

79 make the problem tractable and provides confidence that the simulated impacts are not 

80 underestimated. The largest drawback however, is that conservative assumptions depend on 

81 the type of impact investigated, may not be internally consistent and can lead to missed 

82 opportunities (Freedman et al., 2017). 

83 The alternative to the consensus approach is the multi-model approach, in which an ensemble 

84 of different conceptualizations is considered throughout the model process in parallel rather 

85 than sequentially. This approach reflects that the hydrogeological functioning of an aquifer 

86 system can be interpreted in different ways, especially if the available data is scarce 

87 (Anderson et al., 2015a; Beven, 2002; Neuman and Wierenga, 2003; Refsgaard et al., 2006). 

88 In the multi-model approach the aim is not to find the single best model, but to find an 

89 ensemble of alternative conceptual models, each with a different hypothesis on system 

90 behaviour. As depicted in Fig. 1, this is also an iterative process, in which conceptual models 

91 are removed from the ensemble when they are falsified by increased knowledge or data, and 

92 where conceptual models are added when new data or insights prompt the development of a 

93 new hypothesis on model behaviour. 

94 In the consensus approach, once committed to a particular conceptualization, there is 

95 considerable inertia to change it as this would often involve a complete overhaul of the 

96 numerical model (Ferré, 2017). However, in the multi-model approach, given alternative 

97 conceptual models are developed and evaluated in parallel, it aids in solving the problem of 

98 conceptual “surprises” (Bredehoeft, 2005) as they are sought out. Even though the multi-

99 model approach is less prone to conceptual surprises than the consensus approach, it is not 

100 exempt from it. Using statistical terminology, as explained by Neuman (2003), both the 
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101 consensus approach and the multi-model approach are prone to Type I errors 

102 (underestimating model uncertainty by undersampling the model space) and Type II errors 

103 (relying on invalid model(s)). However, by using the multi-model approach we are less likely 

104 to commit either. 

105 This paper aims to provide an overview of the current status of the international literature on 

106 using multiple conceptual models in groundwater modelling. Reviews of the multi-model 

107 approach to date, such as Diks and Vrugt (2010), Schöniger et al. (2014), and Singh et al. 

108 (2010) mainly focus on the evaluation of multiple models and summarising of model results. 

109 Much less attention has been devoted to approaches that systematically develop and test 

110 different conceptual models. This review is therefore organized around the following four 

111 research questions:

112 1. What is conceptual model uncertainty?

113 2. How are alternative conceptualizations developed? 

114 3. How can alternative conceptualizations be tested?

115 4. How are different conceptualizations used for predictions? 

116 Each section provides an overview of approaches in published studies, summarized in table 

117 A.1 and A.2, and remaining challenges. While this review will focus on applications in a 

118 hydrogeological context, the concepts and challenges concerning model building and testing 

119 are applicable to spatio-temporal dynamical environmental systems models in general. 

120 2 What is conceptual model uncertainty? 

121 Anderson and Woessner (1992) and Meyer and Gee (1999) define a conceptual model as a 

122 pictorial, qualitative description of the groundwater system in terms of its hydrogeological 

123 units, system boundaries (including time-varying inputs and outputs), and hydraulic as well as 

124 transport properties (including their spatial variability). The conceptual model is often seen as 
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125 a hypothesis or a combination of hypotheses for the aspects of the groundwater system that 

126 are relevant to the model objective.

127 Table A.1 provides a review of internationally peer reviewed publications that explicitly 

128 consider hydrogeological conceptual model uncertainty. These 59 studies have been 

129 identified from the Google Scholar database, where the search term “groundwater model” is 

130 combined with “conceptual model uncertainty”, “structural model uncertainty”, “alternative 

131 conceptual models” or “multi-model approach”. Only studies that include alternative 

132 conceptual models developed for groundwater modelling, for the purpose of either increasing 

133 system understanding or characterizing conceptual uncertainty, have been included. This list 

134 is considered to be representative of the treatment of conceptual model uncertainty through 

135 the multi-model approach in groundwater research in the last two decades. It is beyond the 

136 scope of this review to address the consensus conceptual model building approach. For each 

137 study, Table A.1 provides a short summary of the alternative conceptualizations, whether or 

138 not the objectives are explicitly defined and which aspects of the conceptualization are 

139 considered.

140 In this section we discuss what is included in model conceptualization, how this needs to be 

141 linked to the objective of the modelling and the linguistic ambiguity in discussing conceptual 

142 model uncertainty.

143 2.1 Conceptual model aspects

144 Gupta et al. (2012) outlines five formal stages in the model building process: i) Conceptual 

145 Physical Structure, ii) Conceptual Process Structure, iii) Spatial Variability Structure, iv) 

146 Equation Structure and v) Computational Structure. The first two steps are part of the 

147 conceptual model, the third and fourth are part of the mathematical model and the last step is 

148 the computational model. This review will focus on the first two steps, as well as the Spatial 
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149 Variability Structure (Fig. 2). The latter is included in our discussion of aspects of 

150 conceptualization as some studies in Table A.1 consider alternative models of the Spatial 

151 Variability Structure as conceptual uncertainty.  

152

153 Fig. 2. Elements of a conceptual model. Items in green illustrate the Conceptual Process Structure, while items in blue 
154 illustrate the Spatial Variability Structure represented in the magnifying glass (Kh = horizontal hydraulic conductivity, Kv = 
155 vertical hydraulic conductivity, n=porosity, Ss = Specific storage, Sy = Specific yield). Items in orange illustrate the 
156 Conceptual Physical Structure represented the system geometry and hydrostratigraphy.

157 The Conceptual Physical Structure captures the hydrostratigraphy as well as the horizontal 

158 and vertical extent of the system (respectively a watershed divide and an impermeable bottom 

159 boundary in Fig. 2). The Conceptual Physical Structure further defines the hydrostratigraphic 

160 units and their extent, the barriers and/or conduits to groundwater flow (faults) and the 

161 compartmentalisation of the groundwater system into aquifers and aquitards. The Spatial 

162 Variability Structure is the description of the time-invariant hydraulic properties of the system 
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163 and their spatial variability (magnifying glass in Fig. 2). The Conceptual Process Structure 

164 contains the boundary conditions that are time variant, such as heads and fluxes in and out of 

165 the system. These can be externally controlled and largely independent from the groundwater 

166 system dynamics (e.g., rainfall, pumping rates, drainage levels for mine dewatering, lateral 

167 zero-flow boundary) or internally controlled and largely dependent on the groundwater 

168 system dynamics (e.g., surface water-groundwater interaction, evapotranspiration).

169 2.2 Modelling objective

170 Despite being identified as the crucial first step in any modelling study (Anderson et al., 

171 2015a; Barnett et al., 2012; Brassington and Younger, 2010), only 33 out of 59 studies 

172 explicitly define the purpose or objective of the model in the introduction of the paper. This is 

173 especially relevant as some conceptualization aspects (such as detailed description of spatial 

174 variability of hydraulic properties) might be important to one type of prediction (e.g., travel 

175 time distribution), but might be less relevant to another type of prediction (e.g., hydraulic 

176 head distribution) (Refsgaard et al., 2012; Zhou and Herath, 2017). Alternative 

177 conceptualizations are for instance directly linked to model objectives when multiple 

178 conceptual models are developed to increase system understanding (Passadore et al., 2011) or 

179 aid in water management strategy (Højberg and Refsgaard, 2005). Many of the studies in 

180 which a model objective is not explicitly defined, are focused on method development, such 

181 as combining model averaging techniques (Rojas et al., 2008), comparing ranking strategies 

182 (Foglia et al., 2007) or model selection (Poeter and Anderson, 2005). 

183 2.3 Linguistic uncertainty

184 There is considerable linguistic ambiguity in describing the uncertainty of groundwater 

185 system conceptualization. A prime example is the term ‘structural uncertainty’, which can 

186 indicate uncertainty in geological structure, as in Refsgaard et al. (2012), or can indicate the 
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187 number and type of processes represented in the numerical model, as exemplified in Clark et 

188 al. (2008). 

189 Furthermore, as argued in (Nearing et al., 2016) any adequate model should encode all 

190 uncertainties to consider, i.e. the known unknowns. The name ‘multi-model approach’ is 

191 therefore somewhat misleading. The multiple models in the multi-model approach are 

192 samples of the overall plausible model choices that should characterize the conceptual 

193 uncertainty. This is no different than sampling parameters over a feasible range to 

194 characterize the parameter uncertainty. In this definition, the multiple models in the multi-

195 model approach therefore only represent a single model characterizing known unknowns.

196 The linguistic uncertainty has led to a wide variation in what is considered to be conceptual 

197 model uncertainty (Table A.1). This varies from changing the hydraulic conductivity zonation 

198 extent and number (Carrera and Neuman, 1986; Foglia et al., 2007; Lee et al., 1992; Meyer et 

199 al., 2007; Poeter and Anderson, 2005) to considering different process representations 

200 (Altman et al., 1996; Aphale and Tonjes, 2017). Classifications of sources of uncertainty, 

201 such as presented in Walker et al. (2003), Refsgaard et al. (2006) or Vrugt (2016), often 

202 distinguish between model structure uncertainty (incomplete understanding and simplified 

203 description of modelled processes), parameter uncertainty (parameter values) and input 

204 uncertainty including scenario uncertainty (external driving forces). In groundwater model 

205 conceptualization, the distinction between these classes is not well defined. For example, 

206 should changing the Spatial Variability Structure of hydraulic conductivity, such as in Castro 

207 and Goblet (2003), Rogiers et al. (2014), or Linde et al. (2015), be considered conceptual or 

208 parameter uncertainty? 

209 Suzuki et al. (2008) provides a more pragmatic classification in which differentiation is made 

210 between first-order uncertainties (conceptual) and lower-order uncertainties. Lower-order 



  

12

211 uncertainties are aleatory and can be modelled stochastically, while conceptual uncertainties 

212 are epistemic and are characterized by alternative models. Common in both the consensus 

213 model approach and the multi-model approach is that lower-order uncertainties are modelled 

214 stochastically within each conceptualization. For example, Hermans et al. (2015) uses 

215 different training images to describe spatial variability of hydraulic conductivity with 

216 multiple-point geostatistics; this can be considered a first-order uncertainty. The lower-order 

217 uncertainty is then the stochastic realisations of each training image. Likewise, changing the 

218 boundary from a no-flow to a head dependent boundary in Mechal et al. (2016) is first-order 

219 uncertainty, while changing the value of the head-dependent boundary in Aphale and Tonjes 

220 (2017) is considered a characterization of lower-order uncertainty.

221 2.4 Summary of what is considered conceptual model uncertainty

222 Groundwater system conceptualization is a collection of hypotheses describing the 

223 understanding of the different aspects of the groundwater system that are important to the 

224 modelling objective. Conceptual model uncertainty is the uncertainty due to the limited data 

225 and knowledge about a groundwater system. It is the first-order, epistemic uncertainty that is 

226 generally considered reducible but cannot be characterized by continuously varying a 

227 variable. Linguistic ambiguity and vague definitions of what constitutes conceptual 

228 uncertainty however hinders transparent discussions of this major source of uncertainty. We 

229 will therefore adopt the terminology of Suzuki et al. (2008) and focus on first-order 

230 uncertainty.

231 3 How are different conceptualizations developed?

232 Not only is there a wide variety of conceptual model aspects, there is also a wide variety of 

233 ways to generate different conceptualizations (Table A.1). Generating different 

234 conceptualizations has not received much attention in the literature and guidance is likewise 
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235 limited. Neuman and Wierenga (2003) discuss different approaches in developing alternative 

236 conceptualization and suggest building alternative models until no other plausible 

237 explanations can be identified. Similar to this approach, Refsgaard et al. (2012) introduced 

238 the concept of the Mutually Exclusive and Collectively Exhaustive (MECE) criterion to 

239 hydrogeology. In order to be mutually exclusive, conceptual models have to be completely 

240 disjoint and represent independent hypotheses about the groundwater system. In order to be 

241 collectively exhaustive, the entire range of plausible conceptual models needs to be defined, 

242 including the unknown unknown plausible models. The unknown unknowns are the 

243 conceptual models that current data has not yet uncovered and will lead to conceptual 

244 surprises if they are. It has been acknowledged by several authors that defining a collectively 

245 exhaustive range is impossible in practice (e.g. Ferre, 2017; Hunt and Welter, 2010; 

246 Refsgaard et al., 2012). 

247 While the concepts and advice in Neuman and Wierenga (2003) and Refsgaard et al. (2012) 

248 are sound and highly relevant, few of the studies in Table A.1 adhere to them. From the 

249 studies of Table A.1, three main strategies are identified in developing alternative 

250 conceptualizations; (i) Varying Complexity, (ii) Alternative Interpretations and (iii) 

251 Hypothesis Testing. These strategies are illustrated in Fig. 3.
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252  

253 Fig. 3. Conceptual model development approaches in the multi-model approach. Illustration of how different 
254 conceptualizations of the Conceptual Physical Structure could take shape if based on the same data (boreholes in this case) 
255 through Varying Complexity (a), Alternative Interpretation (b) or Hypothesis Testing (c) strategy. Based on illustrations of 
256 alternative models in Harrar et al. (2003), Schöniger et al. (2015), Seifert et al. (2008) and Troldborg et al. (2007).

257 In the Varying Complexity strategy, alternative models are generated by gradually increasing 

258 or decreasing the complexity of the same base conceptualization. In Fig. 3 this is illustrated 

259 by describing the hydraulic property variability in an aquifer system either as (i) 

260 homogeneous units, (ii) zonation or (iii) a spatially continuous parameterization. The 

261 adequate complexity is typically evaluated based on the modelling goal (Höge et al., 2018; 

262 Zeng et al., 2015), the available data (Schöniger et al., 2015), or the informative model 

263 complexity (Freedman et al., 2017). The underlying base conceptualization is not questioned 

264 and it is, often implicitly, assumed that all conflict between observed and simulated data is 
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265 due to the inability to capture the full complexity of the groundwater system in the numerical 

266 model. The Varying Complexity strategy does not fit well in the MECE paradigm as different 

267 levels of complexity in implementing the same conceptualization do not ensure mutually 

268 exclusive hypotheses.

269 The Alternative Interpretation strategy consists of generating an ensemble of 

270 conceptualizations by different interpretations. Fig. 3 illustrates this as two different 

271 hydrostratigraphic interpretations of the same borehole data set, independent by being 

272 interpreted by different teams who have no knowledge about the each other’s interpretation 

273 (e.g. Harrar et al., 2003; Hills and Wierenga, 1994). Compared to the Varying Complexity 

274 strategy, the Alternative Interpretation strategy has the advantage that the ensemble can 

275 include very different base conceptualizations (e.g. Refsgaard et al., 2006). However, the 

276 conceptualizations may end up being very similar and it is difficult to ensure that independent 

277 interpretations are mutually exclusive.

278 In the Hypothesis Testing strategy, as advocated by Beven (2018), an ensemble of models is 

279 generated by stating different hypotheses about the system. Rather than multiple teams 

280 formulating their best interpretation of the same data in the Alternative Interpretation strategy, 

281 the Hypothesis Testing strategy involves the same team aiming to maximise the difference 

282 between alternative conceptualizations, while still adhering to the same dataset. In Fig. 3 this 

283 is exemplified through the presence or absence of a palaeovalley in two alternative 

284 conceptualizations. Both alternatives are consistent with the borehole data, but the 

285 interpretation with the palaeovalley present may be considered less likely. The chances are 

286 slim that such a vastly different conceptualization would be part of an ensemble generated 

287 through the Alternative Interpretation strategy, where only the most likely model is sought. 

288 None of the three strategies guarantees that the ensemble of models developed is collectively 
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289 exhaustive, but it is more likely for Hypothesis Testing to generate an ensemble of mutually 

290 exclusive models. 

291 The next sections review model building approaches and are structured around the three key 

292 components of the conceptual model illustrated in Fig. 2; Conceptual Physical Structure 

293 (section 3.1), Spatial Variability Structure (section 3.2), and Conceptual Process Structure 

294 (section 3.3). The focus is on different approaches to building multiple conceptual models 

295 within these three aspects and how the different strategies to multi-model building have been 

296 applied (Fig. 3). Finally, section 3.4 discusses assigning prior probabilities to alternative 

297 models.

298 3.1 Conceptual Physical Structure 

299 Table A.1 lists several examples where the Conceptual Physical Structure of conceptual 

300 models has been tested through the Alternative Interpretation and the Hypothesis Testing 

301 strategy. Using an Alternative Interpretation strategy approach, five alternative 

302 hydrostratigraphic models were generated by five different (hydro)geologists in the study by 

303 Seifert et al. (2012) resulting in different number of layers, proportions of sand and clay in the 

304 quaternary sequence and the location of a limestone surface. Using the Hypothesis Testing 

305 strategy, Troldborg et al. (2007) developed three different models by assuming different 

306 depositional histories and thereby different number of layers in the models. 

307 While it is possible to test a global geometrical hypothesis about the Conceptual Physical 

308 Structure (e.g. Troldborg et al. (2007)), it is more common to test specific geometrical 

309 features through local hypotheses. A local hypothesis can for instance test the presence of a 

310 palaeovalley (Seifert et al., 2008), the connection between two aquifers (La Vigna et al., 

311 2014), or the extent of an aquifer (Aphale and Tonjes 2017). If one of the hypotheses is 
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312 falsified in these studies, the system understanding will improve in regards to that specific 

313 feature.

314 3.2 Spatial Variability Structure

315 Spatial Variability Structure is the component of the conceptual model that is most often 

316 included in a multi-model approach. Because hydraulic and transport properties are often 

317 scale-dependent and the adequate level of complexity depends on the modelling purpose, the 

318 description of properties is often tested by developing models with the Varying Complexity 

319 strategy. The strategy is applied either through dividing the study area into different zones of 

320 homogeneous hydraulic conductivities, so alternative representations can be generated by 

321 combining the different zones (e.g. Foglia et al., 2007), or by representing the geology in 

322 different conceptual models as homogenous, layered/zoned, or as heterogeneous (e.g. 

323 Schöniger et al., 2015). 

324 In the INTRAVAL Las Cruces trench experiment five different modelling teams developed 

325 unsaturated zone flow and transport models using the Alternative Interpretation strategy 

326 (Hills and Wierenga, 1994). Despite differences between the models, such as 

327 isotropic/anisotropic and spatially uniform/heterogeneous soil properties, none of the models 

328 was clearly superior considering several performance criteria.

329 Geostatistical variogram based approaches facilitate the stochastic generation of many pixel-

330 based K realizations based on the same data and assumptions to characterize the lower-order 

331 uncertainty. Hypothesis Testing strategy has been applied assuming different variogram 

332 models to represent the K variation within the system (Samper and Neuman, 1989; Ye et al., 

333 2004).  Rather than defining different facies variogram, Pham and Tsai (2015; 2016) used 

334 three different variogram based geostatistical approaches (indicator kriging, indicator 
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335 zonation and general parameterization (Elshall et al., 2013)) to describe the variation between 

336 clay and sand units as smooth or sharp. 

337 In the multipoint geostatistics approach (MPS) (Strebelle, 2002) different conceptualizations 

338 can be represented by adopting different training images using the Hypothesis Testing 

339 strategy. Studies that have applied the MPS approach using more than one training image in 

340 groundwater modelling are still rare but include studies by He et al. (2014), Hermans et al. 

341 (2015) and Linde et al. (2015). 

342 Groundwater flow through fractured rock aquifers complicates the conceptualization as the 

343 groundwater flow occurs through both matrix and fractures. Selroos et al. (2002) considered 

344 e.g. stochastic continuum models and discrete fracture networks as alternative 

345 conceptualizations of fractured rock in Sweden; the models were shown to have different 

346 results in terms of solute transport behaviour

347 3.3 Conceptual Process Structure

348 The Conceptual Process Structure is the component in the conceptual model that is 

349 considered least in the multi-model approaches in the analysed studies (Table A.1). 

350 According to Gupta et al. (2012) this lack of attention in literature is mainly due to the 

351 process description typically being assumed to be complete. However, as illustrated by 

352 examples in (Bredehoeft, 2005), conceptual surprises might also occur for the Conceptual 

353 Process Structure as well as for the other components of the conceptual model.

354 Among the many boundary conditions imposed on a groundwater model, groundwater 

355 recharge is by far the one that has received most attention in the literature. A number of 

356 methods exist for calculating groundwater recharge that take into account different sources of 

357 information (Doble and Crosbie, 2017; Scanlon et al., 2002) which can lead to different 

358 estimates of recharge when used in an Alternative Interpretation strategy approach. Ye et al. 
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359 (2010) used the Maxey-Eakin method, the chloride mass balance method and the net 

360 infiltration method to derive different estimates of recharge to assess the conceptual 

361 uncertainty. Each of the different interpretation methods resulted in a different spatial 

362 distribution of recharge. 

363 Different levels of model complexity have often been used across different spatial scales, 

364 such as for groundwater recharge estimation (Doble and Crosbie, 2017). Models range from 

365 simplified heuristic models at a global scale (Döll and Fiedler, 2008), simple 1-D bucket 

366 models for regional scale areas (Flint et al., 2000) to more complex numerical solutions of 

367 Richards’ equation at the field scale (Leterme et al., 2012; Neto et al., 2016). Nettasana 

368 (2012) tested the complexity of zonation of recharge by defining recharge based only on soil 

369 type in one model and in another model both on soil type and land use. 

370 The Hypothesis Testing approach for recharge estimation mainly focuses on a specific feature 

371 (Kikuchi et al., 2015; Rojas et al., 2010a). Aphale and Tonjes (2017) investigate the effect of 

372 a landfill on local recharge with three different hypotheses. Hypothesis Testing for lateral 

373 boundary conditions has been applied to lateral exchange flux with adjacent aquifers (Lukjan 

374 et al., 2016; Mechal et al., 2016; Nettasana, 2012). Kikuchi et al. (2015) test the existence of 

375 underflow through a subsurface zone into an adjacent basin. 

376 3.4 Assigning a prior probability

377 A crucial aspect in any Bayesian modelling approach is assigning the prior probabilities. This 

378 prior is based on an initial understanding of the probability of a model related to the 

379 alternative models and is updated when additional data is introduced in the model testing step 

380 (section 4). The assigned prior for the reviewed studies are presented in the first column of 

381 Table A.2. 



  

20

382 In order to be objective and unbiased, different conceptual models are often considered to be 

383 equally likely, uninformed by data or knowledge. From the 26 studies in Table A.2 that 

384 assign a prior probability, 21 use a uniform, and thus uninformed, prior probability. Prior 

385 probabilities do however have a large influence on the posterior probability if the data used 

386 for updating the prior has limited information content. Rojas et al. (2009) showed that 

387 including proper prior knowledge about the conceptualizations increased predictive 

388 performance when compared to assigning uninformed priors. Additionally, uninformed priors 

389 are not consistent with the Hypothesis Testing approach, as shown in Fig. 3c. If no other 

390 palaeovalleys were observed in the area, the palaeovalley hypothesis would be possible, but 

391 unlikely. A uniform prior probability would assign each hypothesis equal likelihood, which 

392 would not be appropriate. 

393 In the reviewed studies the prior has been based on expert opinion, data consistency and 

394 model complexity. For instance, using expert opinion in the study by Ye et al. (2008) the 

395 prior probability was based on expert’s belief in alternative recharge models considering the 

396 consistency with available data and knowledge. Systematic expert elicitation is a well-

397 established technique in environmental risk assessment and modelling (Krueger et al., 2012) 

398 to formalize expert belief into model priors. There are however few published studies on 

399 expert elicitation in groundwater conceptualization context. Elshall and Tsai (2014) used data 

400 consistency to inform the prior probability by basing it on calibration of hydrofacies using 

401 lithological data. Finally, using model complexity to inform the prior, in the study by Ye et al. 

402 (2005) higher probabilities were assigned to favour models with fewer parameters. This was 

403 also suggested by Rojas et al. (2010a) as a means of penalizing increased complexity. 

404 Nearing et al. (2016) argues that assignment of probabilities should not be based on a single 

405 component of the model but rather be based on the whole model. In the reviewed literature 

406 the priors have however, only been based on individual components.



  

21

407 3.5 Remaining challenges

408 The review of studies in Table A.1 has shown that alternative models have been developed 

409 either by i) varying complexity of model description, ii) making alternative interpretations or 

410 iii) stating different hypotheses about the groundwater system. The goal of the multi-model 

411 development process is to define a mutually exclusive, collectively exhaustive range of 

412 models in which the true unknown model exists and where the risk of uncovering a 

413 conceptual surprise is zero. This is obviously unattainable and we therefore discuss the 

414 remaining challenges next. 

415 First, Table A.1 shows that studies typically focus on exploring different hypotheses for a 

416 single aspect of the model (Conceptual Physical/Conceptual Process/Spatial Variability 

417 Structure). Only 5 out of 59 papers consider all three aspects simultaneously (Aphale and 

418 Tonjes, 2017; Foglia et al., 2013; Mechal et al., 2016; Rojas et al., 2010a; Ye et al., 2010). 

419 For the range of models to be collectively exhaustive, all conceptually uncertain aspects have 

420 to be considered. 

421 Second, the study objective is not always considered when alternative models are developed 

422 for the multi-model approach (Table A.1). Models should encapsulate the behaviour that is 

423 important to the modelling objective (Jakeman et al., 2006), and The same should be true 

424 when characterizing conceptual uncertainty. On the other hand, “what may seem like 

425 inconsequential choices in model construction, may be important to predictions” (Foglia et 

426 al., 2013). To avoid ignoring the inconsequential model choices, the model objective should 

427 be used to guide the development of alternative models. This does imply that ensembles are 

428 not necessarily the same for all model objectives (Haitjema, 2005). 

429 Third, alternative conceptual models are not always defined as mutually exclusive (i.e. if 

430 model A is true, models B and C are false). Falsification, which is welcomed in the multi-
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431 model approach (Beven, 2018), will increase system understanding (Beven and Young, 

432 2013), but how much will depend on how the conceptual models are defined. In the 

433 Alternative Interpretation and Varying Complexity strategy, the models are not necessarily 

434 mutually exclusive in the sense that they do not represent different ideas about the 

435 groundwater system. In the Varying Complexity approach, alternative models are generated 

436 based on the same conceptual model represented in different complexities. A risk in the 

437 Alternative Interpretation strategy is that alternative models are almost identical in terms of 

438 understanding of the groundwater system. 

439 Fourth, the way the alternative models are developed does not always reduce the risk of 

440 conceptual surprises. Using the Alternative Interpretation strategy, many groups will come up 

441 with what they believe to be the most likely model, e.g. Seifert et al. (2012). Using the 

442 Varying Complexity strategy, only the complexity and not conceptual ideas will be tested. It 

443 is therefore unlikely that a conceptual surprise will be found before one is surprised in both 

444 Alternative Interpretation and Varying Complexity strategy. 

445 Last, when assigning priors to a range of models that we cannot ensure are collectively 

446 exhaustive, how do we account for unknown unknowns? The sum of prior probabilities for 

447 the ensemble of models always add up to one in the reviewed studies, thereby assuming a 

448 collectively exhaustive range of models have been defined. As discussed already, this is 

449 extremely difficult to ensure, so an approach to assign priors that accounts for unknown 

450 unknowns remains a challenge. 

451 The Hypothesis Testing strategy seems to be the only model development strategy that can 

452 ensure the models developed are mutually exclusive. However, hypotheses might still 

453 overlap. For example, Bresciani et al. (2018) test three hypotheses to explain mountain range 

454 recharge to a basin aquifer governed either by i) mountain-front recharge, ii) mountain-block 
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455 recharge or iii) both mountain-front recharge and mountain-block recharge. Some might 

456 argue that the third hypothesis overlaps to some extent with the other two, violating the 

457 mutually exclusive principle. However, only including the two first hypotheses claiming they 

458 are mutually exclusive and collectively exhaustive, would set up a false dilemma as parts of 

459 both hypothesis can be correct at the same time. It is thereby not always possible to state 

460 mutually exclusive hypotheses in hydrogeology, where the answer will be Boolean (true or 

461 false), for instance connectivity or no connectivity between aquifers (Troldborg et al., 2010). 

462 Sometimes the mutually exclusive hypothesis will have to be stated as endmembers (e.g. 

463 mountain-front recharge and mountain-block recharge) and the answer will be somewhere in 

464 between. 

465 Guillaume et al. (2016) discuss two methods to accommodate the conceptual surprises in the 

466 model development process: Adopting adaptive management and applying models that 

467 explore the unknown. In the first approach, management plans are kept open towards change 

468 and the iterative modelling process, illustrated in Fig. 1, is a part of the modelling plan. The 

469 second method anticipates surprises by placing fewer restrictions on what is considered 

470 possible. By stating bold hypotheses about a system ensures that system understanding can 

471 progress (Caers, 2018). A bold hypothesis around recharge inflows from faults and deep 

472 fissures connected to an adjacent aquifer is tested by Rojas et al. (2010a). The available data 

473 did not give reason to reject either of the models to achieve an increase in system 

474 understanding, but the alternative were bold. We argue that by being forced to be bold when 

475 developing hypotheses, the risk of rejecting plausible models by omission and adopting 

476 invalid range of models is greatly reduced. However, defining bold hypotheses does not 

477 preclude rejecting plausible models by omission Hunt and Welter (2010) suggest to use 

478 terminology that recognize the existence of these unknown unknowns by presenting results 

479 with a specification of which aspects of the model that has been considered, thereby 



  

24

480 enhancing transparency. An approach that aims at directly identifying unknown unknowns 

481 through bold hypothesis, taking into account the largest possible range of the conceptual 

482 uncertainty, have not been applied yet and remain a subject for further research. 

483 4 How are different conceptualizations tested?

484 After developing a set of conceptual models, the models should be tested to establish to what 

485 degree they are consistent with the available data and knowledge (Neuman and Wierenga 

486 2003; Refsgaard et al. 2006). Groundwater models used for safety assessment of nuclear 

487 waste repositories, for instance, have been subject of considerable validation efforts (Hassan, 

488 2003; Rogiers et al., 2014; Tsang, 1987, 1991). Model testing and validation covers the same 

489 model evaluation process in which models are confronted with new data. However, the term 

490 validation is avoided in this review as models can never be proven correct (Konikow and 

491 Bredehoeft, 1992). Also, there is no internationally agreed definition of validation, which has 

492 led several organizations to develop their own operational definitions of validation (Perko et 

493 al., 2009). Finally, validation encourages testing to have a positive result (Oreskes et al., 

494 1994), that is, models are not expected to be wrong. As falsification is important in order to 

495 advance our understanding of a system (Beven, 2018), the term model testing is preferred 

496 here. 

497 Models are rejected if they are found to be inconsistent with data. In a Bayesian context, 

498 however, a conceptual model can never be completely rejected; its probability can only be 

499 greatly reduced. As there is a risk of eliminating models that could turn out to be good 

500 representations when new data is introduced, Guillaume et al. (2016) suggest to keep 

501 rejection decisions temporary to be able to return to otherwise excluded models. The models 

502 that are consistent with observational data are, however, only conditionally validated because 
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503 they have not been proven to be inconsistent with data yet (Beven and Young, 2013; Oreskes 

504 et al., 1994).

505 Testing of conceptual models is not always done as part of the multi-model approach to 

506 groundwater modelling (Pfister and Kirchner, 2017). In Table A.2, only 30 out of 59 studies 

507 applied some form of model testing. However, model testing presents three major advantages. 

508 First, systematically developing and testing conceptual models will allow one to explain why 

509 no other conceptual models are plausible (Neuman and Wierenga 2003), and thereby reducing 

510 the risk of adopting an invalid range of models. Through systematic documentation and 

511 rejection of conceptual models, the modelling workflow becomes transparent and traceable, 

512 potentially avoiding court cases challenging the validity of conceptual models. In the impact 

513 assessment of the Carmichael Coalmine in Queensland (Australia), available geological and 

514 hydrological data allowed for at least one other conceptualization of ecological and culturally 

515 significant springs that could potentially be impacted by the coalmine (Currell et al., 2017). 

516 However, a conceptual model leading to an acceptably low modelled impact on the springs 

517 was adopted, which lead to the approval of the mine. A systematic model development and 

518 testing approach for conceptual modelling through the multi-model approach would be able 

519 to shed light on this type of confirmation bias. 

520 Second, model testing can lead to uncovering of unknown unknowns (Bredehoeft, 2005). Not 

521 many papers exist that actually reject all of the initial conceptual models or hypothesis about 

522 a groundwater system and come up with new plausible explanations, which renders this 

523 advantage of the model testing procedure somewhat invisible (Beven, 2018). There are, 

524 however, a few examples where models are conditionally validated after ad-hoc modifications 

525 to the model (e.g. Krabbenhoft and Anderson, 1986; Nishikawa, 1997; Woolfenden, 2008). 

526 Ad-hoc modifications are slight changes applied to a current model in order to explain 
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527 conflicting data, but without falsifying the model as a whole. For example, Sanford & 

528 Buapeng (1996) developed a steady-state groundwater flow model for the Bangkok area, 

529 which was falsified by apparent groundwater ages. An ad-hoc modification that assumed 

530 groundwater velocities were higher during the last glacial maximum yielded a simulated 

531 apparent age closer to the observations, thereby conditionally validating the model with the 

532 ad-hoc modification. Ad-hoc hypotheses are sometimes criticized as they make models 

533 unfalsifiable and knowledge does not progress through modifications (Caers, 2018). 

534 However, their existence illustrate the difficulty of developing a collectively exhaustive range 

535 of models initially and model testing is imperative if we want to uncover this. 

536 Third, Bayesian multi-model approaches benefit from allowing their prior probabilities to be 

537 updated because it dilutes the effect of the choice of priors (Rojas et al., 2009). It is here 

538 worth mentioning that most of the studies in Table A.2 that apply a Bayesian approach, 

539 update the prior probability using criteria-based weights (section 5.1) while only eight studies 

540 apply a model testing procedure. 

541 In the subsequent sections, data relevant to conceptual model testing (section 4.1), steps 

542 undertaken when testing conceptual models (section 4.2), and the remaining challenges 

543 within model testing (4.3) are discussed. Table A.2 presents an overview of the model testing 

544 applied in the studies identified using the multi-model approach (Section 2).

545 4.1 Conceptual model testing data

546 Three basic requirements for the nature of the data used for model testing are typically 

547 discussed: i) it should be different from the data used for developing the conceptual models 

548 (Tarantola, 2006), ii) it should be different from the data used for calibrating the model 

549 (Neuman and Wierenga, 2003; Refsgaard et al., 2006), and iii) it should depend on the 

550 modelling purpose (Beven, 2018). 
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551 4.1.1 Model testing data and model building data

552 Tarantola (2006) distinguishes between a priori information used to develop hypotheses and 

553 observations used to test models. Post-hoc theorizing (failing to separate model development 

554 and testing data and accepting the resulting model) might lead to models being conditionally 

555 validated due to circular reasoning, e.g. the model should look this way to explain the data 

556 and the model is true because it explains the data. Another reason for keeping those two 

557 groups of data separate is to avoid underestimating conceptual uncertainty. By using 

558 geophysical SkyTEM data to both build a training image conceptual model and as soft 

559 constraint as part of a multiple-point geostatistics algorithm, He et al. (2014) demonstrated 

560 that this over-conditioning lead to an underestimation of uncertainty. 

561 4.1.2 Model testing data and model calibration data

562 Testing data should also be different from calibration data to avoid that the conditional 

563 confirmation becomes an extension of the calibration (Neuman and Wierenga, 2003). In a 

564 review of handling geological uncertainty, Refsgaard et al. (2012) highlighted that it is 

565 possible to compensate for conceptual errors in groundwater flow models by calibrating 

566 parameters to fit the solution. The best test for any conceptualization involves comparison of 

567 model predictions to observations outside the calibration base. Cross-validation techniques, 

568 standard practice in statistical inference, are underutilised in groundwater modelling. 

569 Methodologies that minimize error variance provide some safeguard against calibration-

570 induced acceptance of improper conceptualizations (Kohavi, 1995; Moore and Doherty, 

571 2005; Tonkin et al., 2007).

572 4.1.3 Model testing data and the modelling objective

573 Refsgaard et al. (2012) further concluded that models that perform well according to one 

574 dataset might not perform well according to another dataset. This suggests that updating of 

575 prior probability should preferably be based upon the data type that the models are to make 
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576 predictions about. Davis et al. (1991) argues that testing model performance outside areas 

577 relevant to the model objective can lead to rejection of models that might actually be fit-for-

578 purpose. However, in many instances the data type that the models are used to make 

579 predictions, such as groundwater fluxes or water balances, may not be directly available 

580 (Jakeman et al., 2006). On the other hand, Rojas et al. (2010b) showed that by introducing 

581 more and more data in a multi-model approach, they were able to further and further 

582 discriminate between retained conceptual models, suggesting the more diverse and numerous 

583 data used for testing the more confidence in the conceptualization. 

584 4.2 Conceptual model testing steps

585 In the previous discussion the type and nature of auxiliary data to test conceptual models were 

586 introduced. But how should such data be incorporated to undertake a conceptual model 

587 testing exercise? Neuman and Wierenga (2003) introduced a three-step workflow for testing 

588 and updating prior probability of alternative conceptual models (Error! Reference source 

589 not found.). In addition to these three steps, a fourth step, the post-audit (Anderson and 

590 Woessner, 1992) will be reviewed here.  

591 Table 1. Comparison of model testing steps (pros and cons) and examples of applications in literature. The terminology of 
592 Step 1-3 is from model testing steps by Neuman and Wierenga (2003); definition of post-audit is from Anderson and 
593 Woessner (1992). 

Conceptual model 
testing step

Pros (P) and cons (C) Example

Step 1: “Avoid 
conflict with data”

Narrows down range of plausible 
models before conversion to 
mathematical model (P)

Hermans et al. (2015) tests training images for MPS against 
geophysical data. 

Step 2: “Preliminary 
mathematical model 
testing”

Holistic test of the system (P)
Parameters can compensate for 
conceptual error (C)
Narrows down range of plausible 
models before complex 
mathematical model (P)

La Vigna et al. (2014) tests the cause of hydraulic connection 
between two sand aquifers against hydraulic head in a simple 
numerical model and is able to reject two out of three scenarios. 

Step 3: “Confirm 
model”

Holistic test of the system (P)
Parameters can compensate for 
conceptual error (C)

Parameters: Poeter and Anderson (2005) were able to reject 13 out 
of 61 models where the parameter distribution was wrong. 
State variables: Rojas et al. (2008) tested alternative conceptual 
models against hydraulic head and rejected two models but were 
unable to discriminate strongly between the rest of the models. 
Convergence: Poeter and Anderson (2005) rejects two models 
based on non-convergence.

Step 4: Post audit Waiting time (C)
Holistic test of the system (P)

Nordqvist and Voss (1996) concluded that a supply well was in 
risk of contamination through a multi-model approach. After the 
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Parameters can compensate for 
conceptual error (C)

completion of the study, increased levels of contamination were 
observed in the well which conditionally validated the models. 

594 4.2.1 Model testing step 1

595 The first step in the Neuman and Wierenga (2003) guideline is referred to as “avoid conflict 

596 with data”, where  the model evaluation happens before the conceptual models are converted 

597 into mathematical models. In doing so, the conceptual models can be compared quantitatively 

598 or qualitatively with data, without parameters compensating for a wrong conceptualization. 

599 Table A.2 suggests this model testing step is rarely applied, which is not necessarily true. As 

600 the evaluation of conceptual models happens outside of a numerical groundwater model, it is 

601 probably preceding the workflow in many of the studies as part of the hydrogeological 

602 investigation but not explicitly reported on. In the review by Linde et al. (2015), a workflow 

603 of corroboration and rejection is presented that focuses on the integration of geophysical data 

604 in hydrogeological modelling. For example, synthetic geophysical data may be generated 

605 from different conceptual models, and subsequently compared with observed geophysical 

606 data (Hermans et al., 2015). The prior probability of each conceptual model is then updated 

607 based on the difference between observed and simulated geophysical data. In this model 

608 testing step, however, the model evaluation does not have to be qualitative. For example, 

609 hydraulic head and electrical conductivity data may be used to distinguish between 

610 hypotheses about whether mountain front and mountain block recharge was dominating as a 

611 recharge mechanism to basin aquifers (Bresciani et al., 2018). 

612 4.2.2 Model testing step 2

613 The second step in which data is introduced to test alternative conceptual models is called 

614 “preliminary mathematical model testing” (Meyer et al., 2007; Neuman and Wierenga 2003; 

615 Nishikawa, 1997). A similar modelling step is suggested by La Vigna et al. (2014), where for 

616 each alternative conceptual model a simple numerical model is set up and compared with 

617 testing data (hydraulic head). The advantage of applying this model testing step is that 
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618 spending time on setting up complex mathematical model for poor conceptual models is 

619 avoided. 

620 4.2.3 Model testing step 3

621 The third model testing step in Neuman and Wierenga (2003) is called “confirm model”. Here 

622 the mathematical model is set up in its most complex form. As a numerical model comprises 

623 a description of the groundwater system as a whole, all assumptions and the interaction of 

624 assumptions are tested at once. Models are then rejected either due to 1) unrealistic parameter 

625 values, 2) wrongly predicted state variables or 3) non-convergence. 

626 Sun and Yeh (1985) showed that the optimized parameters cannot be separated from the 

627 parameter structure on which they are based on. This means if the conceptual model is 

628 incorrect, so are the estimated parameter values. Therefore, calibrated hydraulic conductivity 

629 values are often compared with “independently” measured values from pumping tests (e.g. 

630 Engelhardt et al., 2014; Harrar et al., 2003; Mechal et al., 2016; Poeter and Anderson, 2005) 

631 to check whether parameter estimates are realistic. Unfortunately, scale effects may impede 

632 direct comparison. Depending on the quality and representativeness of the data, they may or 

633 may not be able to discriminate between alternative models as was demonstrated by 

634 Engelhardt et al. (2014) and Mechal et al. (2016) for calibrated hydraulic conductivity and 

635 transmissivity values, respectively. On the other hand, in the synthetic study by Poeter and 

636 Anderson (2005), 13 out of 61 models were rejected because the calibrated hydraulic 

637 conductivity of a low-conductivity zone exceeded the conductivity of what was considered a 

638 high-conductivity zone. 

639 Apart from comparing calibrated parameter values with observations, the predicted system 

640 variables can be compared with observations, such as hydraulic head, stream discharge, 

641 (tracer) concentrations, etc. In some multi-model studies, the number of models are limited 
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642 and the comparison of simulated and observed values can happen manually. For instance, 

643 Castro and Goblet (2003) could reject all but one conceptual model by manual comparison of 

644 the direct simulation of 4He concentrations with observed data. However, in cases where the 

645 lower order uncertainty is characterized within each conceptualization, automatic procedures 

646 are necessary to efficiently search for models that match field data (Rogiers et al., 2014; 

647 Rojas et al., 2010b, 2010c, 2010a; Schöniger et al., 2015; Zeng et al., 2015). For instance, 

648 (Rojas et al., 2008) used the importance sampling technique Generalized Likelihood 

649 Uncertainty Estimation (GLUE) (Beven and Binley, 1992) to sample combinations of 

650 parameter sets and conceptual models and reject models according to an acceptance threshold 

651 for the misfit between simulated and observed model predictions. 

652 Finally, non-convergence of the groundwater model can indicate an error in the conceptual 

653 model (Anderson et al., 2015b). The interaction of assumptions that lead to groundwater 

654 models not converging has in many studies been regarded as sufficient evidence of 

655 conceptual model invalidity (Aphale and Tonjes, 2017; Poeter and Anderson, 2005). In Rojas 

656 et al. (2008) the models that did not meet the convergence acceptance criteria were assigned a 

657 likelihood of zero, eliminating their contribution to the model ensemble predictive 

658 distribution. However, conceptual models that do not converge may potentially be valid if no 

659 effort towards making them converge is made. The effort towards making a model converge 

660 in the consensus approach will probably be larger than in the multi-model approach as there 

661 will still be other models left. 

662 4.2.4 Model testing step 4

663 The last model testing step considered in this review is the post-audit. The post-audit is 

664 performed years after the end of the modelling process, evaluating forecasts of the model on 

665 newly collected data. Anderson and Woessner (1992) summarize some modelling studies that 

666 have used post-audits while Bredehoeft (2005) focussed on identifying the conceptual 
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667 surprises that occurred in these modelling studies as a result of a post-audit. The advantage of 

668 the post-audit is that the model testing data is by default independent from the model 

669 development data, satisfying one of the basic requirements of model testing data (section 4.1). 

670 However, it is inconvenient to rely on this type of model testing as there may potentially be a 

671 long waiting period from the end of the model process until new data is collected.  

672 4.3 Remaining challenges

673 This review has shown that models can be tested in at least four different steps in the 

674 modelling process: i) as a conceptual model, ii) as a simple numerical model, iii) as a 

675 complex numerical model and iv) as a complex numerical model years after development. In 

676 each step the prior probability can be updated and sometimes models can be rejected based on 

677 lack of support by observation of state variables, parameters or because the model did not 

678 converge. Identifying suitable data for model testing remains challenging. 

679 First, in theory the notion that testing data should be independent is sound, but in practice the 

680 separation of data is difficult. Many studies rely on ranking criteria to update the prior 

681 probability (which we will discuss in section 5.1), rather than updating prior probability based 

682 on data that is independent of the model development. In using all data when developing 

683 models, it is no surprise that the models actually fit data. Post-hoc theorizing can easily result 

684 in undersampling of the model space (Kerr, 1998), as an initial range of plausible models will 

685 be accepted (because of circular reasoning) without looking for other plausible models. 

686 However, in many studies independent data might not be available and saving some data for 

687 the model testing process is a trade-off between being able to define a more complete model 

688 and being able to test assumptions. Cross-validation can partly address this issue during 

689 inference or calibration, but will remain impractical in the conceptualization phase (model 

690 testing step 1) as biases towards existing but unavailable data might be made. 
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691 Second, in theory the data used for model testing should depend on the model objective, in 

692 order to not extrapolate when making predictions. A challenge arises when having to ensure 

693 that the model found fit-for-purpose for one dataset (e.g. hydraulic head), will also be fit-for-

694 purpose to predict another dataset (e.g. concentrations). For example, the alternative models 

695 developed by Castro and Goblet (2003) all performed well when calibrated with hydraulic 

696 head; however, all but one model was rejected when tracer data was introduced. Sensitivity 

697 and uncertainty analysis can potentially be used to identify which parameters are relevant to 

698 the predictions and to what extent they can be constrained by the available data.

699 Third, the information content in the model testing data is in many studies relatively limited 

700 (e.g. Rojas et al., 2010c). The information content of model testing data relates to the amount 

701 and type of data available, but also the uncertainty of the data. For example, as discussed in 

702 relation to comparing calibrated hydraulic conductivity values to observed hydraulic 

703 conductivity values in section 4.2, such comparison can be unreliable. The consequence of 

704 only limited information content in the model testing data is that discrimination among 

705 alternative models often cannot be made (Seifert et al. 2008). In addition, in a Bayesian 

706 context the consequence of limited information content in the testing data is that the prior 

707 probability will have a large influence on the posterior probability (e.g. Rojas et al., 2009). 

708 Another challenge relates to when a model can be considered falsified. Models are groups of 

709 hypotheses rather than a single hypothesis in itself and many other assumptions are made in 

710 groundwater models such as model code and the characterization of lower order uncertainty. 

711 The model prediction thereby depends on many interactions of independent hypotheses and 

712 assumptions. Inconsistencies between model and data should therefore not necessarily be 

713 attributed to a single hypothesis and result in the falsification of that hypothesis (Pfister and 

714 Kirchner, 2017). 
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715 To accommodate these challenges, a more systematic approach to model development and 

716 testing is needed, where parts of the available data are used only for model testing. Ideally the 

717 data selected for model testing should depend on the model objective and the information 

718 content should be large enough to discriminate between models. There is thereby an 

719 opportunity for systematic (quantitative or qualitative) assessment prior to study (i) which 

720 aspects of the model will be relevant to the objectives and (ii) what data are needed to 

721 distinguish between hypotheses. 

722 5 How are different conceptualizations used for predictions?

723 What has emerged from several of the studies so far in this review is that multiple plausible 

724 models may coexist for a given study area. So, how are predictions made with multiple 

725 models? For some studies (e.g. Foglia et al., 2013), one model (the most likely based on the 

726 highest support in data) is selected for predictive purposes (section 4.1), while other studies 

727 (e.g. Tsai and Li, 2008) focus on ensemble predictions based on all plausible models (section 

728 4.2). A modelling step that receives increasing attention in the literature is the identification 

729 of additional data needs in order to be able to discriminate between the alternative conceptual 

730 models (e.g. Kikuchi et al., 2015) (section 4.3). The last four columns in Table A.2 present an 

731 overview of approaches being adopted when making predictions with multiple models. As 

732 mentioned in the introduction, several literature reviews (Diks and Vrugt, 2010; Schöniger et 

733 al., 2014; Singh et al., 2010) have already focussed on the model prediction and evaluation 

734 aspect of the multi-model approach. It is therefore not the aim to give a comprehensive 

735 review here, but to give a general overview of the most often applied approaches and instead 

736 focus on how the model development approach (discussed in section 3) affects the 

737 predictions.
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738 5.1 Model weighing and selection techniques 

739 Model weighing and selection techniques rank models according to how well they fit data, 

740 where the models with the lowest rank or weight have least support in the data. The purpose 

741 of ranking is to select the “best” model, but for many of the studies in Table A.2 ranking also 

742 provides weights for a model averaging technique (section 5.2). For an excellent review of 

743 model selection techniques the reader is referred to Schöniger et al. (2014). 

744 In selecting between models, two principles often receive attention: The Principle of 

745 Parsimony (favouring the simplest model) and The Principle of Maximum Likelihood 

746 (favouring the model that gives the highest chance to facts we have observed). However, the 

747 Principle of Consistency (favouring models that do not contradict any effects we know) is 

748 even more important to consider when choosing between models (Martinez and Gupta, 2011). 

749 The most commonly applied ranking techniques in the analysed studies in Table A.2. are the 

750 Information Criteria, including Akaike’s Information Criterion (AIC) (Akaike, 1973), 

751 corrected AIC (AICc) (Sugiura 1978; Hurvich and Tsai 1989), Bayesian Information 

752 Criterion (BIC) (Schwarz, 1978) and Kashyap Information Criterion (KIC) (Neuman, 2003)  

753 and GLUE. The ranking from the information criteria depends on an error term representing 

754 model fit to observations and a penalty term that penalizes model complexity. In GLUE the 

755 ranking is only based on an error term. 

756 5.2 Model averaging techniques

757 Model averaging techniques seek to summarize the results from the multiple model approach 

758 into an optimal prediction and a single measure of the total uncertainty by averaging the 

759 posterior distributions (Raftery et al., 2005). This posterior is obtained through an averaging 

760 approach that weighs the different model predictions according to the weight they obtained 

761 from the testing or ranking, combined with a prior probability of the individual models. For 
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762 excellent summaries of model averaging techniques the reader is referred to Diks and Vrugt 

763 (2010) and Singh et al. (2010). 

764 The most commonly applied approach to averaging predictions of conceptually different 

765 hydrogeological models is Bayesian Model Averaging (BMA) (Hoeting et al., 1999). The 

766 averaged predictions from multiple models have been shown to be more robust and less 

767 biased than the prediction from a single model (Vrugt and Robinson, 2007). Furthermore, 

768 they produce a more realistic and reliable description of the predictive uncertainty (Rojas et 

769 al., 2010a). 

770 The Bayesian model evidence is sometimes approximated with the information criteria to 

771 reduce computational effort constituting the Maximum Likelihood BMA (MLBMA) 

772 approach suggested by Neuman (2003). Given many of the information criteria are developed 

773 as model selection criteria, they tend to assign a large weight to only a few models (e.g. 

774 Nettasana, 2012; Rojas et al., 2010c; Ye et al., 2010), which is the main drawback of the 

775 MLBMA approach. This leads to the introduction of a statistical scaling factor to the 

776 information criteria (Tsai and Li 2008), leading to a flatter weight distribution among the 

777 alternative models. 

778 One of the disadvantages of the averaging procedures is that the system details of how each 

779 conceptual model affects the prediction, is lost (Gupta et al., 2012). To solve this problem, 

780 Tsai and Elshall (2013) suggested the hierarchal BMA (H-BMA) approach where the 

781 individual conceptual model components are evaluated through a BMA tree. In the BMA tree 

782 model components are organized at separate levels and the contribution of uncertainty of each 

783 aspect to the total uncertainty is quantified. By separating the uncertain model components in 

784 a BMA tree, the different aspects can be prioritized and provide an understanding of the 

785 uncertainty propagation through each uncertain aspect in the conceptual model. 
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786 5.3 Identify additional data needs

787 Refining the prediction made by multiple models may sometimes be necessary in order to 

788 decrease the range of model predictions. Considering too many conceptual models, one may 

789 lose the purpose of model development because it indicates high model prediction uncertainty 

790 (Bredehoeft, 2005; Højberg and Refsgaard, 2005). Therefore, some studies have focussed on 

791 identifying additional data needs that could potentially discriminate between alternative 

792 conceptual models to reduce conceptual uncertainty (e.g. Kikuchi et al., 2015; Pham and Tsai, 

793 2015, 2016). The goal of collecting new data is not to confirm existing conceptual models, 

794 but to be able to discriminate between them. 

795 Kikuchi et al. (2015) offers a short review of optimal design studies in hydrogeology that 

796 attempt to identify the optimal measurement sets for monitoring networks to maximize a data 

797 utility function. For a few studies conceptual model discrimination is the design objective 

798 (Knopman et al., 1991; Knopman and Voss, 1988, 1989; Usunoff et al., 1992; Yakirevich et 

799 al., 2013), but this approach has yet not received much attention in hydrogeology according to 

800 Kikuchi et al. (2015). 

801 Identifying additional data needs will guide the post audit activity (section 4.2) and the use of 

802 these data for model testing will ensure the data is independent from the model development 

803 data. 

804 5.4 Remaining challenges

805 This review shows that current studies often either used criteria-based weights, either to 

806 identify the most plausible models or to provide weights for a model averaging technique. 

807 The current methods are generally limited by what is attainable through the model 

808 development approach. The main limitations and thereby consequences of the model 
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809 development approach for current methods on making predictions with multiple 

810 conceptualizations are discussed next. 

811 First, we can never make sure that we have developed a collectively exhaustive range of 

812 conceptual models (e.g. Ferré, 2017; Hunt and Welter, 2010; Nearing and Gupta, 2018) (as 

813 discussed in section 3) but the prediction methods and the approaches in identifying 

814 additional data types rely on this. Undersampling the model space will lead to 

815 underestimation of the prediction uncertainty in the model averaging approaches. 

816 Furthermore, by focussing the collection of additional data on data that can discriminate 

817 between currently known conceptualizations, it is assumed that we already know all plausible 

818 conceptualizations. A challenge remains in directing additional data collection towards 

819 uncovering unknown unknown plausible conceptual models. 

820 Second, we can never make sure that the adopted range of models developed is valid (Type II 

821 error) (e.g Nearing and Gupta, 2018) but both the BMA and the criteria-based model 

822 weighing techniques rely on the best approximation of reality being in the ensemble. In the 

823 model selection approaches we can therefore never make sure that the best approximation of 

824 reality is selected as it will always be conditional on the developed range of models. In the 

825 model averaging approaches, adopting an invalid range of models leads to biased predictions, 

826 which remains a challenge. 

827 Third, in BMA it is assumed that models are mutually exclusive, so that some predictions are 

828 not given a higher weight following almost identical models give similar predictions. Not 

829 having mutually exclusive models gives a false sense of confidence in the modelling results, 

830 as a large number of alternative models considered will give the impression that a large range 

831 of the model space has been uncovered.  
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832 Fourth, the criteria-based model weighing techniques rely only on the Principle of Parsimony 

833 and the Principle of Maximum Likelihood, while the Principle of Consistency is disregarded 

834 through calibration. Through the calibration step the model is trained to compensate for a 

835 possible conceptual error through biased parameters (Refsgaard et al., 2012; White et al., 

836 2014) and the Principle of Consistency is therefore not taken into account. Criteria-based 

837 model weighing techniques use the same data twice in the modelling process, which as 

838 discussed in section 4.1, leads to circular reasoning giving a false confidence in the result. 

839 Also, inconsistent assumptions in the conceptual model cannot be identified without 

840 introducing new data, but in the criteria-based model weighing techniques, models are readily 

841 rejected through zero-weight as they tend to inflate the weights of a few best models (e.g. Ye 

842 et al., 2010). The models that best compensate for conceptual errors through biased 

843 parameters are then combined to make predictions through model averaging, where it is 

844 claimed that conceptual model uncertainty is taken into account. However, given the biased 

845 parameters of the models, circular reasoning and rejection of plausible models, this result may 

846 be both biased and over-conservative. 

847 Last, the model averaging techniques assume that a single result is valid, however if the range 

848 of plausible model are mutually exclusive, they might lead to distinctly different predictions. 

849 One model might have a distinctly different prediction than the ensemble average or the 

850 probability mass may concentrate in multiple areas. This is the case for the synthetic example 

851 in the study by Kikuchi et al. (2015), where the spring flow depletion prediction is bimodal. 

852 In this case the average prediction is an outlier to where the probability mass is concentrated. 

853 The average prediction of an ensemble, especially bi- or multi-modally distributed ensembles, 

854 may not be a valid model outcome (Winter and Nychka, 2010). It is therefore preferable to 

855 summarise ensembles through more robust metrics, such as percentiles (e.g. 5th, 50th and 95th) 

856 as these will always be actual results made by a model.
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857 Suggestions on solving the remaining challenges in relation to populating the model space 

858 (first, second, third point) has already been discussed in section 3.5. The challenges 

859 mentioned in the remaining two points occur because of the reliance on methods that assume 

860 a single best model can be found. A way forward to accommodate these challenges could be 

861 full probabilistic approaches. Transdimensional inference methods have been applied in 

862 geophysics (e.g. Ray and Key, 2012) and reservoir geology (e.g. Sambridge et al., 2006) for 

863 similar problems. In these approaches, e.g. reversible jump Markov Chain Monte Carlo 

864 (Green, 1995), sampling occurs within the same dimension (conceptual model), but also 

865 between dimensions (conceptual models) exploring both the conceptual model space and the 

866 parameter space. 

867 6 Conclusion

868 A review of 59 studies applying the multi-model approach for hydrogeological conceptual 

869 model development, has shown the following:

870 1. A significant linguistic uncertainty still exists of what is considered conceptual 

871 uncertainty. There is a need for more consistent terminology.

872 2. Current studies in conceptual model uncertainty often only focus on a single or limited 

873 set of conceptualization issues. There is a need for a systematic conceptualization 

874 approach to ensure all aspects of conceptualization are covered and documented.

875 3. Current studies rarely consider the objective of the model before developing 

876 alternative models for the multi-model approach. The objective of the model should 

877 have an influence on both the model development and the data used for model testing. 

878 4. For each conceptual issue identified, alternative conceptual models should be 

879 formulated as hypotheses which, at least in theory, can be refuted. Hypothesis testing, 
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880 especially bold hypothesis testing, is essential to increase system understanding and 

881 avoiding conceptual surprises.

882 5. In Bayesian inference with multiple models, informed priors are recommend, 

883 especially if the information content in the hypothesis testing data is low. 

884 6. The current multi-model prediction methods assume that there is a single outcome of 

885 the modelling process and that the developed models are mutually exclusive and 

886 collectively exhaustive. Presenting results requires a shift in mentality towards 

887 presenting ranges and acknowledging that unknown unknowns exist. 

888 The multi-model approach is superior to the consensus approach as it is transparent and 

889 accounts for conceptual uncertainty. However, to benefit fully from the multi-model 

890 approach, challenges remain in being more systematic in regards to both developing and 

891 testing alternative models.
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896 8 Appendix A

897 Table A.1. Examples of approaches to develop conceptually different models for the Conceptual Physical Structure (Ph), Conceptual Process Structure (Pr) and the Spatial Variability Structure 
898 (SVS). Approaches to developing different models include hypothesis testing (H), complexity testing (C) and interpretation testing (I), i.e. Figure 3. If the model objective is defined in the 
899 introduction of the paper the objective of the model is here considered well defined. The model objective is relevant to this table as the model objective should have an impact on what to include 
900 in the conceptualization.  

Study Is the model 
objective well 
defined?

Conceptual multi-model development approach Ph Pr SVS

Altman et al. (1996) Yes Two different representations describing unsaturated zone flow through fractured media including equivalent 
continuum and a dual permeability model.

H

Aphale and Tonjes (2017) No Top of semi-confining unit either as uniform surface or undulating based on interpolation between boreholes (H).
Northern extent of semi-confining unit represented by two different models (H).
Vertical discretization of downward fining sediment in aquifer as either uniform or variable (H).
Landfill effect on recharge either (i) no effect on recharge, (ii) recharge diverted to recharge basins adjacent to the 
landfill mounds, (iii) all recharge collected for off-site treatment (H).
Drains segmented or not (H).

H H H

Carrera and Neuman 
(1986)

No Ten alternative zonation patterns of hydraulic conductivity for synthetic aquifer. C

Castro and Goblet (2003) Yes Four alternative models where constraints within a formation is imposed (i.e., linear, exponential or with increasing 
distance decrease in hydraulic conductivity or constant hydraulic conductivity values for all formations). 

H

Elshall and Tsai (2014) No Two different geological formation dips propositions (H).
Three indicator geostatistical methods for representing geometry: indictor zonation, generalized parameterization and 
indicator kriging (H). 

H H

Engelhardt et al. (2014) No Seven alternative conceptual models varying the number of parameters (horizontal and vertical hydraulic conductivity 
and specific yield) in 10 homogeneous zones by lumping zones together. 

C

Feyen and Caers (2006) Yes Two different training images representing two different braiding and sinuosity scenarios of a fluvial system (H).
Three different affinity and angle maps representing local variation in channel width and orientation (H). 
Three different variogram types: spherical, exponential or Gaussian (H). 

H

Foglia et al. (2007) No Five alternative models that differs in zonation of hydraulic conductivity. Alternatives developed by lumping together 
different zones of homogeneous hydraulic conductivity. 

C

Foglia et al. (2013) Yes Two different bedrock geometries defining the bottom of the groundwater system based on different data (I)
Five different zonation of hydraulic conductivity (C). 
Recharge either zero, spatially uniform, zonated based on soil types or simulated through rainfall-runoff model (I). 
Streams are described with MODFLOW’s SFR and River package in alternative models imposing different 
assumptions (H). 

I C I/H

Gedeon et al. (2013) Yes An initial model including a crude description of e.g. a clay aquitard and an update of the initial model including new 
information to update the description of the aquitard. This is an example of a consensus approach allowing for updates 
and the classification system presented by Figure 3 therefore does not apply. 

N/
A

N/
A

N/A
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Study Is the model 
objective well 
defined?

Conceptual multi-model development approach Ph Pr SVS

Harrar et al. (2003) Yes Two manually created alternative geological models are based on the same data and contains the same five sediment 
types but is interpreted by two different geologist. They differ in regards to the way the sediment type is assigned to 
the cells based on borehole data and the number of layers. Thereby one model reflects a more heterogeneous system 
while the other reflects a stratified system. 

I

He et al. (2014) No Two training images for an MPS algorithm where one is based on SkyTEM data and the other is based on a Boolean 
simulation. 

H

Hermans et al. (2015) Yes In the field example four different training images are produced through a Boolean simulation for an MPS algorithm 
to describe variation between sand, clay and gravel. 

H

Hills and Wierenga 
(1994)

Yes Unsaturated zone and transport models developed by five different teams. The models differed in regards to soil being 
modelled as isotropic or anisotropic and homogeneous or heterogeneous. 

I

Højberg and Refsgaard 
(2005)

Yes Three hydrogeological models manually generated by three different teams for different purposes. I

Johnson et al. (2002) Yes A one-layer, two layer and three layer model is considered to represent a layered basalt and interbedded sediment 
aquifer. 

H

Kikuchi et al. (2015) Yes Inclusion of zero, one or two lenses of higher hydraulic conductivity in an otherwise homogeneous unconfined aquifer 
(H).
Mountain front recharge as either a continuous line parallel to mountain front or through discrete stream features (H).
Two models with and without underflow through subsurface zone to adjacent basin (H). 

H H

Knopman and Voss 
(1988), Knopman and 
Voss (1989)

Yes Input of solute at upstream boundary of either i) constant, ii) decaying or iii) spatially varying initial condition (H).
Two different models in regards to whether first-order decay is affecting the transport (H). 
One or three layers to describe the medium of well-sorted sand and gravel (C)

C H

Knopman et al. (1991) Yes One-dimensional models of solute transport differing in regards to whether first-order decay is affecting the transport 
(H). 
One, two or three layer to describe the medium of well-sorted sand and gravel (C)

C H

La Vigna et al. (2014) Yes Three models considered to explain connection between two sand aquifers is i) outside of groundwater model, ii) 
through silty-sandy lense and 3) through old, not backfilled well. 

H

Lee et al. (1992) Yes Homogeneous, layered and randomly heterogeneous geologic description to model tracer migration. C
Li and Tsai (2009) Yes In the Baton Rouge Area case study: Three different influences of a fault in regards to connectivity between aquifers 

is considered: i) impermeable fault model, ii) low permeability model and iii) no fault model.  
H

Linde et al. (2015) No Two training images for an MPS algorithm where one is based on a local outcrop and the other is based on an aquifer 
analogue. 

H

Lukjan et al. (2016) No Two hydrogeological interpretations, homogeneous or zoned (C). 
Five models by combining different outer boundary conditions as either head or no-flow boundaries (H). 

C H

Mechal et al. (2016) No Two different models with two different fault sets and one model not representing faults at all (H). 
Five models with increasing number of transmissivity zones (C).
Two models with one representing all rivers and one only representing the major river (C). 
Two models of lateral boundary conditions where one considers outflow to an adjacent aquifer and one does not (H).

H C C/H

Meyer et al. (2003) No Nine different variogram models to explain log air permeability variation in unsaturated fractured tuff. H
Meyer et al. (2007) Yes Two alternative models of spatial distribution of K: Homogeneous and zoned. C C
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Study Is the model 
objective well 
defined?

Conceptual multi-model development approach Ph Pr SVS

A steady-state and a transient boundary condition to a stream.  
Nettasana 
(2012)/Nettasana et al. 
(2012)

No/Yes Three/two different independent interpretations of geology that differ in regards to e.g. number of layers (I). 
Two different zonation of recharge based on either soil type, or soil type and land use (C).
Two models where some lateral boundaries are either no-flow or head boundaries to test outflow to adjacent aquifers 
(H).

I C/H

Nishikawa (1997) Yes Two models of different geometry where in the first the aquifers are horizontally layered and in the second the layers 
are folded offshore which would create a shorter pathway for seawater to intrude through an outcrop. 

H

Nordqvist and Voss 
(1996)

Yes Three models differing in zonation of transmissivity values, i) including description of esker core and outwash 
material, ii) a homogeneous model, iii) including an esker core with a discontinuity and outwash material. 

C

Passadore et al. (2011) Yes Alternative descriptions of how aquitards pinches out in sedimentary basin affecting the connectivity of aquifers. H
Pham and Tsai (2015; 
2016)

No Geological description by either indicator kriging, indicator zonation or general parameterization (H). 
Two different fault permeability architectures: i) the same for all lithologies or ii) different for the three different 
lithologies (C).

H C

Poeter and Anderson 
(2005)

No 61 alternatives models by varying number and distribution of hydraulic conductivity zones generated by Sequential 
indicator simulations. 

C

Refsgaard et al. (2006) Yes In an example five different consultants are asked to assess the vulnerability of aquifers towards pollution. They solve 
this task with different models in terms of geometry, processes and casual relationships and end up with vastly 
different predictions. 

I I I

Rogiers et al. (2014) Yes A geostatistical representation of an aquifer is tested against a homogeneous representation. Within the geostatistical 
representation 50 realization are generated representing the lower order uncertainty. 

C

Rojas et al. (2008) No Seven alternative representations of geometry in a synthetic study differing in regards to number of layers and which 
layers are spatial correlated. 

I  

Rojas et al. (2010a) Yes Models either consider a one or a two layer hydrostratigraphic system. 
The hydraulic conductivity field is either described by i) constant hydraulic conductivity for each layer, ii) spatial 
zonation approach within the layer or iii) using Random Space Functions either conditional or unconditional. 
Recharge inflows originating from an eastern sub-basin described as i) diffuse recharge rates distributed over small 
areas of an alluvial fan, ii) point recharge fluxes at the apex of an alluvial fan or iii) recharge fluxes distributed over 
long sections of the eastern boundary.
An additional recharge mechanism spatially distributed over the entire model domain that assumes a connection to 
adjacent aquifer is tested. 

H H H

Rojas et al. (2010c) Yes Three alternative descriptions of geometry differing the number of hydrostratigraphic units included to test the worth 
of “soft” geological knowledge. 

H

Samani et al. (2017) No Three models consisting of different number of zones of hydraulic conductivity (C).
Recharge divided in four or five zones (C).
Highland recharge represented by either i) a head boundary or ii) a flux boundary (H).
River represented by either i) recharge boundary or ii) flux boundary (H).

C C/H

Samper and Neuman 
(1989)

No Five different semi variogram models (exponential, quadratic, spherical, pure nugget and exponential with nugget). H
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Study Is the model 
objective well 
defined?

Conceptual multi-model development approach Ph Pr SVS

Schöniger et al. (2015) Yes Four alternative representations of a sandbox in a synthetic study going from simple to complex (homogenous through 
zonation/layered to geostatistical based on pilot points and to fully geostatistical). 

C

Seifert et al. (2008) Yes Two alternative model developed with and without the representation of a palaeovalley. For the study area the 
presence of the palaeovalley is known, but it is investigated what the impact on predicted vulnerability would be if the 
existence of the palaeovalley was not known. 

H

Seifert et al. (2012) No Five alternative hydrostratigraphic models were generated by five different (hydro) geologists in a manual approach to 
geological model building.

I

Selroos et al. (2002) Yes Three different models describing the flow through fractured rock: i) Stochastic continuum, ii) discrete fractures, or 
iii) channel network. 

I

Troldborg et al. (2007) No Four alternative models developed different in regards to a global hypothesis about depositional history, zonation of 
an aquifer and which well logs to use for the interpretation.  

H/
I

Troldborg et al. (2010) Yes Two models that differ in regards to contact between two sand aquifers potentially separated by a clay layer (H).
Two models with a different description of source zone for contamination (H).

H H

Tsai (2010) Yes Experimental, spherical and Gaussian semivariogram models to describe hydraulic conductivity distribution. H
Tsai and Elshall (2013) No Three alternative variogram to explain spatial variability of the hydrofacies (exponential, pentaspherical and 

Gaussian) (H).
One variogram applied globally or local variograms by dividing model domain in zones (C)
Two fault model or one fault model dividing the model domain into three or two zones respectively (H).

H H/
C

Tsai and Li (2008) No Voronoi tessellation, natural neighbour interpolation, inverse, square distance interpolation, ordinary kriging and three 
Generalized Parameterization methods (that are combinations of previous zonation approaches) to parameterize 
hydraulic conductivity.

H

Usunoff et al. (1992) No Three different models describing solute transport with the processes: i) Fickian dispersion and diffusion, ii) fickian 
dispersion and neglected diffusion and iii) non-fickian dispersion and diffusion. 

H

Yakirevich et al. (2013) Yes Two models where one described a layered media and the other described a layered media with lenses based on 
boreholes.

C

Ye et al. (2004) No Seven alternative variogram models for log permeability variations in unsaturated fractured tuff H
Ye et al. (2010), Reeves 
et al. (2010)

No Five geological interpretations by three different companies. Three models are developed in response to non-unique 
interpretations of specific geological features (a thrust fault, a barrier to groundwater flow and a combination of the 
two).
Five groundwater recharge scenarios informed by different methods (chloride mass balance, net infiltration method, 
Maxey-Eakin method) (I). Also included the effect of a surface water runon-runoff component and whether recharge 
occurs beneath a specific elevation in some models to test these hypothesis (H). 

I/
H

I/H

Zeng et al. (2015) No Seven different representation of geometry by varying number of layers and the hydraulic conductivity distribution 
within the layers in a synthetic study. 

H

Zhou and Herath (2016) Yes Three different models of geometry varying the number and extent of layers in a synthetic study. H
Zyvoloski et al. (2003) Yes To explain large hydraulic gradient a baseline model features a low permeability east-west zone, but there is no 

evidence for this feature, therefore three other models are proposed: i) Lower permeability hydrothermal alteration 
zone, ii) Alteration zone and NW-SE trending fault zone, iii) like the aforementioned but with additional fault 
features.

H
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901

902 Table A.2 Examples of approaches to test and make predictions with multiple plausible conceptual models. The ‘Prior’ column specifies if the prior probability in a Bayesian context is 
903 uninformed or informed by data or expert opinion. The sub-columns in the ‘Model Testing’ and ‘Model Predictions’ columns refer to modelling steps in the guideline by (Neuman and 
904 Wierenga, 2003). The fourth model testing step, the post-audit, is not included in this table as only one reviewed study (Nordqvist and Voss, 1996) applied this step. In the model testing steps the 
905 data type used for testing in the different steps are specified. In ‘Model Prediction’ the method used for ranking and making predictions is provided, where ‘X’ refers to methods not specified in 
906 the text. Additional data needs refers to the process of identifying additional data that could potentially discriminate between the conceptual models (as opposed to reducing parameter or 
907 prediction uncertainty). 

Prior Model Testing Model PredictionsStudy
Uninformed/ 
informed 

Step 1 Step 2 Step 3 Model 
Ranking

Individual 
Predictions

Ensemble 
Predictions

Additional 
data needs

Altman et al. (1996) - - - Hydraulic 
conductivity. 

- X - -

Aphale and Tonjes (2017) - - - - Area Metric - - -
Carrera and Neuman 
(1986) 

- - - - IC1 - - -

Castro and Goblet (2003) - - - Tracers - X - -
Elshall and Tsai (2014) Informed - - - IC1 - H-

(ML)BMA2

-

Engelhardt et al. (2014) - - - Hydraulic 
conductivity

IC1 - - -

Feyen and Caers (2006) Uninformed Borehole 
data, seismic 
data, 
hydraulic 
conductivity. 

- - - - X -

Foglia et al. (2007) - - - - IC1, CV3 - - -
Foglia et al. (2013) Uninformed - - - IC1, X    
Gedeon et al. (2013) - - - - - X - Sensitivity 

analysis
Harrar et al. (2003) - - - Transmissivity - X - -
He et al. (2014) - - - - - X - -
Hermans et al. (2015) Uninformed Geophysical 

data
- - - - - -

Hills and Wierenga (1994) - - - Volumetric water 
content, solute 
concentrations 

- X - -

Højberg and Refsgaard 
(2005)

- - - - - X - -
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Prior Model Testing Model PredictionsStudy
Uninformed/ 
informed 

Step 1 Step 2 Step 3 Model 
Ranking

Individual 
Predictions

Ensemble 
Predictions

Additional 
data needs

Johnson et al. (2002) - - - Drawdown - - - -
Kikuchi et al. (2015) Uninformed - - - - - X OD4

Knopman and Voss (1988) - - - - - X - OD4

Knopman and Voss (1989) OD4

Knopman et al. (1991) OD4

La Vigna et al. (2014) - - Hydraulic 
head

- - - - -

Lee et al. (1992) - - - Tracer plume obs. - - - -
Li and Tsai (2009) Uninformed - - - IC var5 - MLBMA6 -
Linde et al. (2015) - Geophysical 

data
- - - - - -

Lukjan et al. (2016) Uninformed - - - IC1 X - -
Mechal et al. (2016) - - - Baseflow, 

transmissivity
IC1 X - -

Meyer et al. (2003) Uninformed - - - IC1 - MLBMA6 -
Meyer et al. (2007) Uninformed - Hydraulic 

head, uranium 
concentrations

- IC1 - MLBMA6 -

Nettasana (2012) Uninformed, 
informed

- - Hydraulic head IC1, GLUE7 - GLUE-
BMA8, 
MLBMA6

-

Nettasana et al. (2012) - - - - - X - -
Nishikawa (1997) - - - Hydraulic 

conductivity. 
- X - -

Nordqvist and Voss (1996) - - - - - X - OD4

Passadore et al. (2011) - Seismic data 
and 
stratigraphic 
records 

- - - X - -

Pham and Tsai (2015) Uninformed - - - IC1 - H-
(ML)BMA2

OD4

Pham and Tsai (2016) Uninformed - - - X - BMA9 OD4

Poeter and Anderson 
(2005)

- - - Hydraulic 
conductivity. 

IC1 - X -
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Prior Model Testing Model PredictionsStudy
Uninformed/ 
informed 

Step 1 Step 2 Step 3 Model 
Ranking

Individual 
Predictions

Ensemble 
Predictions

Additional 
data needs

Model 
convergence. 

Reeves et al. (2010) Informed - - - X - X -
Refsgaard et al. (2006) - - - - - X - -
Rogiers et al. (2014) - - - Hydraulic head - X - -
Rojas et al. (2008) Uninformed - - Hydraulic head, 

Model 
convergence.

- - GLUE-
BMA7

-

Rojas et al. (2010a) Uninformed - - Hydraulic head - - GLUE-
BMA7

-

Rojas et al. (2010c) Uninformed - - Hydraulic head IC1 - MLBMA6, 
AICMA, 
GLUE-
BMA7

-

Samani et al. (2017) Informed - - Hydraulic head IC1 - - -
Samper and Neuman 
(1989)

- - - - IC1 - - -

Schöniger et al. (2015) Uninformed - - Pumping tests X - BMA9 -
Seifert et al. (2008) - - - Tritium apparent 

ages 
- X - -

Seifert et al. (2012) - - - Hydraulic 
conductivity

X - X -

Selroos et al. (2002) - - - - - X - -
Troldborg et al. (2007) - - - CFC's, tritium and 

helium conc. 
- X - -

Troldborg et al. (2010) Uninformed - - Hydraulic head, 
conductivity and 
TCE 
concentrations

- - BMA9 -

Tsai (2010) Uninformed - - - IC var5 - MLBMA6 -
Tsai and Elshall (2013) Uninformed - - - IC var5 - H-

(ML)BMA2
-

Tsai and Li (2008) Uninformed - - - IC var5 - MLBMA6 -
Usunoff et al. (1992) - - - - - - - OD4

Yakirevich et al. (2013) - - - - - - - OD4
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Prior Model Testing Model PredictionsStudy
Uninformed/ 
informed 

Step 1 Step 2 Step 3 Model 
Ranking

Individual 
Predictions

Ensemble 
Predictions

Additional 
data needs

Ye et al. (2004) Uninformed - - - IC1, CV3 - MLBMA6 -
Ye et al. (2010) Informed - - - IC1, GLUE7 - GLUE-

BMA7

Zeng et al. (2015) Uninformed - - Hydraulic head? 
Model 
convergence. 

- - GLUE-
BMA7

-

Zhou and Herath (2016) - - - Water balance, 
travel time 
distribution.

IC1 - - -

Zyvoloski et al. (2003) - - - Flow paths are 
inferred from 
hydrogeochemical 
data

- X - -

1 Information Criteria including AIC, BIC, KIC etc. (IC)
2 Hierarchal Bayesian Model Averaging (H-BMA)
3 Cross-Validation (CV).
4 Optimal design (OD).
5 Information criterion corrected with variance window (IC var)
6 Maximum Likelihood Bayesian Model Averaging (MLBMA)
7 Generalized Likelihood Uncertainty Estimation Bayesian Model Averaging (GLUE-BMA).
8 Generalized Likelihood Uncertainty Estimation (GLUE).
9 Bayesian Model Averaging (BMA).
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1324 building and testing: A review
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1326 Highlights

1327  Reviewed 59 studies that applied hydrogeological multi-model approach.
1328  Developing mutually exclusive, collectively exhaustive models remains a challenge.
1329  Conceptual model testing is underutilised but can uncover inconsistent assumptions.
1330  Iterative model development and testing accommodate conceptual “surprises”.
1331  Model testing is limited by the independence and information content of data.
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