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Highlights 

 One extra contributor under both Hp and Ha to fit the POI may overstate the LR 

 One extra contributor under Hp but not Ha to fit the POI may be acceptable 

 It takes considerable imbalance to favour an extra contributor 

 The method of Slooten and Caliebe performs well 

 

 

Abstract 

Using a simplified model, we examine the effect of varying the number of contributors in the 

prosecution and alternate propositions for a number of simulated examples.  

We compare the Slooten and Caliebe [1] solution, with several existing practices.  Our own 

experience is that most laboratories, and ourselves, assign the number of contributors, N = n, by 

allele count and a manual examination of peak heights.  The LRn for one or a very few values is 

calculated and typically one of these is presented, usually the most conservative.  This gives an 

acceptable approximation. 

Reassessing the number of contributors if LR = 0 and adding one to N under both Hp and Ha to “fit” 

the POI may lead to a substantial overstatement of the LR.   

A more reasonable option is to allow optimisation of the assignment under Hp and Ha separately.   

We show that an additional contributor explained the single locus profile better when 0.51.PHR    

This is pleasingly in line with current interpretation approaches. 

Collectively these trials, and the solid theoretical development, suggest that the Slooten and Caliebe 

approach preforms well.  
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In forensic DNA interpretation the number of contributors to a mixture is strictly unknown.  This is 

even true for apparently single sourced DNA samples.  It is at least theoretically possible that there is 

an additional contributor whose alleles are masked or dropped out at all loci.   

Recourse is usually taken to assigning a minimum number of contributors to a profile.  This is viewed 

by many commentators, but not the authors, as a primary output of the DNA analysis and thought of 

as something that should be in the report to stakeholders [2].   

In our experience the issue tends to relate to very small peaks and whether they are a trace 

contributor who is masked or dropped out at many allelic positions or whether such a peak is, for 

example; a large stutter, or a forward stutter.  Practically a very minor trace contributor, if present, is 

unlikely to have much effect on the interpretation/resolution of the main donors’ genotypes provided 

analyses are done with appropriate models that can distinguish between donors present in different 

quantities. 

The subject of uncertainty in the number of contributors has been raised as an impediment to the 

effective interpretation of DNA evidence.  Initially, arguments were raised around the fact that the 

number of contributors is unknown and may be different from that used in the interpretation.  

Recent court challenges have placed much emphasis on the possibility that the number of 

contributors used for analysis may be different from the ‘true’ number of contributors to the 

sample.  For example, the following exchange from R v Trevean [SADC 419/2013]: 

Q: What’s your opinion about how likely it is that there are more than four contributors to this 

mixed DNA sample 

A: I have absolutely no idea and nor does [the prosecution witness]. The fact is that because we’ve 

got DNA peaks from people who are not there because they have dropped out, plus the fact that we 

have essentially all the peaks that are detectible anyway, it is not possible to say that you don’t have 

more than four or more than five or more than six people. 

This was given impetus from papers [3] that showed that the number of contributors cannot readily be 

assigned by allele count alone.  Superior to allele counting are likelihood methods [4-6].  These largely 

treat alleles as present or absent, that is, they do not currently account for height.  They estimate the 

probability of the observed alleles given various numbers of contributors and account for allele 

probabilities and the coancestry coefficient.  NOCIt [7] adds a consideration of peak heights, and 

PACE [8] uses machine learning to assign probabilities to different numbers of contributors, and as 

such are likely to be the most informed tools. 

It has been elegantly shown [9] that assigning probabilities to the number of contributors is superior 

to picking one value.   

Before proceeding into this discussion it is necessary to consider what is meant by the number of 

contributors.  Consider a mock sample, this is a sample constructed in the laboratory from DNA of 

known donors.  We term this number of donors the target number.  Next, imagine that three donors 

are used in the ratio 100:100:1.  If we imagine that there is no discernible signal from the third 

contributor then this profile could reasonably be termed a two donor profile.  Hence we could 

potentially define the correct number of contributors as the number of donors who contribute to 

recognisable signal.  We have been unable to define the term recognisable signal and hence we 

suspect that the correct number cannot be known even in mock samples and never in casework.  The 

last term we introduce is the assigned number of contributors.  This is the number assigned by 
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either an operator or a software or both.  There is evidence [10] that the assigned number may differ 

above or below the target number, but under a system of ideal interpretation, should equal the correct 

number. 

In casework the target number, as well as the correct number, are unknown.  The number of 

contributors assigned to a mixture is informed by that information that can reasonably be assumed.  

If, for example, it is reasonable to assume that the DNA of the victim and a consensual partner are 

present then these can be used to inform the assigned number. It is also often forgotten that defence 

and prosecution have every right to nominate numbers of contributors in their own propositions, but 

have no jurisdiction over the other party’s choice. 

When assigning a likelihood ratio, the probability of the evidence is evaluated under two exclusive 

propositions.  One of these is typically aligned with the prosecution.  The other is a rational 

alternative consistent with exoneration.  We will term these Hp and Ha respectively. These 

propositions may be of the form: 

Hp:  POI is a donor to the mixture 

Ha:  POI is not a donor to the mixture 

This is a departure from previous usage.  In previous work we, and others, have used the sets Hp and 

Hd, or H1 and H2.  The first set, Hp and Hd, has been criticised for implying that Hd is the proposition 

of the defense.  In an adversarial environment the scientist is seldom in possession of the defense 

proposal.  The set H1 and H2 avoids this implication but abandons any attempt to use the letter 

subscripts as cues to meaning.   

Consider that the number of contributors (plausibly we mean here the correct number, termed N 

here) is unknown: 

Pr( | , ) Pr( | , , )

Pr( | , ) Pr( | , , )

p p

n

a a

n

N n H I O N n H I

LR
N n H I O N n H I

 


 




 where O is the observed evidence profile and I is the 

relevant background information.  This recognises that the number of contributors considered under 

Hp and Ha may differ, most especially since Hp can legitimately assume that POI is present. 

Let the set of all genotypes for n contributors be Sn which has elements 
n

jS  then 

Pr( | , ) Pr( | , , , ) Pr( | , , )

Pr( | , ) Pr( | , , , ) Pr( | , , )

n n

p j p j p

n j

n n

a j a j a

n j

N n H I O S N n H I S N n H I

LR
N n H I O S N n H I S N n H I

  


  

 

 
…equation 1 

This is a minor extension of a previously published equation [11].  In this paper, we look at the 

behaviour of this equation in a few situations. 

Note that the number of elements in the set Sn can be very large. For each locus where there are ‘a’ 

possible alleles, a contributor can possess 
( 1)

2

a a 
 different genotypes (obtained by the number of 

pairwise comparisons between a elements plus a homozygous genotypes). An n person mixture at l 

loci will possess 
1

2

ln

a
a
   
  
  

 possible genotypes sets, so if we take a modern multiplex that possesses 
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approximately 20 loci, each with approximately 15 alleles, J > 1041. For an N contributor set there are 

n! orders of the genotypes.  Many of these will not contribute to either one or both of the sums in the 

LR because: 

Criterion 1:  Pr( | )n

jO S , is small relative to the probability of the profile given other elements in the 

set Sn, or 

Criterion 2:  Pr( | ) 0n

j H S , if the proposition requires the contribution of DNA from an individual 

whose genotype is not represented in set j. 

It may be useful to think of the sum across j in the LR to be across all genotype sets where: 

Pr( | )Pr( | ) 0n n

j j H O S S  

However, it needs to be realised that the number of non-zero elements that would apply to the 

numerator and denominator could (and usually would) be different due to the second condition above 

being unique to each proposition. Therefore, it may be useful to think of J as the number of genotype 

sets for which Pr( | ) 0n

j O S , so that the sum is over the same number of genotype sets in numerator 

and denominator but may still possess some zero elements due to the second condition above. In the 

examples we simply omit these genotype sets from consideration. 

Recently Slooten and Caliebe [1] published a result that is likely to very significantly advance this 

discussion.  We reprise their finding here.  Starting from equation 1, Slooten and Caliebe show that 

the overall LR is the weighted average of the LRn values.  LRn is the LR value where the number of 

contributors is n under both Hp and Ha.   

The weights for the weighted average are 
Pr( | )

Pr( | , , )
Pr( | )

p

P C a

a

N n H
N n G G H

N n H





 where GC is the 

profile of the crime stain and GP is the profile of the person of interest.  Since we consider Ha we can 

remove GP from the conditioning yielding Pr(N = n|GC, Ha).  The observation of a genotype of 

someone who did not contribute to the mixture will, when a theta-correction for population co-

ancestry is applied, slightly affect the probabilities for subsequent alleles sampled from the 

population, and thereby the probability distribution for the contributors and hence also the 

probabilities on N=n. But for practical purposes we ignore this subtle effect; and in the examples we 

disregard population co-ancestry altogether so that this does not play a role here. 

It is likely that only a few values of n need to be considered, maybe often only one or two. 

If we assume that n is equally likely under Hp and Ha, specifically Pr(N = n|Hp) = Pr(N = n|Ha) then 

the weights simplify to Pr( | , )C aN n G H .  Note that the conditioning for Pr(N = n|Hp) = Pr(N = n|Ha) 

does not contain Gc or GP, and hence is informed only by whether or not the person of interest is a 

donor (but neither his profile nor the crime profile).  This assumption is likely to be true or 

approximately true in the vast majority of cases.  This is a remarkably useful finding and is the one we 

will examine here.   

Slooten and Caliebe conclude:  “Thus, we believe that unless there are compelling case specific 

reasons to work with different values of the number of contributors under both hypotheses, the LR will 

be determined as a weighted average of LR(n) each with the same number n in the numerator and in 

the denominator.” 
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We use a simplified model (given in supplementary material) and brute force integration to provide 

numerical values for the terms Pr( | , , , )n

j p

j

O N n H I S and Pr( | , , , )n

j a

j

O N n H I S  for equation 

1. 

We examine the performance of these equations in a very simple set of examples, cut down to the 

barest minimum of complexity to expose the underlying principles.  For simplicity we assign the 

allele probabilities p16 and p18 = 0.10 and use no adjustments for population co-ancestry.  This allows 

us to examine some current practices and arguments regarding assigning the number of contributors. 

Example 1.  Same assigned number of contributors under Hp and Ha 

Consider the fictional one locus electropherogram, modelling analysis on an ABI 3130 capillary 

electrophoresis instrument, shown in Figure 1.  Let the relevant background information be that this 

profile is from a semen stain on a sheet.   A woman, V, alleges she was raped in her bed by one man 

and that she has no consensual partners.  The sheet is from the bed on which she was raped.  One 

man, P, is identified as a suspect.  His genotype, GP, is 16,18.   The genotype of the complainant, GV, 

is 14,20. 

Figure 1.  A depiction of one locus of an electropherogram. 

The standard approach would be to examine all the loci in this profile with the knowledge of I, the 

relevant case circumstances, the genotype of V but not of P, and to assign the number of contributors 

as 1.  This is equivalent to assigning N= 1 in equation 1.   

Under Hp we specify that DNA from P is present.  If N = 1 then this genotype composes the 

genotype set.  Under Ha we specify that P is not present and if N = 1 there is one unknown donor 

who must be genotype 16,18.    

The genotype set S1 is, in principle, equal to the set of all genotypes. However for Hp all but {16,18} 

can be omitted in view of criterion 2, and for Ha all but {16,18} can be omitted in view of criterion 1.  
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Hence there is one set 1

1S  = {16,18} and 
1

1Pr( | {16,18}, 1)O S N   is the same under both Hp and Ha.  

Since P fully explains 1

1S  then 
1

1Pr( | ) 1pS H  .  Under Ha we require the unknown donor to be 

genotype 16,18 to complete 1

1S . This gives 50LR   which is the standard answer for this problem.   

Example 2.  Using the genotype of the accused to inform the number of contributors under Hp 

Next, consider that we speculate that P is genotype 16,16.  Now under Hp the accused is excluded if 

N = 1.  However, P can be considered a contributor to the mixture if we increase N to 2.  This feels 

very wrong, and has not been recommended by respected authorities due to concerns about 

contextual effects [2, 12].  In this paper we consider what would happen if the approach of using the 

accused’s profile under Hp was followed and compare it to the method of Slooten and Caliebe.  We 

use the same electropherogram and background information given above.  We assume N = 2 under 

Hp and N = 1 under Ha 

Under Hp and N = 2 we assume the presence P and need another donor, U, who has the 18 allele.  

This suggests U is 18,18 or 16,18 or 18,Q where Q is any allele other than 16 or 18.  There are two 

potential orders of the genotype of P and U. 

Under Ha and N = 1 we assume the presence a donor who has the 16,18 genotype.   

In Table 1 we give some of the terms and values used in Example 2.  Under Hp then j = 

{16,16;18,18} or {16,16;16,18} or {16,16;18,Q}.  Note that there are also the reverse orders of these 

{18,18;16,16} or {16,18;16,16} or {18,Q;16,16}.  This ends up as a factor of 2 in the column 
2Pr( | 2, )j pS N H .  The terms Pr( | , )n

jO S N n  in Table 1 are the probability of the observed peaks (at 

their observed heights), for the genotype set specified in the 
n

jS   column, and integrating across all 

values of mass parameter. The terms Pr( | , )n

jS N n H  are the genotypic probabilities and the final 

column in Table 1 is the product of these two terms and when summed across all genotypes sets can 

be thought of as Pr( | , )O N x H . 

Table 1.  Some of the terms used in example 2.  Q is any allele other than 16 or 18. 

1

jS   
1Pr( | , 1)jO S N   

1Pr( | 1, )j aS N H  
1 1Pr( | , 1)Pr( | 1, )j j aO S N S N H   

16,18 1.16 × 10-10 0.02 2.31 × 10-12 

 

2

jS  
2Pr( | , 2)jO S N   

2Pr( | 2, )j pS N H  

2 2Pr( | , 2)Pr( | 2, )j j pO S N S N H 

 

16,16;16,18 1.86 × 10-12 0.02 × 2 7.43 × 10-14 

16,16;18,18 1.78 × 10-12 0.01 × 2 3.55 × 10-14 

16,16;18,Q 4.81 × 10-23 0.16 × 2 1.54 × 10-23 

2 2Pr( | , 2)Pr( | 2, )j j p

j

O S N S N H   
131.10 10  
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Under Ha and N = 1 j = {16,18} and, 
1 1 12Pr( | , 1)Pr( | 1, ) 2.31 10j j a

j

O S N S N H      Under Hp and 

N = 2 the three genotype sets yield 
2 2 13Pr( | , 2)Pr( | 2, ) 1.10 10j j p

j

O S N S N H     .  This leads 

to:  

13

122.31

1.10 10
0.048

10
LR








  …equation 2.  This is now not an LR on Hp and Ha but on the events 

( 2)pH N   and ( 1)aH N   

In Table 2 we calculate the probability of observing the trace profile assuming it has two unknown 

unrelated contributors. 

Table 2.  Some of the terms used in examples 2 and 3.  Q is any allele other than 16 or 18.  

2

jS  
2Pr( | , 2)jO S N   

2Pr( | 2, )j aS N H  

2 2Pr( | , 2)Pr( | 2, )j j aO S N S N H 

 

16,16;16,18 1.86 × 10-12 0.0004 7.43 × 10-16 

16,18;16,18 1.68 × 10-11 0.0004 6.72 × 10-15 

16,18;18,18 1.86 × 10-12 0.0004 7.44 × 10-16 

16,18;Q,Q 5.22 × 10-13 0.0128 6.68 × 10-15 

16,Q;16,18 9.41 × 10-13 0.0064 6.02 × 10-15 

16,18;18,Q 9.53 × 10-13 0.0064 6.10 × 10-15 

16,16;18,18 1.78 × 10-12 0.0002 3.55 × 10-16 

2 2Pr( | , 2)Pr( | 2, )j j a

j

O S N S N H   2.09 × 10-14 

 

We next try the Slooten and Caliebe solution (they have several but we mean the one selected in the 

introduction) to this example. We consider N = 1 or 2.  Since P is excluded if N = 1 LR1 = 0.  The 

numerator of LR2 for N = 2 is 1.10 × 10-13 (see table 1).  The denominator of LR2 for N = 2 is 2.09 × 

10-14 (see table 2).  This gives LR2 = 5.32.  We obtain Pr( 1| , ) 0.991C aN G H   and 

Pr( 2 | , ) 0.009C aN G H   giving LR = 0.047. In contrast with the LR given in equation 2 the Slooten 

and Caliebe solution is an LR on Hp and Ha.   

Example 3.  Speculating there are N n  contributors under Ha. 

Let the relevant background information be that this profile is from a semen stain on a sheet.  A 

woman, V, alleges she was raped in her bed by one man and that she has no consensual partners.  

The sheet is from the bed on which she was raped.  One man, P, is identified as a suspect.  His 

genotype, GP, is 16,18.   Under Hp N = 1.  However, we speculate that the defense wish to assert that 

N may be 1 or more.   
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In figure 2 we give heat maps of two of the two donor genotype sets.  We have found these valuable 

to visualise the integration.  The colors represent the relative probability density of the profile given 

the genotypes and templates that appear on the x and y axes.  The left hand figure is for the genotype 

set 16,18;16,18.  Since the genotypes are the same all that is needed is for the sum of the templates to 

be approximately 1,000 rfu.  Hence we get a descending line of high density.  The right hand figure 

is for the genotype set 16,16;18,18.  To obtain a high density for the profile we need about 500 rfu of 

each donor (500 because they are homozygotes).  The plots show that the combination 16,18;16,18 

has a larger area of high density than 16,16;18,18 and this is reflected in the higher integral (see table 

2). 

  

Figure 2.   Heat maps of the probability density of varying contributor template amounts for each 

genotype for the two donor genotype sets.  Left is the set 16,18;16,18 and right is the set 

16,16;18;18.  Green is high density, yellow is a mid-level density and red is low density. We only 

show these figures to represent the relative values of densities and so do not provide absolute 

values for colors. 

 

12 14

prior that N=1 given prior that N=2 given 

10

2.31 10 Pr( 1| , ) 2.09 10 Pr( 2 | , )

1.16 10

a a

a a

H H

LR
N H I N H I 




    


 

This cannot be evaluated numerically without the priors on the number of contributors (marked in 

the equation).  However given the relevant background information, I, it is likely that 

Pr( 1| , ) Pr( 2 | , )a aN H I N H I    .  Equally, since Pr( 1| , ) Pr( 2 | , ) 1a aN H I N H I    it is in 

the interests of the defense to assign Pr( 1| , ) 1aN H I  .  This gives the standard answer for this 

problem (LR = 50). 

In this analysis we have restricted Hp to N = 1.  However the prosecution may wish to suggest that 

the number of contributors is at least 1 but not necessarily exactly 1.  We consider N = 1 or 2.  This 

suggests  

121

1 14
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If we again make the unlikely but conservative assumption that 

Pr( 1| , ) Pr( 2 | , ) Pr( 1| , ) Pr( 2 | , )a a p pN H I N H I N H I N H I        we obtain LR = 50  

We next try the Slooten and Caliebe [1] solution to this example. We consider N = 1 or 2.  Example 

1 gives LR1 = 50.  LR2 is 48.9 and we obtain Pr( 1| , ) 0.991C aN G H   and Pr( 2 | , ) 0.009C aN G H   

giving LR = 49.99. 

Example 4.   These previous examples were applied to the profile in Figure 1 which is a perfect fit to 

a heterozygote with the stutter values used.  In this example we vary the peak heights of the two 

allelic peaks and their stutters so that the peak height ratio (PHR) varies.  This was done by moving 

the height of the 18 allele upwards but maintaining the total height of all four peaks at 2000 rfu by 

moving the height of the 16 peak downwards.  The results are given in Figure 3. 

 

Figure 3.  The behaviour of Pr( | , )jO S N n  vs PHR 

The Pr( | , )n

jO S N n  usually trends downwards as PHR trends away from 1.  The exceptions are the 

sets {18,18;16,18}, {16,16;18,18} and {16,Q;18,18} where the genotypes have the ability to adjust 

the mixture ratio of the two donors to fit the peak heights better to the observed data.    

The values graphed in Figure 3 can be reprocessed to give the probability of the profile given the 

number of contributors Pr( | , )Pr( | )n n

j j

j

O S N n S N n   (see figure 4).   In this example the values 

for N = 1 and N = 2 become equal at PHR 51%.  Recall that this depends on the modelling and the 

allele probabilities.  However, it is pleasingly in line with experience.   

At PHR = 51%, the trace is equally likely under N = 1 or N = 2, and hence the profile does not 

update the prior probabilities on N = 1 or N = 2 to new values. The LR for any suspect is the 

weighted average of LR1 and LR2 where the weights are the priors. 
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Figure 4.  The behaviour of Pr( | , )Pr( | )n n

j j

j

O S N n S N n   vs PHR for the one and two donor 

solutions. 

Example 5.  Using the genotype of the accused to inform the number of contributors for a profile that 

does have some, but not conclusive, evidence supporting this. 

We consider a three-locus profile.  One locus has the peak heights shown in Figure 5 (termed the 

imbalanced locus) the remaining two loci have peak heights like those shown in Figure 1 (termed the 

balanced loci).   

 

Figure 5.  A depiction of one locus of an electropherogram showing imbalance, termed the 

imbalanced locus. 

At the imbalanced locus P = 18,18.  At the balanced loci P = 16,18.   

We follow Slooten and Caliebe [1].   
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We work with the propositions: 

Hp: The source(s) of DNA include POI  

Ha: The source(s) of DNA include unknown individual(s) unrelated to POI.

POI is excluded if N = 1.  If N = 2 POI helps the fit at the imbalanced locus.  At the other two loci a 

two-donor solution is not needed to support Hp and POI neither helps nor hinders the fit.  In Figure 6 

we give the heat map of the probabilities for the combined three locus solution from Example 5 in 

order to visualise the integration.  There is a general trend of x+y =1,000 rfu for the preferred 

16,18;16,18 solution at the two balanced loci.  For the unbalanced locus, the templates are 650 and 

1350 rfu.  This solves to 16,18;18,18 650: 350 and 16,16;18,18 325:675.  Some of the terms needed 

for this calculation are given in Table 3.   

 

 

Figure 6. Heat map of Example 5, three locus solution following Slooten and Caliebe [1].  Red is 

area of relative low probability and green high probability. 

Table 3.  Some of the terms needed for example 5.  

 N = 1 N = 2 

Pr( | , )Pr( | , )n n

j j p

j

O S N n S N n H   0 3.12 × 10-34 

Pr( | , )Pr( | , )n n

j j a

j

O S N n S N n H   1.04× 10-36 2.78 × 10-39 

LRn 0 1.12 × 105 
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50.002681 1.12  10 301LR     

Conclusions 

We compare the analyses above, and particularly the Slooten and Caliebe [1] solution, with several 

existing practices.  We recognise that we have discussed the simplest situations such as one donor, 

one locus and at most three loci.  This was to enable numerical integration and to expose the 

underlying principles.  It would be advantageous to examine more complex situations.  We hope to 

be able to report this soon. 

Our own experience is that most laboratories, and ourselves, assign the number of contributors, N = 

n, by allele count and a manual examination of peak heights.  This examination of peak heights may 

be informed by knowledge of characteristic variation of peaks height ratios, backward and forward 

stutter.  The profile of any assumed contributors may be used in this evaluation but the profile of the 

POI, Gp should not be used.  This value of N = n, is then used to calculate LRn.   

The weights for the weighted average suggested by Slooten and Caliebe [1] are Pr( | , )C aN n G H .  

As discussed above these weights are informed by the crime profile GC but not the profile of the POI.  

The current practice described above is a manual assignment of this weight.  However, to calculate 

LRn one or a very few values must be chosen and typically one of these is presented, usually the most 

conservative, rather than a weighted average.  This approach is shown in example 1.  Example 3 

allows a comparison of this practice with the suggestion of 1N   under Ha.  Current practice gives 

an acceptable approximation in this circumstance.  The suggestion that N = 2 led to a significant 

overstatement of the LR for this example.  

This fits with previous scholarship.  Evett et al. [13] concluded that: 

Provided the scientist has followed the guidelines and addressed propositions that 

are based on the number of contributors that best explains the questioned profile, 

then it is not to the advantage of the defendant to change the defence proposition to 

address a greater number of contributors. 

Similarly, Taylor et al. [14] carrying out the same process probabilistically conclude that: 

… due to the slight favouring of simpler (lower contributor) models, there is still 

no advantage in artificially increasing the number of contributors to one or both of 

the hypotheses … 

and Budowle et al. [2] state: 

… we stress that every effort should be made to provide the best estimate of the 

number of contributors. It is not in the best interest of the defense to suggest (an) 

unreasonable number of contributors; usually this will increase the LR favoring the 

prosecution's position. 

In example 4 we examined the probability of the profile under N = 1 and N = 2 as the PHR was 

varied away from 1.  The N = 2 solution explains the profile better, for this model, when 0.51PHR  .  

This is pleasingly in line with current usage. 

Our own preference is to stick with the outcome of the assignment made without knowledge of the 

genotype of the POI unless there is some very solid, unbiased, and supportable reason not to do so.  

However, we are aware that some laboratories will reassess if LR = 0 and often add one to N to “fit” 

the POI (termed N = n+1).  In effect the maximum of LRn and LRn+1 is reported.  This practice can be 
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examined using example 5.  In that example LR1 = 0 and LR2 = 1.12 × 105.  The most reasonable 

assessment of the evidence for this example, we suggest, is the Slooten and Caliebe [1] weighted LR 

value of 301.  If only LR2 is reported there is a significant chance of substantial overstatement of the 

LR.   

A more reasonable option is to allow optimisation of the assignment under Hp and Ha separately.  In 

example 2 this approach gives 0.048LR  versus the Slooten and Caliebe [1] value of 0.047.   

Example 5 can also be reprocessed into this approach.  We obtain 
34

36

3.12 10
302

1.04 10
LR






 


 equation 3 

(we are carrying more significant figures, the value 300 is obtained from the rounded values given in 

Table 3) for this approach versus the Slooten and Caliebe [1] value of 301.  Again we assume that 

the value 302 may be reported.   

In these two examples the difference between the LR obtained by optimising the assignment under 

Hp and Ha separately and the approach of Slooten and Caliebe [1] is small, but it is unclear whether 

this will be true in general. 

The LR for equation 3 is based on the propositions  2pH N   and  1aH N  .  The Slooten 

and Caliebe LR is based on Hp and Ha.   

Allowing 1N   under Ha and making the unlikely assumption that  

Pr( 1| , ) Pr( 2 | , ) Pr( 1| , ) Pr( 2 | , )a a p pN H I N H I N H I N H I       gives LR = 301.  Recall that 

the Slooten and Caliebe [1] solution used here requires only the much more plausible assumption 

Pr( 1| , ) Pr( 1| , ) and Pr( 2 | , ) Pr( 2 | , )a p p aN H I N H I N H I N H I      . 

These trials, and the solid theoretical development of their publication, suggest the Slooten and 

Caliebe [1] approach performs well. 
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Supplementary material 

The model assumes a template, T, and no degradation.  Hence the total allelic product for the 16 and 

18 alleles are the same.  The stutter ratio for allele a SRa = 0.008 × -0.03a where a is the allele 

designation.  This yields SR16 = 9.8% and SR18 = 11.4%.  The expected peak height is set as 
1 a

T

SR
 

and the observed stutter as 
1

a

a

T
SR

SR
.  The probability density for a stutter peak of observed height 

Oa-1 and expected height Ea-1 is modelled as 
2

1

1

log ~ 0,a

a
a

a

O k
N

bE
O

O





 
 
 
  
 

.  The probability density for 

an allelic peak of observed height Oa and expected height Ea is modelled as 
2

log ~ 0,a

a
a

a

O c
N

bE
E

E

 
 
 
  
 

.  
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In this experiment k2 = 10.45 and c2 = 2.52 which are typical values for Identifiler Plus at 29 cycles 

of PCR on an ABI3130. b is set to 1,000.     

The integrals of the type 

7,000

0

Pr( | , ) Pr( | , , )Pr( | )j j

T

O S N n O S N n T t T t N n dT


      are 

obtained by numerical integration.  The prior on template Pr( | )T t N n  is modelled as U[0,7,000] 

for each of the N contributors.   
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