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Contrast Enhancement by Multi-Level Histogram Shape e menuwation with
Adaptive Detail Enhancement for Noise Supre’ sion

Damian Tohl?, Jim S. Jimmy Li**

“College of Science and Engineering, Flinders University at Tonsley, GPO Box 2100, .~ '+id- 5A, 5001, Australia

Abstract

The usual problems associated with image enhancement include ~ver- .. 1 v~ ser-enhancement, halo effects at edges
and the degradation of the signal-to-noise ratio as the enhancemen. ~f details increases. Some of those problems
manifest in the background and some in the details of the enha»~~"*=-- _ Our proposed method is to apply different
techniques to enhance the background and details separately. .">r enhancement of the image background, a novel
multi-level histogram shape segmentation method which will detect . Srupt changes in the histogram is proposed so
that regions of intensity values with a similar frequency ¢ ~occr .... ce are segmented for individual equalization to
avoid over-enhancement. For detail enhancement, a novel au * dve median based enhancement method is applied to
the details to avoid over- and under-enhancement whi. * . “npre. ‘ing noise by limiting the degree of enhancement in
homogeneous regions. Halo effects due to the over-enh. nce.. °nt of edges are avoided in our proposed method by
using an edge preserving filter for the separation ¢~ ~ hack ~round and details so that edges are excluded from detail
enhancement. It has been shown that our proposea . ~ethoa is able to avoid the usual adverse problems of image
enhancement while producing adequate overall enhancemc.it.

Keywords: Contrast enhancement; histogra 1 shap. ~egmentation; histogram equalization; detail separation; guided
image filter.

1. Introduction

Histograms give an overview . 1.. ~ce grey level distri-
bution and density, average luminance, c. “trast and other
characteristics of images [1]. .11s. gram equalization flat-
tens and stretches the dyns nic r age of a histogram for
image contrast enhancement ,” - to improve visual per-
ception [3, 4, 5]. Howe er, there a. : two main problems
associated with stand: d hir .ogra 1 equalization, namely,
over- and under-enhance ent i . different regions of an
image. Over-enhar _c.aent res. its in an unnatural appear-
ance and under-¢ 1thancem. 1t results in a loss of details

*Correspon .ng autho™ Tel.: +61-8-82015050;
Email ad. esses: dam. wn.tohl@flinders.edu.au (Damian
Tohl), jimmy.. *@flinde  3.edu.au (Jim S. Jimmy Li)
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[6].

To overcome these problems, one approach [2, 7, 8, 9,
10, 11] is by segmentation of the histogram based on its
mean or median value to form sub-images and performing
histogram equalization on each sub-image independently.
Other approaches [12, 13, 14] include the application of
a different weight to each sub-image, as an approach to
reduce over- and under- enhancement. However, none
of those methods can completely avoid over-enhancement
due to the fact that histograms are segmented in a manner
such that they may include intensity values with a wide
range of frequency of occurrence and this may also cause
an undesirable effect of under-enhancement in other re-
gions.

Weighted thresholded histogram equalization (WTHE)
[6] applies a weight to the probability density function
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before histogram equalization. A smaller weight is given
to intensity values with a high frequency of occurrence
and a larger weight is given to intensity values with a low
frequency of occurrence. However, adjusting the weights
will not totally eliminate over- and under-enhancement as
this still inherits similar problems to histogram equaliza-
tion. WTHE also tries to preserve image brightness by
adding the difference of the mean brightness between the
original and the equalized images to the final image, but
this may cause clipping of the intensity values and reduce
the dynamic range of the image.

For the methods which only segment the histogram into
two sub-histograms, namely, brightness preserving bi-
histogram equalization (BBHE) [10], dualistic sub-image
histogram equalization (DSIHE) [11], bi-weighted his-
togram equalization (BWHE) [14], and minimum mean
brightness error bi-histogram equalization (MMBEBHE)
[9], these algorithms will only perform well for images
with well-defined bimodal distribution of the intensity
values. However, most images will not have the char-~-
teristics of such a histogram and those methods will n. *
generally produce favourable outcomes. Additional seg-
mentation thresholds are needed to segment the his. “>1a...
to reduce the over-enhancement problem.

For methods using multiple sub-histograms, namely,
local region stretching adaptive contrast .na.. “ment
(LRSACE) [15], recursive mean-separ ¢ histog am
equalization (RMSHE) [2], recursive suu ™age anis-
togram equalization (RSIHE) [8], rec rsively se, urated
and weighted histogram equalizatic 1 (R L WH™) [12],
and histogram modification using hilaw. | Be ser curve
(HMBBC) [16], over-enhancemer still cann. oe avoided
completely as the histograms ars no. 'ways segmented at
appropriate thresholds. In the LRSACE ... :thod, the seg-
mentation thresholds are fiy .d a d therefore not adapt-
able to various types of i ragec The recursive meth-
ods provide multi-level segmer.. “ion, but histograms may
be segmented at thres .olds that will still cause over-
enhancement. Moreo ‘t, re arsiv methods are known to
be computationally inefhic “nt.

There are som’ ower histegram based enhancement
methods which d notrely nsegmenting the histograms,
such as the auton. tic con’ ast enhancement method us-
ing reversible _...ahiaig (ACERDH) [17] and the gamma
correction t 1sed ada. ‘on histogram modification method
(GCAHM) ,'8]. AC' RDH manipulates histogram bins,

merging together those with the lo. ~st frequency of oc-
currence, but this can le d t¢ ~ loss of details due to
the merger of adjacent aisto ram vins. GCAHM ap-
plies gamma correction to .. * histogram to level out ar-
eas with a similar fr' yuency of vccurrence before apply-
ing histogram equal zation, bu this may cause inadequate
enhancement. Ano. er gan na based technique is the
adaptive gamn- . correcuun with weighting distribution
method (AGC WD) 15, 19, 20] which uses a modified
cumulative dis. “_ation unction as the adaptive gamma
value, but tu. meth_ - ends to increase the brightness of
an image which c. » result in over-enhancement.

Anou. ~approac 1is to treat contrast enhancement as an
optim. ~tion , ~"«em to be solved by minimizing a cost
function us. *o an S-shaped curve [21, 22, 23, 24]. The ro-
bt .iwage coatrast enhancement (RICE) [22] is one such
metho! that also uses the idea of saliency preservation to
_~eerve the brightness in images. However, this method

~ cc sstricted by the need to preserve brightness and will
pt. luce inadequate enhancement in some images.

Ou.er contrast enhancement methods that incorpo-
rate optimization problems include the BIQME-optimized
* rage enhancement (BOIEM) [25] and the RIQMC-
based optimal histogram mapping (ROHIM) [26] meth-
ods. BOIEM and ROHIM are focused on optimising
the BIQME and RIQMC image quality measures respec-
tively, to produce an output with optimum enhancement.
However, BOIEM optimized with big data will sometimes
produce inadequate enhancement while the ROHIM opti-
mized images will sometimes be over-enhanced and nei-
ther methods allow a user control over the degree of en-
hancement to produce a desirable output.

For contrast enhancement in the spatial domain, such
as spatial entropy-based contrast enhancement in dis-
crete cosine transform (SECEDCT) [27], residual spatial
entropy-based contrast enhancement (RSECE) [28] and
spatial mutual information and pagerank-based contrast
enhancement (SMIRANK) [29], all three methods pro-
duce contrast enhancement based on the distribution of
spatial locations of intensity levels. However, those meth-
ods do not provide any control over the degree of en-
hancement and in some cases, the degree of enhancement
may be inadequate. Both SECEDCT and RSECE meth-
ods tackle this inadequacy by increasing the weight to the
high frequency components in the frequency domain to
improve detail enhancement. However, this method of




detail enhancement will have minimal effect if the details
are already lost in the initial global contrast enhancement.
On the other hand, the noise level will be raised and halo
effects may be produced when the weights to the high fre-
quency components are increased resulting in output im-
ages with worse signal-to-noise ratio and halo effects at
edges.

For image enhancement methods with intended appli-
cations for enhancing low-light images, methods based on
the variational retinex model [30, 31] have been recently
developed. However, when the input image requires a
high degree of enhancement to produce a brighter im-
age, these methods will produce slight halo effects which
are visible at edges. Other image enhancement methods
based on neural networks [32] require training and are
therefore not suitable for real-time processing.

The problems with existing histogram segmentation
equalization techniques are that some segments may in-
clude intensity values with a wide range of frequency of
occurrence resulting in over- and under- enhancemet.
This motivates the proposal of our multi-level histogra. 2
shape segmentation method that can avoid these prob-
lems by segmenting the histogram in such a way . = ..
gions with a similar frequency of occurrence are group. '
together. Methods that provide detail enhancement will
not only enhance details but also noise w'.cn . most
evident in homogeneous regions of an i iage. By re-
ducing enhancement adaptively in homogen. 'S rec .ons
where there are no details to be enhar ed, our pi. posed
method can reduce noise in those regi ns ar 4 imr ‘ove the
signal-to-noise ratio of the image. Furu. more by sepa-
rating the edges from the details = rior to pe.. orming en-
hancement using an edge-prese’ ving Slter, our proposed
method will enhance only the details ana .. 5t the edges so
that halo effects at edges car e a dided.

Section 2 describes our 7 opos d enhancement method
and the results are preserted 1. ~ction 3. Section 4 gives
the conclusion.

2. Our Proposed Frhanc. -~ it Method

To prevent ov r- and w ler-enhancement in our pro-
posed method, a a. ¥erent e .hancement method is applied
to the backgr ....d ana uciails separately. As a guided im-
age filter (C .F)[33] 1. known to preserve sharp edges, it is
used to sepa ~te the de ails from the image background for
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Figure 1: Our proposed overall enhancement method.

separate enhancement. For background enhancement, a
novel method to resolve the problem of over-enhancement
as a result of histogram equalization is proposed by seg-
menting the histogram of the background at intensities
where abrupt changes have occurred so that each segment
includes only intensity values with a similar frequency of
occurrence and each segment is then equalized indepen-
dently. For detail enhancement, a novel technique is ap-
plied to enhance extracted details separately to a desirable
degree by an adaptive method before re-combination with
the enhanced background to produce the image output.
Furthermore, a novel noise suppression algorithm based
on median of absolute deviation from the median (MAD)
[34] is built into the enhancement algorithm so that the de-
gree of enhancement in homogeneous regions is reduced
in order to suppress the enhancement of noise for the im-
provement of the signal-to-noise ratio in the output image.

An image with a limited range of intensity values will
often have poor contrast associated with a limited color
dynamic range. Consequently, applying enhancement to
the luminance component only will produce an output im-




age with good contrast, but the color of the image will re-
main dull and faint due to virtually no improvement of the
color dynamic range. We therefore, apply the contrast ex-
pansion method [21] to the image in the RGB color space
to improve the dynamic range of colors as an initial step
of our proposed enhancement method.

2.1. Background and Detail Separation

SR
Image
Details
—
. e N
Guided
Luminance Image I, Image
Input Filter ° Background
(GIF)

Figure 2: Background and detail separation using a guided image filu. -

To extract the background of an image, the « oo
tional method is by filtering the original image by a Gau
sian low-pass filter to remove the details. The details are
then extracted by taking the difference betw cu a. origi-
nal image and the extracted background [* 5]. How. ver,
this conventional method for detail separatio.. “v a C ius-
sian low-pass filter will include edges i~ the extrac .d de-
tails and subsequent detail enhancem at w'.l cav-e some
degree of halo effects at edges. Tt 15 * erefr e neces-
sary to exclude edges in the extrac ed details . r enhance-
ment. Bilateral [36] and guidec i~ filters (GIF) [33]
are known to smooth out details while . >serving sharp
edges of an image. Howeve , by teral filters may suffer
from “gradient reversal” a’ «facts (33] and hence, GIF is
applied in our proposed methe to replace the Gaussian
low-pass filter so that “1e diference between its output
and the original imagr will xtrac the details without any
edges to avoid halo effec.. ~s sk ,wn in Fig. 2.

Let X be an or’_mnal image in RGB color space with
an intensity rang of [0, L - 1] where L is 256 for an 8-
bit image and X, . ~ the or put processed by the contrast
expansion m~ ..ud [21). ret I, be the luminance compo-
nent of X, ad I, be “ie image background, which is the
GIF output -ith I as he input. Hence, the image details,

1,;, without containing any edoes, ¢. = be extracted by the
following:

Ij=. -1 1)

The background + .d detai - are then enhanced individ-

ually.

2.2. Backgrou u cnhancement Using Multi-Level His-
togram S 'ape .egn. 'ntation
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Figure 3: Background enhancement by multi-level histogram shape seg-
mentation with the default values shown for the 807 test images.

In our proposed method, a novel multi-level histogram
shape segmentation method is developed for enhancement
of the background of the image. In order to avoid over-
enhancement, regions of intensity values with a similar




frequency of occurrence have to be separated for process-
ing individually. This can be detected by observing a
sudden change in the magnitude of neighbouring values
in the histogram of the image background, I,. To pre-
vent small fluctuations and to remove outliers in the his-
togram from producing an excessive number of segmenta-
tion points which will reduce the degree of enhancement,
the histogram, H, is smoothed by an @-trimmed mean fil-
ter [37] which is known to be able to effectively remove
outliers while smoothing the input to produce the output,
H,. A filter window width of M = 21 was used for the
a-trimmed mean filter and the smallest and largest values
inside the filter window were discarded, i.e. @ = 0.05.
Both M = 21 and @ = 0.05 were the default values for all
the 807 test images in our experimental results in section
3.

For the detection of abrupt changes at position, g, of
the smoothed histogram, H,, a window on each side of ¢
of width N is formed and the sum of the histogram values
inside each window is evaluated, where K, and K," ~e
the sum of the histogram values inside the windows to t. >
left and right hand side of g respectively as follows:

N
K= Hyg-k), @)
k=1

N
K, =) Hlg+h. 3)
k=1
This process is repeated for the f' .l rar se of ‘he his-
togram to produce a ratio curve, ¢, hic s ba zd on the
ratio of the maximum and minir am of K, und K,” as
given as follows:

cg) = {

where K,,i, = min {Kq’, Aqr}, o = max{qu, Kq’}, I is
the total number of pi els ¢ the } ickground image, I, d
is a percentage of |I,|, an. %’ i alogical ‘and’ operator.

When K,,;;, = 0 .u€e ratio of 11,4, to K, is undefined at
that point and it sill be re} ‘aced by unity, assuming that
it is a flat region . ~ the hi .ogram (i.e. Kyqx = Kpin) at
which no abr .. change nas occurred. When the number
of pixels w ¢hin the indow is too small, i.e. when the
number is s. ‘aller the . a percentage, d, of the size of the

% (Kmin >0 D gx > (llbl X d))
1

othe wise

. @)

image, they are the minoritv and 1.. -atio should also be
ignored and set to unity. (he »me of d is to be set by
the user to control the nv aber Jf seginentation thresholds
in regions of intensity valuc. vith a low frequency of oc-
currence. It is not ve y critical to the performance of our
proposed algorithm ind d = 4 % is used as a default value
for all the 807 test 1. “ages ir our experimental results in
section 3. The r _...s of wiw ratio curve give the location at
which abrupt nang . o. ‘he histogram have occurred and
therefore are i, _ocatio s at which the histogram should
be segmente. to pi. —uce the sub-images. The window
width, N, can be . sed to control the number of peaks in
the ratic “wve. In reasing N will reduce the number of
peaks '=tecte. - . in turn reduce the number of segmen-
tation thre,. ~Ids and vice versa. In other words, the de-
g ui wanancement will also be controlled by the value
of N. ' has been found experimentally that a window

‘== of, N = 16, gives the best balance between contrast

nh7 icement and the prevention of over-enhancement for
the test images. Hence, N = 16 was used as a default
7aluc for all the 807 test images in all our experimental
resuits in section 3.

To detect the location of the peaks, the first derivative,
¢’, of the ratio curve is evaluated and the zero-crossings of
this derivative give all the peak and trough locations. As
only the peak locations are required, only zero-crossings
where the sign changes from positive to negative are taken
as segmentation thresholds. Let S be the set of the seg-
mentation thresholds located at the peaks of the ratio
curve wheren = 1,2, ...,|S] and |S| is the cardinal number
of S as follows:

§={q:('(@) > 0)&('(g+1) <0)&(c(g) > O)}, (5)
where C is a threshold for the slope of the histogram and
N < g < L— N. The range for g is equal to [N, L — N) so
that both (2) and (3) are valid.

The ratio curve, c(g) at location g must be greater than
the threshold C for an abrupt change of the histogram
to have had occurred. In a flat region of the histogram,
c(q) = 1, hence, C must be greater than unity to detect
any abrupt changes. To avoid the inclusion of segmenta-
tion thresholds due to minor fluctuations in the histogram,
C is set slightly above unity to a value of 1.25. This value
of C = 1.25 was the default value for all the 807 test im-
ages in our experimental results in section 3.




In order to cover the full range of intensity values for an
intensity range of [0, L — 1], the lower and upper bounds
of the intensity range should be included to be the lower
and upper segmentation boundaries. Therefore, S (1) = 0,
S (IS]) = L are added to the set S and all the ¢ values in (5)
are re-assigned to [S (2), ..., S (IS|-1)] in the ranked-order
of magnitude of ¢g. The interval for each sub-image is
given by [S(n),S(n+ 1) — 1] wheren = 1,2,...,(IS|-1).

Let V, be the n* sub-image with intensity values within
the intensity interval of [S(n),S (n + 1) — 1] from the im-
age background, I, as follows:

Vi={(,)el, : S < LG, H<Sh+1D -1}, (6)

wheren =1,2,...,(S| - 1).
Let F,, be the n equalized sub-image output of V,, us-
ing standard histogram equalization [4]. Each F, is an
equalized sub-image over a section of the full intensity
range and the concatenation of all F,, will give an over-
all equalized background image, I »,» with the full intensity
range as follows:
IS|-1
D Fu

n=1

I, = @)

where

F,=(hG, j)el,:Sm)<L,i)<Sh+ -1, (8)

Fig. 3 gives the block diagram for bac. ~rounc en-
hancement using our proposed mul’ -level hi. gram
shape segmentation method.

2.3. MAD Based Adaptive Detail .nhancen. t

A novel median of absolute Jev. *ion from the me-
dian (MAD) [34] based adaptive methou :s proposed to
enhance only the details to . de ‘rable degree which is
settable by a user. In ho" ‘oger .ous regions of an im-
age, there are no details for ¢.. ancement and hence, in
order to suppress the ¢ han~emen. of noise to improve
the signal-to-noise ra’ o, n* enh: icement should be ap-
plied in those regions. A.. ~dayr .ve weight to control the
degree of enhance ..ent is nropused so that a desirable de-
gree of enhancer ent will « > applied to regions with de-
tails while maint. ning m’ .dimal enhancement in homo-
geneous regi- ... The auaptive weight applied to 1 is as
follows:

Iais ) = wai, PLaG, J), ®

Image I,
Backgmundj

MAI’

Adaptive Jetail

Fnhar _ment |
ﬂ (10)

Enhanced

& W
Image I, User Set
_+ Details

Details Weight, w=8 o=
i (default) o SW
P,
1
Non-Adaptive
Detail

Enhancement
(10)

Fiy ‘e 4: Detail enhancement method with the default values shown for
the &. 7 test images. S W is at P; when the adaptive algorithm is “ON”
w. " 2t Py when it is “OFF”.

where I is the enhanced details and w(i, J) is the adaptive
weight for detail enhancement at the location (i, j) given
as follows:

(-wy) —
w(i, j) = { Ws + T2 ®xMADG ) SW =P,

, (10
W SW=r, a0

where S W is at P; when the adaptive algorithm is “ON”
and at P, when it is “OFF”, wy is the user set weight for
detail enhancement, MAD(i, j) is the MAD [34] within
a 3x3 filter window centred at (i, j) in the image back-
ground, I, with an intensity range of [0, L — 1] and R is a
normalized scaler for the MAD given by the following:

_ 256

R .
L

(11)
For 8-bit luminance component, L = 256 and R = 1.

The MAD is used as a robust estimator for the standard
deviation. In homogeneous regions of the image back-
ground, I, the MAD value will tend to zero and there-
fore the adaptive weight, w(i, j), will tend to unity. In this
case, no enhancement will be applied regardless of the
value of w, and hence, there will be no enhancement of
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Figure 5: Adaptive weight, w, verses (R X MAD) for various user set
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noise in those regions for the improvement of the sigr~I-
to-noise ratio. In other non-homogeneous regions, t >
MAD value will be large and the adaptive weight will
be approaching the user set weight, w,. Increa. ~v ..,
above unity will increase the degree of detail enhanc.
ment in non-homogeneous regions and vice versa. Fig.
5 gives the curves for the adaptive weight, =, ;, ‘erses
(R x MAD) for different user set weight , ws by \'0).
The solid red line, which shows the adaptive , ~ight ¢ irve
when SW = P, (i.e. the adaptive algor’ .nm is “O.. ) and
wy = 8, is the default value used for al” che € ,7 tes” images
in our experimental results. Wher (k. JAL tends to
zero in homogeneous regions, w(i /) tends to .nity which
is the weight for no enhancemer . v =n (R X MAD) gets
larger in non-homogeneous regions, wi., j) approaches
the user set weight quickly, * , pr« luce uniform enhance-
ment in all non-homogene us re .ions. Fig. 4 gives the
block diagram for our prrpose. “1AD based adaptive de-
tail enhancement methc .. Th~ defaut position for switch,
SW,is Py, at which ar’ wtiv deta’ enhancement is turned
on. However, if the user w. hes ‘ » enhance weak details in
homogeneous reg’ ,us at the e.pense of poorer signal-to-
noise ratio, the a aptive eq ation for detail enhancement
can be turned off t._ switch’ 1ig S W to P, and the detail en-
hancement w __at, wy., ;), will be a constant value equal
to the user ¢ :t weigh. w; for all regions of the image.
The final nhanced mage, Y, is obtained by combining

the enhanced background, /- witn, = enhanced details,

1,, as follows:

Y=2u, -1 (12)

Refer to Fig. 1 f r our pt nosed overall enhancement
method.

3. Results

The test . ~ages ==~ . for quantitative evaluations and
visual assessme.. are comprised of the TID2013 [38],
NIRRC™ [39] anc CSIQ [40] datasets. The TID2013
datasr « [38, ~n sts of 25 reference images for which
the conti«. * is increased and reduced to 5 different lev-
el “* "7 Corresponds to a small contrast reduction;
“leve. ?” corresponds to a small contrast increase; “level
?” corresy snds to a larger contrast reduction; “level 4”
~orrf ,pu..ds to a larger contrast increase; and “level 57
cu - esponds to the largest contrast reduction. The NIR-
RGL dataset [39] consists of 477 RGB natural and near-
ini. red (NIR) images. The CSIQ dataset [40] has 30 ref-
« "ence images to which the contrast is incrementally re-
duced where “level 17 is the smallest amount of contrast
reduction and “level 5” is the largest amount of contrast
reduction. All the images from the three datasets, exclud-
ing those NIR images in the NIRRGB dataset, giving a
total of 807 test images, were used in our tests. These
three datasets combined provide a large number of natu-
ral and simulated images of varying contrast that provide
a significant challenge for many enhancement algorithms.

Our proposed method is compared with ten bench-
marking algorithms, namely, RSWHE [12], WTHE [6],
AGCWD [13], SSTF [24], RICE [22], SECEDCT [27],
SMRIANK [29], BOIEM [25], ROHIM [26] and IESCSA
[21]. Default parameter settings for all algorithms are
used. In our proposed method, the user set weight for
detail enhancement, w; = 8, was used for all our exper-
imental results except Fig. 8 which shows the effect of
enhancement with various values of wy.

3.1. Quantitative Results

Three image quality measures (IQMs), namely, the
quality-aware relative contrast measure (QRCM) [29],
the blind image quality measure of enhanced images
(BIQME) [25] and the no-reference image quality metric




Table 1: The p-values for QRCMy > QRCMp. M1:RSWHE, M2:WTHE, M3:AGCWD, M4:SSTF, M5:RICE, Mu.. "CEDCT, M7:SMIRANK,
MS8:BOIEM, M9:ROHIM, M10:IESCSA, M11:Proposed (S W=P1), M12:Proposed (S W=P,).

Alg. B

Algg A | MI M2 M3 M4 M5 M6 M7 M8 M9 MIO MIl MI2
Ml - 0102 0302 0.193 0380 0000 0.001 0200 0.188 0.069 0.00 0.000
M2 | 0898 - 0606 0788 0.855 0002 0029 .//3 0439 0492 0.000 0.000
M3 | 0698 0394 - 0520 0682 0009 0083 &, 0 67 0416 0019 0.001
M4 | 0807 0211 0480 - 0756 0.005 0031 9684 4284 0317 0005 0.000
M5 | 0617 0145 0318 0243 - 0002 0010 00> 0229 0.102 0002 0.000
M6 | 1.000 0998 0991 0995 0998 -  N98 09°, 0979 0989 0.357 0.072
M7 | 0999 0970 0916 0969 099 0016 - 0967 0813 0.892 0033 0.005
M8 | 0.800 0226 0379 0316 0949 0002 wvw>> - 0285 0.192 0002 0.000
M9 | 0812 0560 0633 0716 0771 0021 0.2 0715 - 0515 0031 0010
MIO | 0929 0507 0582 0682 0898 0.'l1 ,..3 0804 0483 - 0016 0.009
M1l | 1.000 1.000 0981 0995 0998 064~ 0967 0998 0969 0984 -  0.005
MI2 | 1.000 1.000 0999 1.000 1.000 “v.” 0995 1000 0990 0991 0995 -

Table 2: The p-valuc. "t BIOME4 > BIQMEp.

Alg. B
AlggA | MI M2 M3 M4 MS M6 M7 M8 M9 MIO MIl MI2
Ml - 0055 0602 J34° 0336 0232 0.020 0222 0.152 0.171 0.010 0.051
M2 | 0945 - 0748 °Cu6 ,914 0.716 0543 0857 0444 0616 0325 0305
M3 | 0397 0250 - 037> 0361 0346 0268 0340 0.191 0.285 0.188 0.188

M4 0.652 0.090 C 023 - 0.591 0.301 0.196 0.538 0.197 0.171 0.108 0.104
M5 0.663 0.083 .29 0.406 - 0302 0.192 0.203 0.202 0.176 0.051 0.089
M6 0.767 0.287 0./,4 0.698 0.696 - 0252 0.613 0.279 0.353 0.138 0.144

M7 0.879 0474 wuv..?1 0.804 0.808 0.745 - 0.753 0369 0.520 0.312 0.291
M8 0.777 (.141 0.6A0 0.461 0.794 0.384 0.244 - 0.243 0.230 0.084 0.118
M9 0.848 0. 0,09 0.803 0.792 0.719 0.631 0.755 - 0.585 0477 0475
M10 | 0.82° 0383 u.711 0.824 0.823 0.647 0.478 0.768 0.415 - 0.263  0.248
Mi11 09¢Y 0.672 0.812 0.891 0948 0.862 0.686 0914 0.522 0.735 - 0.338
Mi12 | ~°49 275 0.810 0.896 0911 0.856 0.709 0.882 0.523 0.752 0.654 -




Table 3: The p-values for NIQMC4 > NIQMCp.

Alg. B v A
Al A| MI M2 M3 M4 M5 M6 M7 M8  JM9 .10 MIl  MI2
M1 - 0086 0437 0494 0596 0089 0015 0421 0284 0286 0024 0.009
M2 | 0914 - 0670 0968 0901 0487 0202 0.890 "7 0726 0393 0227
M3 | 0563 0330 - 0606 0590 0361 0222 574 361 0512 0327 0270
M4 | 0506 0032 0394 - 0532 0046 0017 G.o0 0394 0154 0045 0016
M5 | 0404 0099 0410 0468 - 0071 0015 .30 0247 0257 0.026 0.009
M6 | 0910 0512 0639 0953 0929 -  0.10 091, 0544 0838 0388 0.200
M7 | 0985 0798 0778 0983 0985 0.860 T4 0699 0922 0771 0.585
M8 | 0579 0110 0426 0540 0770 0.088 0026 - 0295 0327 0.037 0.009
M9 | 0716 0478 0639 0906 0753 0456 ~301 0705 -  0.672 0441 0354
MIO | 0714 0273 0488 0846 0743 0°<' 0070 0673 0328 - 0141 0.050
MI1 | 0976 0606 0673 0955 0974 0.6.> 0228 0963 0559 085 - 0076
MI2 | 0991 0773 0730 0984 0991 ~799 0415 0991 0.646 0950 0924 -

Table 4: The average processing time per image for each algorithm .
seconds for each dataset.

Time in secona.

Algorithm | TID2013  CSIC NIRk.« 3
HE 0.31 0. 079
RSWHE 0.31 r.34 ©.78
WTHE 0.37 (VA 0.89
AGCWD 0.34 0.38 0.88
RICE 0.40 )43 0.95
SECEDCT 1.11 1.10 3.08
SMIRANK 1905 0.79 2.07
BOIEM - R 2.77 4.23
ROHIM 7.09 9.37 24.36
IESCSA 16.5% 13.37 14.39
Proposed 2.12 2.16 5.70
Aver ge 2.96 2.86 5.28

for contrast distortion (NIQMC) [41] were used for our
quantitative comparison. QRCM is a combination of the
relative contrast enhancement between the input and out-
put image, and any distortions that result from enhance-
ment, BIQME combines contrast, sharpness, brightness,
colorfulness and naturalness into one quality score using
aregression module and NIQMC combines both local and
global information together to produce a score based on
the concept of information maximization. All the bench-
marking and our proposed algorithm were evaluated us-
ing all the 807 test images from the three datasets. The
QRCM, BIQME and NIQMC values for each benchmark-
ing algorithm were found for each of the 807 test images
to statistically determine which algorithm provided the
best enhancement.

The p-values [29] in Table 1, represent the propor-
tion of enhanced test images when {QRCM, > QRC M}
where QRCM, and QRCMp are QRCM values produced
by algorithms A and B, for a test image, respectively.
When compared with all the ten benchmarking algo-
rithms, namely, RSWHE (i.e. M1), WTHE (i.e. M2),
AGCWD (i.e. M3), SSTF (i.e. M4), RICE (i.e. M5),



SECEDCT (i.e. M6), SMIRANK (i.e. M7), BOIEM (i.e.
M8), ROHIM (i.e. M9), and IESCSA (i.e. M10), our pro-
posed method when the adaptive algorithm was “on” (i.e.
Row M11 where S W was at position P;) produced an av-
erage p-value of higher than 0.96 except when compared
with SECEDCT (i.e. M6) where it was 0.642. As all the
p-values are greater than 0.5, our proposed method when
the adaptive algorithm is “on” outperformed all the bench-
marking algorithms. When comparing all the ten bench-
marking algorithms with our proposed method when the
adaptive algorithm was “oft” (i.e. Row M12 where S W
was at position P,), the p-values were higher than 0.92
for all the 807 test images. In other words, our proposed
algorithm statistically outscored all the ten benchmarking
algorithms for all the 807 test images in the three datasets
quantitatively regardless of the position of switch, SW.
The better score for our proposed method when S W was
at position P, was due to the fact that QRCM is based on
the image gradient and a higher degree of enhancement
in the homogeneous regions will give a higher score 2° a
result. On the other hand, the output image when SW _~
at position P; (i.e. the adaptive algorithm is “ON”) gives
a cleaner image in homogeneous regions as show.. "t u.c
visual assessment results in the following section 3.2.

For the comparison of our proposed method with the
other ten benchmarking algorithms using BY svi, *he p-
values in Table 2 show that our proposed r :thod at e her
position of the switch (i.e. both M11 and n."?) ov per-
formed all of the ten benchmarking 2 gorithms +..th p-
values over 0.52.

For the comparison using NIQM(", as .* »wn * { Table 3,
our proposed method outperforme « the othe: .1ne bench-
marking algorithms except SM'RA. ¥ (i.e. M7). One
reason is that the NIQMC score is basea . a the contrast-
distortion caused by an enh' ace: ent method. As SMI-
RANK will often over-enb ace t".e contrast of an image,
it is not surprising this m~thoa , “~duced better results for
this IQM. However, its core produced by NIQMC, does
not generally agree v h tb  visv . assessment as shown
in the following visual as. ~smr .t section.

Table 4 gives th average prucessing time per image for
each algorithm tc process . 'e set of test images. All the
benchmarking anc our pre yosed algorithms were coded
in MATLAR ...d processed using a Quad Core i7 pro-
cessor. It s .ows tha. the speed of our proposed method
is about the average f the speed of all the benchmark-
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ing algorithms. Even though our pi. ~osed method, when
implemented in software * sing » ~eneral purpose proces-
sor, is not the fastest ame g the oencumarking algorithms,
its non-iterative structure ca. “e implemented using ded-
icated hardware, suc’. as field-programmable gate arrays
(FPGAs), for real-t ne proces ing [42, 43].

3.2. Visual Assr 1em

(€3}

(©) (h)

Figu. 6: The original images used for visual assessment; (a) the moun-
« "~ image, (b) the lake image, (c) the country image, (d) the building
image, (e) the test pattern image, (f) the girl image, (g) the foxy image
~ 1 (h) the pyramid image.

In this section, some of the test images from the three
datasets, as shown in Fig. 6, were used for visual assess-
ment to compare our proposed method with the ten bench-
marking algorithms.

To visually assess our proposed multi-level histogram
shape segmentation method for the enhancement of the
image background alone, it was only compared with other
methods using histogram segmentation, namely, BBHE
[10], MMBEBHE [9], RMSHE [2] and RSIHE [8]. In
order to clearly illustrate the differences among the meth-
ods, cropped regions of the output images are shown with
the corresponding histograms in Fig. 7. It is obvious
that the whole cropped region, particularly the moun-
tain region at the centre of the image, was over-enhanced
with a loss of details by all of the benchmarking algo-
rithms as shown in Fig. 7(b) - Fig. 7(e), while our pro-
posed method produced a better contrast image without
any over-enhancement in the sky or mountain regions. It
is evident that our proposed method based on the detec-
tion of abrupt changes in the histogram was able to avoid
the problem of over-enhancement by segmenting the im-
age at appropriate locations of the histogram.
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Figure 7: The results f different 1 ulti-level histogram equalization methods applied to (a) the mountain image from the NIRRGB dataset [39] by
(b) BBHE, (c) MMBE. HE, (d) F VMSHE, (e) RSIHE, (f) Our proposed method without adaptive detail enhancement (i.e. ws; = 1). The red dotted
lines in the histor . indic... .cgmentation locations.

(e) ®
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(a) (b)

©
Figure 8: The results for our proposed method using a different user s«
weight, wg, on (a) the lake image from the CSIQ dataset [40] for (b)
wg =1, (c) wy =8, (d) wy = 16.

(d)

To assess the changes of the degree of de* .. «. “ance-
ment with various values of the user set v cight, w, wvas
set to the values of 1, 8 and 16 as shown . Fig. s(b)
- Fig. 8(d), respectively. This shows .at our p. posed
method allows the user to have contrr . ove' a wirle range
of the degree of detail enhancement w..'~ most :nhance-
ment methods have no or limited ontrol ov. the degree
of detail enhancement. In genr a,, v. = 8, provides a
good degree of detail enhancement ana . nce, it was set
as the default value in our e pei. 1ental results for com-
parison with other benchm- king .gorithms.

To examine the effect” of v. Yground and detail sep-
aration using different - indcv size, of the GIF, window
sizes of 3x3, 5x5 and " <7 w .re ar ,lied and the output im-
ages are shown in Fig. 9(v, Fis 9(d), respectively. From
our observations, - smaller filw.r window size will include
only finer details while a b. rger window size will include
more coarse detal. to be ¢ thanced. In our experimental
results, a wir " v size ur JX5 was set as the default value
to produce »alancea utputs for all our experimental re-
sults.

12

© (@
_"~ure 9: The results for our proposed method with different guided
image filter window sizes on (a) the country image from the NIRRGB
¢« taset [39] with (b) [3x3] window size, (¢) [5x5] window size, (d) [7x7]
window size.

To examine our proposed adaptive detail enhancement
algorithm in the suppression of noise in homogeneous re-
gions, the switch § W was set at position P; and P, to pro-
duce the outputs shown in Fig. 11(b) and Fig. 11(c), re-
spectively. When comparing the outputs with the original
image, as shown in Fig. 11(a), which is a cropped region
of Fig. 6(d), the noise level in the homogeneous region
of Fig. 11(b) when the adaptive detail enhancement was
turned off (i.e. when SW = P,) was much higher than
that in Fig. 11(c) when the adaptive detail enhancement
was turned on (i.e. SW = P;). On the other hand, the
enhancement in non-homogeneous regions was similar in
both Fig. 11(b) and Fig. 11(c).

To examine the difference of the halo effects after de-
tail enhancement between the conventional method using
a Gaussian lowpass filter and a GIF for background and
detail separation, an image with sharp edges at various
angles as shown in Fig. 12(a) was used as the input. The
enhanced output produced by the conventional Gaussian
lowpass filter, as shown in Fig. 12(b), displayed strong




b e r i
(a) Input (b) RSWHE (0.034) (c) WTHE (0.052) (d) AGCWD (0.066)

(e) SSTF (0.049) (ORI 7 (0.049) (2) SECEDCT (0.174) (h) SMIRANK (0.087)

el |
(i) BOIEM (0.044> (j) ROHIM (0.031) (k) IESCSA (0.059) (1) MLHSS (0.317)

Figure 10: The enhancemei.. ¢ its ans the corresponding QRCM values (shown in brackets) using (a) the building image from the NIRRGB
dataset [39] as the input for (b) k. ""H' , (¢) WTHE, (d) AGCWD, (e) SSTF, (f) RICE, (g) SECEDCT, (h) SMIRANK, (i) BOIEM, (j) ROHIM, (k)
IESCSA and (1) Prope .d (3 W = P w.e. the adaptive algorithm is “ON”)).
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Figure 11: The results for different detail enhancement on a cropped
area of the (a) the building image from the NIRRGB dataset [39] for
(b) our proposed method with a constant enhancement weight, wy = 8
(SW at P (i.e. the adaptive algorithm is “OFF”)) and (c) our proposed
method with adaptive enhancement, wy = 8 (S W at Py (i.e. the adaptive
algorithm is “ON")).

(a) (b) ©
Figure 12: The results of using different filter types for background ana

detail separation on (a) the contrast reduced input image fes ~ **2rn

from the TID2013 dataset [38] with (b) a Gaussian low pass fi. and
(c) aGIE.

halo effects at the proximity of the sharp :dges par cu-
larly along the rims of the circles and all the ~harar ers,
while the enhanced output using a GIF as shown .1 Fig.
12(c), showed no sign of halo effects .call.

For overall visual comparison with « ~er br ichmark-
ing enhancement methods, the bv «ding imag , as shown
in Fig. 10 from the NIRRGB d .«asc "39] was used as it
consists of sharp edges at different angles Lf the building
and homogeneous regions in .ae s y and the facade of the
building. The benchmarkir r me* «ods, namely, RSWHE,
WTHE, SSTF, RICE, SMIRA: ~ and BOIEM, as shown
in Fig. 10(b) - 10(c), T«g. '9(e) - 10(f) and Fig. 10(h)
- 10(i) respectively, p- duc’ d neg (gible overall enhance-
ment, particularly for the ~flec (ons in the window. For
AGCWD, ROHIM and IFSC.LA as shown in Fig. 10(d)
Fig. 10() and I g. 10(k, respectively, both produced
over-enhanced ou. “ut ima es, causing an unnatural ap-
pearance in ‘.. color u: the sky and the building. For
the method with sep. ate detail enhancement in the high
frequency ¢ main, n: nely, SECEDCT as shown in Fig.

(d) AGCWD

(j) ROHIM
1 v 2 13: The enhancement results using (a) the girl with painted face
ima_ > from the TID2013 dataset [38] as the input for (b) RSWHE, (c)
"WTH. , (d) AGCWD, (e) SSTF, (f) RICE, (g) SECEDCT, (h) SMI-
RAa. K, (i) BOIEM, (j) ROHIM, (k) IESCSA and (1) Proposed (SW =
i (i.e. the adaptive algorithm is “ON”)).

nATEM (k) IESCSA (1) MLHSS

(a) Input (b) RSWHE (c) WTHE (d) AGCWD

(e) SSTF

(i) BOIEM (j) ROHIM (k) IESCSA
Figure 14: The enhancement results using (a) the foxy image from the
CSIQ dataset [40] as the input for (b) RSWHE, (c) WTHE, (d) AGCWD,
(e) SSTF, (f) RICE, (g) SECEDCT, (h) SMIRANK, (i) BOIEM, (j) RO-
HIM, (k) IESCSA and (1) Proposed (SW = P; (i.e. the adaptive algo-
rithm is “ON”)).

(I) MLHSS
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£

(a) Input (B)RSWHE () WTHE  (d) AGCWD
7 4

(e) SSTF (HRICE  (g) SECEDCT (h) SMIRANK
&=

(i) BOIEM ()ROHIM (k) IESCSA (1) MLHSS

Figure 15: The enhancement results using (a) the pyramid image from
the NIRRGB dataset [39] as the input for (b) RSWHE, (c) WT' =
(d) AGCWD, (e) SSTF, (f) RICE, (g) SECEDCT, (h) SMIRANK, "
BOIEM, (j) ROHIM, (k) IESCSA and (1) Proposed (SW = P; (i.e. the
adaptive algorithm is “ON”)).

10(g), halo effects are produced at the edges . .. - build-
ing and noise is also enhanced in the hor .ogeneou re-
gions of the sky and the building facade. < 'r prop sed
method was able to enhance the imag’ , particu. - y the
reflections in the window without caus ng a’ y hal» effects
and maintain noise free homogeneous .. ~ .ns as shown in
Fig. 10().

For visual assessment of the nu. ~ement algorithms
on natural human skin, which is known > be challeng-
ing for many enhancement a’ ;or1. ms, a contrast reduced
version of a human face, ne ely * .e girl with painted face
image as shown in Fig. 13(a) s used. The girl’s face
was over-enhanced by 1GC'WD w.ch reduced details as
shown in Fig. 13(d) # d th- degr ¢ of over-enhancement
was even worse for ROH..  as  iown in Fig. 13(j), witha
loss of details and  ver-satirauon around her right eye and
the background. “or RSW._'E, SSTF, RICE and BOIEM
as shown in Fig. 1. ‘b), Fig [3(e) - 13(f) and Fig. 13(i) re-
spectively, tb ._ar ennaucement methods produced inad-
equate enhs icement ith virtually invisible enhancement.
For WTHE, SECED( T, SMIRANK IESCSA, shown in

15

Fig. 13(c), Fig. 13(g) - 13(b* and 1 ._ 13(k) respectively,
the contrast of the girl’s f' ce w 1< over-enhanced causing
an imbalance of intensi’ - of *.e gini's face with her left
cheek being too dark and he. “cht cheek being too bright.
Our proposed methce ., as shown m Fig. 13(1), gave well
balanced enhancen 'nt to the Yackground with adequate
enhancement of the ‘etails. [he dynamic range of the
color of our pre” o.ed meuwwd has also been improved and
the color has ome “_ u. *, while the color of most of the
other benchma.” ".ig algr rithms remained dull and faint.

For visua, <sess. _at of the enhancement algorithms
on a natural scc. = with wildlife, a contrast reduced
version . © a fox, iamely the foxy image as shown in
Fig. "“@a) w - .sed. For the benchmarking methods,
namely, k."VHE, AGCWD, SSTF, RICE and BOIEM,
as wowu w rig.  14(b), Fig. 14(d) - 14(f) and Fig.
14(i) . ~nectively, only minimal enhancement was pro-
*=~ed. Stionger enhancement was produced by WTHE,
"EC :DCT and SMIRANK as shown in Fig. 14(c) and
Fi,  14(g) - 14(h) respectively, but the color remains
vash .d out and dull. On the other hand, the enhanced
ouyput by ROHIM, as shown in Fig. 14(j), was severely
« er-enhanced with a loss of details. IESCSA and our
proposed method, shown in Fig. 14(k) - 14(1) respectively,
both produced strong enhancement with full vivid color,
but our proposed method provided sharper detail enhance-
ment, highlighted by the fur coat of the fox.

For visual assessment on a natural landscape, the pyra-
mid image as shown in Fig. 15(a) was used. For
the benchmarking methods, namely, RSWHE, AGCWD,
SSTF, RICE, and BOIEM, as shown in Fig. 15(b), Fig.
15(d) - 15(f) and Fig. 15(i) respectively, inadequate en-
hancement can be seen in the output images. On the other
hand, the WTHE and AGCWD methods, as shown in
Fig. 15(c) - 15(d) respectively, over-enhanced the sand in
front of the pyramid, resulting in a loss of details. Over-
enhancement was also produced by the SECEDCT and
SMIRANK methods, as shown in Fig. 15(g) - 15(h) re-
spectively, as seen by the extreme variation of dark and
light regions in the sky and the pyramid. ROHIM, as
shown in Fig. 15(j), severely over-enhanced the image re-
sulting in highly saturated and unnatural color. IESCSA,
as shown in Fig. 15(k) produced some degree of enhance-
ment while our proposed method, as shown in Fig. 15(1)
produced adequate natural enhancement revealing more
details in the pyramid and the city behind the pyramid.




4. Conclusion

A novel image enhancement method by enhancing the
background and details using individual novel enhance-
ment techniques has been proposed. It has been shown
that our proposed multi-level histogram shape segmen-
tation method is able to enhance the background of an
image without over-enhancement by the segmentation of
intensities with a similar frequency of occurrence for in-
dividual equalization. By excluding edges in detail en-
hancement through a guided image filter (GIF), halo ef-
fects at edges have been avoided. Our proposed adap-
tive detail enhancement method was also proven to be
able to maintain low noise level in homogeneous regions
by suppressing the enhancement of noise in those re-
gions. It has been shown that our proposed method out-
performed the other benchmarking algorithms both quan-
titatively and visually without the usual adverse prob-
lems of other enhancement methods in terms of over- and
under-enhancement in different regions and halo effc -
at edges. Future research is the hardware implementatio.
of our proposed method on FPGAs for real-time image
enhancement with applications including digital TV.
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