

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/

'This is the peer reviewed version of the following article: Bahl, J. S., Nelson, M. J., Taylor, M., Solomon, L. B., Arnold, J. B., & Thewlis, D. (2018). Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 26(7), 847–863. https:// doi.org/10.1016/j.joca.2018.02.897,

which has been published in final form at https://doi.org/10.1016/j.joca.2018.02.897

© 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis

Jasvir S. Bahl, Maximillian J. Nelson, Mark Taylor, Lucian B. Solomon, John B. Arnold, Dominic Thewlis

PII: S1063-4584(18)31013-6

DOI: 10.1016/j.joca.2018.02.897

Reference: YJOCA 4182

To appear in: Osteoarthritis and Cartilage

Received Date: 28 August 2017

Revised Date: 4 February 2018

Accepted Date: 12 February 2018

Please cite this article as: Bahl JS, Nelson MJ, Taylor M, Solomon LB, Arnold JB, Thewlis D, Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis, *Osteoarthritis and Cartilage* (2018), doi: 10.1016/j.joca.2018.02.897.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Biomechanical changes and recovery of gait function after total hip
- 2 arthroplasty for osteoarthritis: a systematic review and meta-analysis
- 3 Jasvir S. Bahl¹, Maximillian J Nelson¹, Mark Taylor², Lucian B. Solomon^{3, 4*}, John B. Arnold
- 4 ^{1*}, Dominic Thewlis ^{3*}
- ⁵ ¹Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for
- 6 Health Research & School of Health Sciences, University of South Australia, Adelaide,
- 7 Australia
- ⁸ ²The Medical Device Research Institute, School of Computer Science, Engineering and
- 9 Mathematics, Flinders University, Adelaide, South Australia
- ¹⁰ ³Department of Orthopaedics and Trauma, Level 4 Bice Building, Royal Adelaide Hospital,
- 11 North Terrace, Adelaide, South Australia, Australia
- ¹² ⁴Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma,
- 13 University of Adelaide, Adelaide, South Australia, Australia
- 14
- ¹⁵ *JBA, LBS and DT played equal roles in this research as joint senior authors.
- 16
- 17 **Running title:** Gait biomechanics after hip replacement
- 18

19 Contact details:

- 20 Maximillian J Nelson: <u>maximillian.nelson@mymail.unisa.edu.au</u>
- 21 Mark Taylor: <u>mark.taylor@flinders.edu.au</u>
- 22 Lucian B. Solomon: <u>Bogdan.Solomon@sa.gov.au</u>
- 23 John B. Arnold: John.Arnold@unisa.edu.au
- 24 Dominic Thewlis: <u>dominic.thewlis@adelaide.edu.au</u>
- 25
- 26 Corresponding author:
- 27 Jasvir S Bahl, Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom
- Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide,
- Australia 5001, Email: jasvir.bahl@mymail.unisa.edu.au, Phone: +61 8 8302 1305

30 **Objective**

To determine the change in walking gait biomechanics after total hip arthroplasty (THA) for osteoarthritis (OA) compared to the pre-operative gait status, and to compare the recovery of gait following THA with healthy individuals.

34 Methods

- 35 Systematic review with meta-analysis of studies investigating changes in gait biomechanics
- after THA compared to (1) preoperative levels and (2) healthy individuals. Data were pooled
- at commonly reported time points and standardised mean differences (SMDs) were
- calculated in meta-analyses for spatiotemporal, kinematic and kinetic parameters.

39 Results

- 40 Seventy-four studies with a total of 2477 patients were included. At 6 weeks postoperative,
- 41 increases were evident for walking speed (*SMD*: 0.32, 95% CI 0.14, 0.50), stride length (*SMD*:
- 42 0.40, 95% CI 0.19, 0.61), step length (*SMD*: 0.41, 95% CI 0.23, 0.59), and transverse plane hip
- range of motion (ROM) (*SMD*: 0.36, 95% CI 0.05, 0.67) compared to pre-operative gait.
- 44 Sagittal, coronal and transverse hip ROM was significantly increased at 3 months (SMDs:
- 45 0.50 to 1.07). At 12 months postoperative, patients demonstrated deficits compared with
- 46 healthy individuals for walking speed (*SMD:* -0.59, 95% CI -1.08 to -0.11), stride length (*SMD:*
- 47 -1.27, 95% CI -1.63, -0.91), single limb support time (SMD: -0.82, 95% CI -1.23, -0.41) and
- sagittal plane hip ROM (*SMD:* -1.16, 95% CI -1.83, -0.49). Risk of bias scores ranged from
- 50 Conclusions

49

seven to 24 out of 26.

- 51 Following THA for OA, early improvements were demonstrated for spatiotemporal and
- 52 kinematic gait patterns compared to the pre-operative levels. Deficits were still observed in
- 53 THA patients compared to healthy individuals at 12 months.
- 54 Keywords
- osteoarthritis; hip replacement; arthroplasty; gait analysis; biomechanics
- 56

1 Introduction

Osteoarthritis (OA) of the hip is a common chronic condition responsible for significant pain 2 and disability, with approximately 4 to 9% of adults over the age of 45 living with 3 symptomatic hip OA^{1, 2}. Diagnosis of symptomatic OA is the principal indication for total hip 4 5 arthroplasty (THA), which is the treatment for individuals with end-stage OA when 6 conservative therapies to manage symptoms have been exhausted. The demand for THA is estimated to rise substantially in the next decade, to approximately half a million primary 7 THAs per year by 2030 in the United States³. Hip OA commonly affects a patient's function 8 causing difficulty in walking where altered gait biomechanics are observed, particularly in 9 individuals with severe stage disease who are candidates for THA ⁴. Whilst THA is a 10 11 successful procedure, attributed to the long-term survivorship of the implant and alleviation of chronic joint pain, aberrant pre-operative gait patterns may persist following THA, 12 despite improvements in self-reported measures of pain and physical function ^{5, 6}. 13 Two recent systematic reviews ^{7,8} compared outcomes in walking gait following primary 14 15 THA to that of healthy individuals and identified lower walking speed and stride length, lower sagittal and coronal plane hip joint range of motion, and lower peak hip abduction 16 moment. Whilst these reviews provide a recent comparison of THA patients to that of 17 healthy individuals, the pre-operative functional status of patients were not considered. The 18 nature of gait abnormalities prior to the joint replacement must be considered due to the 19 association between pre- and post-operative gait status ⁹. Furthermore, reporting of post-20 operative gait abnormalities compared with healthy individuals may inadequately represent 21 the changes after THA if relative change to pre-operative status is not considered as end-22 stage OA patients present with altered gait kinematics compared to healthy individuals 23

which may persist following surgery ⁵. A range of time points, from 6 weeks to 24 months 24 ^{10,11} have been used to investigate changes in gait biomechanics following THA for OA. To 25 date, no review has synthesised the available evidence at commonly reported time points to 26 identify the change from pre- to post-operative gait in people with OA following THA, and 27 compare the results to healthy individuals to better understand the trajectory of change and 28 recovery in gait function after THA. Therefore, the aims of this systematic review were to 29 determine the change in gait biomechanics after THA compared to the pre-operative gait 30 status; and to compare the recovery of gait following THA with healthy individuals. 31

32 Methods

The findings of this review are reported in accordance with the Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) statement guidelines (Supplementary File 1)¹³. The protocol for the review was registered with the International Prospective register for Systematic Reviews (PROSPERO; registration no. CRD 42016035904).

37 Search strategy

The PICO (Population, Intervention, Comparison and Outcome) framework was used to 38 define the search strategy, in consultation with an academic librarian ¹⁴. An electronic 39 search of the following databases was performed with no date restrictions: PubMed, 40 MEDLINE, CINAHL, The Cochrane Library, Embase, Scopus, Web of science, SportDiscus and 41 Health collection. Keywords were matched with exploded MeSH terms to generate themes 42 around total hip arthroplasty, biomechanics and gait (Supplementary File 2). Variations of 43 electromyography and stair climbing were included as an outcome in the search as it was 44 anticipated walking gait data might be included in studies of this kind. Database searching 45 was performed by two authors (JB and JA) and agreement was required on the number of 46

articles retrieved from each database before proceeding. Search alerts were created for 47 each database to identify articles published after the initial search (up to January 1, 2017). 48 Conference abstracts and reference lists of review and final included articles were manually 49 searched to identify additional articles. Citations retrieved from the searches were uploaded 50 to an online systematic review platform (Covidence)¹⁵ for screening. Two reviewers (JB and 51 MN) independently screened titles and abstracts and any conflicts were resolved by 52 discussion, or by the opinion of a third researcher (JA) if consensus was not reached. Titles 53 that met the eligibility criteria were then obtained as full manuscripts and reviewed 54 independently by two reviewers (JB and MN). Disagreements were managed using the same 55 process from the screening stage. 56 Eligibility criteria 57

Articles were eligible for inclusion in this review when they satisfied the following criteria: 58 (1) adults aged ≥18 years undergoing primary unilateral THA; (2) osteoarthritis was the 59 primary indication for THA; (3) studies reporting the change in gait biomechanics 60 61 (spatiotemporal, kinematics, kinetics) from pre- to post-operative or comparing THA patients following surgery to matched healthy individuals; (4) 2D or 3D motion analysis 62 techniques (including ground reaction forces) were used to measure level walking at a self-63 selected speed; and (5) participants could perform the task unaided. Studies using motion 64 capture systems, force platforms, accelerometers, instrumented treadmills or instrumented 65 shoes were all included in this review. Spatiotemporal data collected from a hand-held 66 timepiece (e.g. stopwatch) were excluded. Studies investigating the effect of physical 67 rehabilitation on gait outcomes were excluded unless they included a conventional THA 68 group who did not receive the intervention. Studies including participants who did not 69

- undergo THA (e.g. hip resurfacing) or participants with a history of other lower limb joint
 disease or surgeries (knee, ankle or contralateral hip) were not eligible.
- 72 Outcome measures and data extraction

73 A custom data-extraction spreadsheet was used to extract numerical data from all studies. The first author extracted the data (JSB), and a second author (JBA) verified the data were 74 extracted accurately from the studies that were used in the meta-analysis. The primary 75 outcome measures for this review were spatiotemporal, kinematic (joint angles) and kinetic 76 parameters (e.g. external joint moments) reported during level walking. Means and 77 78 standard deviations for all gait parameters were extracted for the pre-operative and followup time points, and from healthy control groups, when available. Extraction of joint 79 kinematic and kinetic parameters were limited to the affected hip. The following 80 information on patient and surgical characteristics was also extracted from each study: 81 study design, sample size, age, gender, BMI, severity of osteoarthritis, and surgical 82 approach. 83

84 Data synthesis and analysis

As numerous gait variables across multiple time points were expected, a structured process was undertaken to synthesise the results on the most commonly reported variables and time-points. Studies typically report a mean follow-up or multiple post-operative time points at six weeks, three months, six months and 12 months. Where studies reported a mean that was close to these time points (within one week for time points <6 months, and 3 months for time points >6 months) data were merged to the closest common time-point to facilitate comparison across studies. No studies were excluded during this process.

When adequate data were reported, standardized mean differences (SMDs) were calculated 92 using the pooled standard deviation for the biomechanical parameters between either the 93 pre and post-operative time points (preoperative as the reference) or postoperative versus 94 control group. Where not available, the standard error of the mean difference were 95 estimated from *P* values using the equivalent T-statistic ¹⁶. When this was not possible, the 96 standard error of the mean difference was estimated using the most conservative. 97 correlation estimate from other studies ¹⁶, and the stability of this approach was assessed 98 through a sensitivity analysis where the correlation estimate was set to zero to determine 99 the impact on the magnitude of the pooled effect. Where study results were reported as 100 medians and ranges or interquartile ranges, authors were contacted twice to obtain the 101 mean and standard deviation (SD). When not provided, data were transformed to the mean 102 and SD¹⁷. For the meta-analysis, pooled estimates and 95% confidence intervals (CI) for 103 standardised mean differences were calculated using a random effects model in Review 104 Manager software (RevMan, v5.2, Cochrane Collaboration, Oxford UK). Statistical 105 significance was set at P < 0.05. All data were extracted and the pooled effect size estimates 106 were computed when at least two studies reported the same gait variable at the same time 107 point. The magnitude of the overall effect was quantified as trivial (<0.2), small (0.2-0.6), 108 moderate (0.61-1.2), large (1.21-2.0) and very large (>2.0)¹⁷. Where studies presented data 109 on more than one surgical approach instead of the entire THA cohort, a separate effect size 110 was determined for each surgical group ¹⁷. 111

Heterogeneity was assessed using the I^2 and Cochran's Q statistics ¹⁸. Where heterogeneity was statistically significant (P < 0.05), potential explanatory variables contributing to heterogeneity were assessed using linear regression, which was performed using six study

115	characteristics identified a priori including age, BMI, sample size, surgical approach, gender
116	and risk of bias score. The regression was only performed when \ge 10 studies reported on a
117	gait parameter at a time point ¹⁹ . Potential publication bias was examined using contour
118	enhanced funnel plots and Egger's regression test using STATA (v14, Statacorp, USA).
119	Methodological risk of bias
120	Methodological risk of bias of studies was performed through merging three established
121	checklists specific to gait analysis and surgical intervention studies (Supplementary File 4) ^{20,}
122	^{21, 22} . The recommended scoring criteria from each tool were maintained resulting in a total
123	of 20 items with a possible maximum score range of 0 to 26, with higher scores indicating a
124	reduced risk of bias. The scoring was carried out by two independent reviewers (JB and
125	MN), with any disagreements resolved with the opinion of a third reviewer if required. Inter-
126	rater agreement for each item of the risk of bias tool was evaluated using the Kappa (κ)
127	statistic. The risk of bias scores was included in the meta-regression to investigate if study
128	bias contributed to heterogeneity. Based on the results of the meta-analysis (effect size),
129	statistical heterogeneity (I ²) and risk of bias scores, of the strength of evidence for changes
130	in each outcome variable at each time point was designated as per Van Tulder et al 2003 ²³ :
131	(1) strong evidence derived from three or more studies, including a minimum of two high-
132	quality studies that were statistically homogenous (I ² P \ge 0.05); (2) moderate evidence
133	derived from multiple studies that were statistically heterogeneous and where the pooled
134	result was statistically significant, including at least one high-quality study from the risk of
135	bias score; or from multiple moderate or low-quality studies which were statistically
136	homogenous; (3) limited evidence provided by results from one high-quality study or
137	multiple moderate-quality or low-quality studies that are statistically heterogeneous; (4)

- very limited evidence provided by results from one moderate-quality or low-quality study;
 and (5) no evidence where the pooled effect was insignificant and derived from multiple
 statistically heterogeneous studies (regardless of study quality from the risk of bias score). **Results** *Study selection and characteristics*
- 143 The electronic database search yielded 3415 articles. After applying the eligibility criteria
- and searching of reference lists, 74 studies were retained and 46 were included in the meta-
- analysis (Figure 1). Of the 74 included studies, 21 were prospective cohort studies, 21 case
- series studies, 29 case-control studies, and three randomised controlled trials (Table 1).

147 Patient and surgical characteristics

- 148 There were 2477 patients from 74 studies with a mean age of 59.7 SD 7.4 years, body mass
- index (BMI) of 28.7 SD 3.6 kg/m² and 46% were female (Table 1). Post-operative follow-up
- ranged from 2 days to 6 years, with the most common time-points being 6 weeks, 3 months,
- 151 6 months, 12 months and 24 months. Only two studies ^{24, 25} reported the radiographic
- severity of OA prior to surgery 26 . The direct lateral and posterior surgical approaches were
- the most frequently used among the included studies (n=17 and n=16, respectively),
- 154 followed by the anterolateral (n=13) and direct anterior (n=10).

155 *Outcome measures*

A total of 20 spatiotemporal, 56 kinematic and 54 kinetic variables were identified (Figure
 1). A total of 9 spatiotemporal and 6 kinematic variables met the requirements for meta analysis in pre-post comparisons, while 8 variables for both domains met the criteria for
 post versus control. Only one kinetic variable was reported by ≥2 studies comparing

160	postoperative THA patients to healthy controls (peak hip abduction moment). Five authors
161	provided extra data upon request ^{27, 28, 29, 30, 31} . A summary of findings for each gait
162	parameter in the meta-analysis at each time-point is provided in Table 2, with detailed
163	information on the magnitude of effects and strength of evidence provided below.
164	Spatiotemporal: comparison to pre-operative level
165	Pooled data indicated there was moderate evidence of increased walking speed at 6 weeks
166	(SMD: 0.32, P = 0.0006), 3 months (SMD: 0.78, P < 0.001) and 6 months (SMD: 0.97, P <
167	0.001), with large changes at 12 months (SMD: 1.28, P < 0.001) (Figure 2A). At 6 weeks,
168	there was a small change in step length (SMD 0.41, P <0.001) (Figure 3A) and stride length
169	(SMD: 0.40, P < 0.001) (Supplementary File 3), which was also present at 3 months (SMD:
170	0.52, P < 0.001; and SMD: 0.63, P < 0.001), with larger changes in step length at 6 months
171	(SMD: 0.90, P < 0.001). There were trivial changes in step width at 6 weeks (SMD: -0.07, P =
172	0.57) and 3 months (SMD: 0.02, $P = 0.96$), with moderate evidence from five studies to
173	suggest that cadence did not change at 6 months (SMD: -0.08, P = 0.87) (Supplementary File
174	3).

175 Spatiotemporal: comparison to controls

At 6 weeks post-THA there was moderate evidence demonstrating a large deficit in walking
speed in THA patients compared with healthy individuals (SMD: -1.81, P < 0.001), which
persisted but reduced in magnitude at 3 months (SMD: -1.22, P < 0.001), 6 months (SMD: -
0.69, P < 0.001), and 12 months (SMD: -0.59, P = 0.02). Two studies provided limited
evidence of a small deficit in walking speed at 24 months (SMD: -0.57, P < 0.007) (Figure 2B).
Deficits of reducing magnitude were observed in step length compared to healthy
individuals at 6 weeks (SMD: -1.36, P < 0.001), 3 months (SMD: -0.88, P < 0.001), and 6

183	months (SMD: -0.35, P	= 0.04)	, also persisting at 12	months post-THA	(SMD: -0.54, P = 0.25))
-----	-----------------------	---------	-------------------------	-----------------	------------------------	---

184 (Figure 3B). Marked deficits in stride length were also evident, with large effect sizes at 6

185 weeks (SMD: -1.90, P < 0.001) and 3 months (SMD: -1.60, P < 0.001) with a large

- improvement in THA patients between 3 and 6 months, but still a moderate deficit at 6
- 187 months (SMD: -0.78, P < 0.001). However, the same magnitude was not observed as
- compared to healthy individuals at 12 months (SMD: -1.27, P < 0.001).
- 189 Three studies provided moderate evidence for a very large increase in double support time
- at 6 weeks (SMD: 2.22, P < 0.03), however, patients were comparable to healthy individuals
- at 3 months (SMD: -0.28, P = 0.77), 6 months (SMD: 0.18, P = 0.60), and 12 months (SMD: -
- 192 0.38, P = 0.10). Large increases in step width compared to healthy controls were evident at 6
- weeks (SMD: 1.33, P < 0.001) and 3 months (SMD: 1.90, P = 0.004).
- 194 *Kinematic: comparison to pre-operative level*

195 Moderate evidence from four studies demonstrated small changes in sagittal plane hip ROM compared to pre-operative level at 6 weeks (SMD: 0.49, P = 0.22), with a moderate increase 196 at 3 months (SMD: 1.07, P = 0.006) (Figure 4A). There was no change in coronal plane hip 197 ROM at 6 weeks (SMD: 0.33, P = 0.22) and 12 months (SMD: 0.33, P = 0.22), with moderate 198 evidence of a significant increase at 3 months (SMD: 1.03, P = 0.01) (Figure 5A). Pooled 199 200 results indicated a small increase in transverse plane hip ROM at 6 weeks (SMD: 0.36, P = 0.02), 3 months (SMD: 0.50; P = 0.05) and 12 months (SMD: 0.36, P = 0.02) (Supplementary 201 File 3). Two studies provided moderate evidence of a small decrease in peak hip abduction 202 angle at 3 months (SMD: -0.39, P < 0.001). Moderate evidence indicated no significant 203 change in peak hip flexion at 3 months (SMD: 0.16, P = 0.63) and coronal plane pelvic 204 obliquity angle at 6 months (SMD: -0.81, P = 0.38) (Supplementary File 3). 205

- 206 *Kinematic: comparison to controls*
- 207 Very large deficits in sagittal plane hip ROM compared to healthy individuals were observed
- at 6 weeks (SMD: -2.59, P < 0.001), decreasing in magnitude but persisting at 3 months
- 209 (SMD: -1.88, P < 0.001), 6 months (SMD: -1.33, P < 0.001) and 12 months (SMD: -1.16, P <
- 210 0.001) (Figure 4B). This also occurred for coronal plane hip ROM, with large deficits at 6
- 211 weeks (SMD: -1.76, P < 0.001) and 3 months (SMD: -1.41, P < 0.001) (Figure 5B). There were
- negligible changes in transverse plane hip ROM compared to healthy individuals at 6 weeks
- 213 (SMD: 0.18, P = 0.39) and 3 months (SMD: 0.26, P = 0.56).
- 214 Moderate evidence from five studies demonstrated a significant increase in sagittal plane
- 215 pelvis ROM compared to healthy individuals with a small effect at 12 months (SMD: 0.48, P
- = 0.05). THA patients were comparable to healthy individuals for coronal plane pelvic
- obliquity angle at 3 months (SMD: -0.20, P = 0.90), 6 months (SMD: 0.28, P = 0.67), and 12
- 218 months (SMD: 0.09, P = 0.75) (Supplementary File 3).
- 219 *Kinetic: comparison to controls*
- 220 Four studies provided moderate evidence demonstrating THA patients were comparable to
- healthy individuals for peak hip abduction moment at 3 months (SMD: 0.02, P = 0.92). There
- was insufficient data to compare the change from pre-operative status.
- 223 Meta-regression and sensitivity analysis

Pooled analyses for velocity (6 weeks, 3 and 12 months), as well as step length and stride
length (6 weeks), indicated high statistical heterogeneity (P < 0.05) with greater than 10
studies reporting data at each time point. Among these factors, there was an association
with the velocity effect size and younger age at 3 months and 12 months. There was an

- association between step length effect size and study sample size at 6 weeks. No association
- was found for BMI, anterior surgical approach, gender or risk of bias score (Table 3). The
- sensitivity analysis revealed no change in the magnitude of the overall effect and the level of
- significance when the correlation estimates were zero (Supplementary file 5).
- 232 Risk of publication bias
- 233 Egger's regression test demonstrated no evidence of publication bias for velocity at 6 weeks
- 234 (β = 1.04, *P* = 0.368), 3 months (β = 1.6, *P* = 0.144), and 12 months (β = 1.4, *P* = 0.361) or for
- stride and step length at 6 weeks (β = 2.00, *P* = 0.657; β = 2.46, *P* = 0.187, respectively).
- 236 Risk of methodological bias
- Inter-rater agreement for risk of bias scoring was high ($\kappa = 0.77$). Of a possible maximum 26
- points, the mean risk of bias score across studies was 18, SD = 4 (range = 7 to 24).
- 239 Inadequate reporting of the sampling methods for recruitment (item 4), post-operative
- rehabilitation protocol (item 9), and number and characteristics of patients lost to follow-up
- (item 19) was common. Full risk of bias scoring is provided in Supplementary File 4.

242 Discussion

The aims of this systematic review were to determine the change in gait biomechanics after
THA compared to the pre-operative gait status; and to compare the recovery of gait
following THA with healthy individuals. This review identified evidence for moderate to large
pre to post-operative changes from 6 weeks to 12 months in spatiotemporal and kinematic
parameters. Compared to healthy individuals, although selected gait parameters appeared
to normalise after THA, residual deficits in walking speed, stride length and sagittal plane hip
ROM existed at 12 months postoperative.

250 Relatively consistent improvements were demonstrated over time in walking velocity, step length and stride length following THA compared to pre-operative levels. The observed 251 changes in gait velocity following surgery in this meta-analysis did not meet the meaningful 252 clinically important improvements in gait velocity stated by Foucher et al. (2016)³². Early 253 improvements after THA were evident for walking speed, step length, stride length, and 254 single-limb support time at 6 weeks, with improvements relative to before surgery 255 256 demonstrated up to 12 months. Despite these observed improvements in spatiotemporal parameters compared to the pre-operative status, patients were only comparable to 257 healthy individuals for step length, which demonstrated early recovery and return to normal 258 function from 6 weeks post-surgery. Importantly, despite early changes and significant 259 improvements in walking speed for up to 12 months post-surgery, lower walking speed is 260 still present at 12 months compared to healthy individuals. Step width was wider compared 261 to healthy individuals at 6 weeks and 3 months indicating patients continue to demonstrate 262 a wider based of support during gait after surgery. 263

The kinematic data revealed increases in sagittal plane hip ROM and transverse plane hip 264 ROM compared to pre-operative function at 6 weeks and up to 12 months. Despite 265 continuous improvements following THA for sagittal plane hip ROM, reduced hip ROM in 266 THA patients compared to healthy individuals at 12 months was evident. This may be due to 267 an increase in pelvis and/or trunk flexion developed as a strategy to avoid pain before 268 surgery ³⁴, and potentially maintained following THA ⁵. Coronal plane hip 269 abduction/adduction revealed no significant change from pre-operative status up to 12 270 months post THA, with a significantly lower coronal plane hip ROM compared to healthy 271 individuals. Abnormal coronal plane hip kinematics following THA could be due to several 272

reasons including muscle weakness in the affected limb due to pain and impaired function
 before surgery ³³, and incision of the abductor muscles during surgery ³⁴. Pelvic obliquity
 ROM was comparable to healthy individuals from 3 months and maintained up to 12
 months.

A meta-regression was performed to identify possible explanations for the observed
heterogeneity in the gait parameters of velocity, stride length and step length. Only age was
associated with effect size of walking speed at 3 months and 12 months post-operatively,
indicating younger patients were associated with earlier recovery. The study sample size
was related to effect size heterogeneity for step length at 6 weeks, with larger sample size
showing a smaller effect for increased step length compared to pre-operative gait.

Despite previous systematic reviews describing the deficient gait parameters in patients 283 following THA compared to healthy individuals ^{7,8} the pre-operative gait was not considered 284 to determine the trend in recovery. This meta-analysis has for the first time, concurrently 285 mapped the recovery in gait biomechanics after THA and compared postoperative status to 286 healthy controls up to 2 years after surgery. A greater number of longitudinal cohort studies 287 with follow-up beyond 12 months are required to appropriately map the trajectory of 288 recovery after THA and determine the effect of surgery on gait function in the long term. 289 Furthermore, greater consistency of reporting of gait parameters would facilitate easier 290 comparison across studies, particularly for kinetic gait parameters. Unfortunately 291 inconsistency in reporting precluded meta-analysis of most joint moment parameters. A 292 greater understanding the effect of THA on muscle function in future studies will shed light 293 onto the mechanisms underlying the deficits in gait biomechanics identified in this review. 294

295 Certain limitations of this review should be acknowledged. First, all study designs were included in the review to determine the changes in gait biomechanics following THA and 296 compared to healthy individuals. Therefore, this review is susceptible to bias through the 297 298 inclusion of lower level study designs. However, we undertook an established grading of evidence that considers study risk of bias, magnitude of the effect size and heterogeneity to 299 synthesise the findings. Second, the studies included to evaluate the change in gait from 300 301 pre- to post-operative status were not synonymous with the studies included to compare post-operative gait to healthy individuals due to the limited number of longitudinal studies 302 that included a control group. Therefore, direct comparison between the two separate 303 analyses is cautioned. Some of the meta-analyses were based on a smaller number of 304 studies of varying methodological quality, although the regression analyses indicated the 305 risk of bias scores could not explain any observed heterogeneity. Finally, only studies 306 published in English were included due to limited translation resources. Therefore it is 307 uncertain if inclusion of non-English studies would alter the outcomes of the review. 308

309 Conclusion

Compared with OA patients before surgery THA was successful in improving walking speed, 310 step length, stride length, single-limb support time, sagittal and coronal plane hip ROM. 311 Despite these observed improvements from pre-operative OA individuals, patients 312 continued to demonstrate deficiencies compared to healthy individuals for walking speed, 313 stride length, single limb support time and sagittal plane hip ROM at 12 months. Improved 314 understanding of the trajectories of recovery in gait function after THA may assist in 315 managing expectations for both patients and clinicians, with further research required to 316 elucidate the impact of these impairments and relationships with clinical outcome. 317

318	1.	Kim C, Linsenmeyer KD, Vlad SC, Guermazi A, Clancy MM, Niu J, et al. Prevalence of
319		radiographic and symptomatic hip osteoarthritis in an urban United States
320		community: the Framingham osteoarthritis study. Arthritis & Rheumatology 2014;
321		66: 3013-3017.
322	2.	Jordan JM, Helmick CG, Renner JB, Luta G, Dragomir AD, Woodard J, et al. Prevalence
323		of hip symptoms and radiographic and symptomatic hip osteoarthritis in African
324		Americans and Caucasians: the Johnston County Osteoarthritis Project. The Journal
325		of rheumatology 2009; 36: 809-815.
326	3.	Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip
327		and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am
328		2007; 89: 780-785.
329	4.	Eitzen I, Fernandes L, Kallerud H, Nordsletten L, Knarr B, Risberg MA. Gait
330		characteristics, symptoms, and function in persons with hip osteoarthritis: a
331		longitudinal study with 6 to 7 years of follow-up. journal of orthopaedic & sports
332		physical therapy 2015; 45: 539-549.
333	5.	Foucher KC, Hurwitz DE, Wimmer MA. Preoperative gait adaptations persist one year
334		after surgery in clinically well-functioning total hip replacement patients. J Biomech
335		2007; 40: 3432-3437.
336	6.	Lindemann U, Becker C, Muche R, Aminian K, Dejnabadi H, Nikolaus T, et al. Gait
337		analysis and WOMAC are complementary in assessing functional outcome in total
338		hip replacement. Clinical Rehabilitation 2006; 20: 413-420.
339	7.	Ewen AM, Stewart S, St Clair Gibson A, Kashyap SN, Caplan N. Post-operative gait
340		analysis in total hip replacement patients-a review of current literature and meta-
341		analysis. Gait Posture 2012; 36: 1-6.

342	8.	Kolk S, Minten M	l, van Bon GE,	Rijnen WH	, Geurts AC	, Verdonschot N	, et al. Gait and
-	-		, ,	-			

- 343 gait-related activities of daily living after total hip arthroplasty: a systematic review.
- 344 Clinal Biomechanics 2014; 29: 705-718.
- 345 9. Foucher KC, Freels S. Preoperative factors associated with postoperative gait
- kinematics and kinetics after total hip arthroplasty. Osteoarthritis Cartilage 2015; 23:
- 347 1685-1694.
- 10. Queen RM, Butler RJ, Watters TS, Kelley SS, Attarian DE, Bolognesi MP. The effect of
- 349 total hip arthroplasty surgical approach on postoperative gait mechanics. J

350 Arthroplasty 2011; 26: 66-71.

- 11. Sicard-Rosenbaum L, Light KE, Behrman AL. Gait, lower extremity strength, and self-
- assessed mobility after hip arthroplasty. Journals of Gerontology Series a-Biological
 Sciences and Medical Sciences 2002; 57: M47-M51.
- 12. Perron M, Malouin F, Moffet H, McFadyen BJ. Three-dimensional gait analysis in
- women with a total hip arthroplasty. Clin Biomech (Bristol, Avon) 2000; 15: 504-515.
- 13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for
- 357 systematic reviews and meta-analyses: the PRISMA statement. International journal
 358 of surgery 2010; 8: 336-341.
- Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework
 to improve searching PubMed for clinical questions. BMC medical informatics and
 decision making 2007; 7: 16.
- 362 15. Veritas Health Innovation Ltd. Covidence systematic review software. Melbourne,
 363 Australia.

364	16.	Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A. Meta-analyses
365		involving cross-over trials: methodological issues. International journal of
366		epidemiology 2002; 31: 140-149.
367	17.	Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive Statistics for Studies
368		in Sports Medicine and Exercise Science. Medicine & Science in Sports & Exercise
369		2009; 41: 3-12.
370	18.	Higgins J, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-
371		analyses [journal article as teaching resource, deposited by John Flynn]. British
372		medical journal 2003; 327: 557-560.
373	19.	Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions.
374		Volume 4, John Wiley & Sons 2011.
375	20.	Downs SH, Black N. The feasibility of creating a checklist for the assessment of the
376		methodological quality both of randomised and non-randomised studies of health
377		care interventions. Journal of epidemiology and community health 1998; 52: 377-
378		384.
379	21.	Peters A, Galna B, Sangeux M, Morris M, Baker R. Quantification of soft tissue
380		artifact in lower limb human motion analysis: a systematic review. Gait & posture
381		2010; 31: 1-8.
382	22.	Sabharwal S, Patel NK, Bull AM, Reilly P. Surgical interventions for anterior shoulder
383		instability in rugby players: A systematic review. World journal of orthopedics 2015;
384		6: 400.
385	23.	Van Tulder M, Furlan A, Bombardier C, Bouter L, Group EBotCCBR. Updated method
386		guidelines for systematic reviews in the Cochrane Collaboration Back Review Group.
387		Spine 2003; 28: 1290-1299.

388	24.	Colgan G, Walsh M, Bennett D, Rice J, O'Brien T. Gait analysis and hip extensor
389		function early post total hip replacement. Journal of Orthopaedics 2016; 13: 171-
390		176.
391	25.	Kiss RM, Illyes A. Comparison of gait parameters in patients following total hip
392		arthroplasty with a direct-lateral or antero-lateral surgical approach. Hum Mov Sci
393		2012; 31: 1302-1316.
394	26.	Kellegren J, Lawrence J. Radiological assessment of osteoarthritis. Ann Rheum Dis
395		1957; 16: 494-501.
396	27.	Agostini V, Ganio D, Facchin K, Cane L, Moreira Carneiro S, Knaflitz M. Gait
397		parameters and muscle activation patterns at 3, 6 and 12 months after total hip
398		arthroplasty. Journal of Arthroplasty 2014; 29: 1265-1272.
399	28.	Bennett D, Humphreys L, O'Brien S, Kelly C, Orr JF, Beverland DE. Gait kinematics of
400		age-stratified hip replacement patients-A large scale, long-term follow-up study. Gait
401		and Posture 2008; 28: 194-200.
402	29.	Casartelli NC, Item-Glatthorn JF, Bizzini M, Leunig M, Maffiuletti NA. Differences in
403		gait characteristics between total hip, knee, and ankle arthroplasty patients: a six-
404		month postoperative comparison. BMC Musculoskelet Disord 2013; 14: 176.
405	30.	Maffiuletti NA, Impellizzeri FM, Widler K, Bizzini M, Kain MSH, Munzinger U, et al.
406		Spatiotemporal Parameters of Gait After Total Hip Replacement: Anterior versus
407		Posterior Approach. Orthopedic Clinics of North America 2009; 40: 407–415.
408	31.	Tateuchi H, Tsukagoshi R, Fukumoto Y, Oda S, Ichihashi N. Dynamic hip joint stiffness
409		in individuals with total hip arthroplasty: Relationships between hip impairments and
410		dynamics of the other joints. Clinical Biomechanics 2011; 26: 598-604.

411	32.	Foucher KC. Identifying clinically meaningful benchmarks for gait improvement after
412		total hip arthroplasty. Journal of Orthopaedic Research 2016; 34: 88-96.
413	33.	Arokoski MH, Arokoski JP, Haara M, Kankaanpää M, Vesterinen M, Niemitukia LH, et
414		al. Hip muscle strength and muscle cross sectional area in men with and without hip
415		osteoarthritis. The Journal of rheumatology 2002; 29: 2185-2195.
416	34.	Mayr E, Nogler M, Benedetti MG, Kessler O, Reinthaler A, Krismer M, et al. A
417		prospective randomized assessment of earlier functional recovery in THA patients
418		treated by minimally invasive direct anterior approach: a gait analysis study. Clin
419		Biomech (Bristol, Avon) 2009; 24: 812-818.
420	35.	Ajemian S, Thon D, Clare P, Kaul L, Zernicke RF, Loitz-Ramage B. Cane-assisted gait
421		biomechanics and electromyrography after total hip arthroplasty. Archives of
422		Physical Medicine and Rehabilitation 2004; 85: 1966-1971.
423	36.	Aminian K, Rezakhanlou K, De Andres E, Fritsch C, Leyvraz PF, Robert P. Temporal
424		feature estimation during walking using miniature accelerometers: an analysis of gait
425		improvement after hip arthroplasty. Medical & Biological Engineering & Computing
426		1999; 37: 686-691.
427	37.	Atallah L, Wiik A, Lo B, Cobb JP, Amis AA, Yang GZ. Gait asymmetry detection in older
428		adults using a light ear-worn sensor. Physiological Measurement 2014; 35: N29-N40.
429	38.	Beaulieu ML, Lamontagne M, Beaule PE. Lower limb biomechanics during gait do not
430		return to normal following total hip arthroplasty. Gait Posture 2010; 32: 269-273.
431	39.	Behery OA, Foucher KC. Are Harris Hip Scores and Gait Mechanics Related Before
432		and After THA? Clinical Orthopaedics and Related Research 2014; 472: 3452-3461.

433	40.	Bennett D, Ogonda L, Elliott D, Humphreys L, Beverland DE. Comparison of gait
434		kinematics in patients receiving minimally invasive and traditional hip replacement
435		surgery: a prospective blinded study. Gait Posture 2006; 23: 374-382.
436	41.	Berman AT, Quinn RH, Zarro VJ. Quantitative gait analysis in unilateral and bilateral
437		total hip replacements. Arch Phys Med Rehabil 1991; 72: 190-194.
438	42.	Bhargava P, Shrivastava P, Nagariya S. Assessment of changes in gait parameters and
439		vertical ground reaction forces after total hip arthroplasty. Indian J Orthop 2007; 41:
440		158-162.
441	43.	Bianchi L, Anasetti F, Mondini A, La Bionda F, Giacometti Ceroni R, Zagra L. No
442		differences in gait recovery after total hip arthroplasty with different head
443		diameters: A prospective randomised study. HIP International 2012; 22 (4): 474.
444	44.	Bouffard V, Nantel J, Therrien M, Vendittoli PA, Lavigne M, Prince F. Center of Mass
445		Compensation during Gait in Hip Arthroplasty Patients: Comparison between Large
446		Diameter Head Total Hip Arthroplasty and Hip Resurfacing. Rehabil Res Pract 2011;
447		2011: 586412.
448	45.	Cichy B, Wilk M, Sliwinski Z. Changes in gait parameters in total hip arthroplasty
449		patients before and after surgery. Medical Science Monitor 2008; 14: CR159-CR169.
450	46.	da Cunha BM, Gava AD, de Oliveira SB, de David AC, dos Santos-Neto LL. Vitamin d is
451		related to gait recovery after total hip arthroplasty: A prospective analysis. Gait &
452		Posture 2016; 50: 96-101.
453	47.	Foucher KC, Thorp LE, Orozco D, Hildebrand M, Wimmer MA. Differences in
454		preferred walking speeds in a gait laboratory compared with the real world after
455		total hip replacement. Arch Phys Med Rehabil 2010; 91: 1390-1395.

456	48.	Foucher KC, Wimmer MA, Moisio KC, Hildebrand M, Berli MC, Walker MR, et al. Time
457		course and extent of functional recovery during the first postoperative year after
458		minimally invasive total hip arthroplasty with two different surgical approachesa
459		randomized controlled trial. J Biomech 2011; 44: 372-378.
460	49.	Holnapy G, Illyes A, Kiss RM. Impact of the method of exposure in total hip
461		arthroplasty on the variability of gait in the first 6 months of the postoperative
462		period. Journal of Electromyography and Kinesiology 2013; 23: 966-976.
463	50.	Horstmann T, Listringhaus R, Haase GB, Grau S, Mundermann A. Changes in gait
464		patterns and muscle activity following total hip arthroplasty: A six-month follow-up.
465		Clinical Biomechanics 2013; 28: 762-769.
466	51.	Husby VS, Helgerud J, Bjorgen S, Husby OS, Benum P, Hoff J. Early Maximal Strength
467		Training Is an Efficient Treatment for Patients Operated With Total Hip Arthroplasty.
468		Archives of Physical Medicine and Rehabilitation 2009; 90: 1658-1667.
469	52.	Isobe Y, Okuno M, Otsuki T, Yamamoto K. Clinical study on arthroplasties for
470		osteoarthritic hip by quantitative gait analysis - Comparison between total hip
471		arthroplasty and bipolar endoprosthetic arthroplasty. Bio-Medical Materials and
472		Engineering 1998; 8: 167-175.
473	53.	Jensen C, Penny JO, Nielsen DB, Overgaard S, Holsgaard-Larsen A. Quantifying Gait
474		Quality in Patients with Large-Head and Conventional Total Hip Arthroplasty-A
475		Prospective Cohort Study. Journal of Arthroplasty 2015; 30: 2343-U2425.
476	54.	Jensen C, Rosenlund S, Nielsen DB, Overgaard S, Holsgaard-Larsen A. Can gait
477		deviation index be used effectively for the evaluation of gait pathology in total hip
478		arthroplasty? an explorative randomized trial. Osteoarthritis and cartilage, vol.
479		222014:S85-s86.

480	55.	Judd DL, Winters JD, Stevens-Lapsley JE, Christiansen CL. Effects of neuromuscular
481		reeducation on hip mechanics and functional performance in patients after total hip
482		arthroplasty: A case series. Clin Biomech 2015; 32: 49-55.
483	56.	Kanzaki H, Nankaku M, Kawanabe K, Nakamura T, Shimada T, Yoneda T, et al. The
484		Recovery of the Walking Ability of Patients at Early Stages after Total Hip
485		Arthroplasty from the Perspective of the Displacement of the Center of Gravity.
486		Journal of Physical Therapy Science 2008; 20: 225-232.
487	57.	Klausmeier V, Lugade V, Jewett BA, Collis DK, Chou LS. Is There Faster Recovery With
488		an Anterior or Anterolateral THA? A Pilot Study. Clinical Orthopaedics and Related
489		Research 2010; 468: 533-541.
490	58.	Krych AJ, Pagnano MW, Coleman Wood K, Meneghini RM, Kaufman K. No strength or
491		gait benefit of two-incision THA: a brief followup at 1 year. Clinical orthopaedics and
492		related research, vol. 4692011:1110-1118.
493	59.	Krych AJ, Pagnano MW, Wood KC, Meneghini RM, Kaufmann K. No benefit of the
494		two-incision THA over mini-posterior THA: a pilot study of strength and gait. Clinical
495		orthopaedics and related research, vol. 4682010:565-570.
496	60.	Lavigne M, Ganapathi M, Nantel J, Prince F, Roy A, Therrien M, et al. Randomized
497		double-blinded study comparing clinical outcome and gait characteristics after large
498		diameter head total hip arthroplasty (LDH-THA) and hip resurfacing (HR).
499		Orthopaedic Proceedings, vol. 92: Orthopaedic Proceedings 2010:523-523.
500	61.	Lenaerts G, Mulier M, Spaepen A, Van der Perre G, Jonkers I. Aberrant pelvis and hip
501		kinematics impair hip loading before and after total hip replacement. Gait Posture
502		2009; 30: 296-302.

503	62.	Li JY, McWilliams AB, Jin ZM, Fisher J, Stone MH, Redmond AC, et al. Unilateral total
504		hip replacement patients with symptomatic leg length inequality have abnormal hip
505		biomechanics during walking. Clinical Biomechanics 2015; 30: 513-519.
506	63.	Li J, Redmond AC, Jin Z, Fisher J, Stone MH, Stewart TD. Hip contact forces in
507		asymptomatic total hip replacement patients differ from normal healthy individuals:
508		Implications for preclinical testing. Clinical Biomechanics 2014; 29: 747-751.
509	64.	Loizeau J, Allard P, Duhaime M, Landjerit B. Bilateral gait patterns in subjects fitted
510		with a total hip prosthesis. Arch Phys Med Rehabil 1995; 76: 552-557.
511	65.	Lugade V, Klausmeier V, Jewett B, Collis D, Chou LS. Short-term recovery of balance
512		control after total hip arthroplasty. Clinical Orthopaedics and Related Research 2008;
513		466: 3051-3058.
514	66.	Lugade V, Wu A, Jewett B, Collis D, Chou LS. Gait asymmetry following an anterior
515		and anterolateral approach to total hip arthroplasty. Clinical Biomechanics 2010; 25:
516		675-680.
517	67.	Madsen MS, Ritter MA, Morris HH, Meding JB, Berend ME, Faris PM, et al. The effect
518		of total hip arthroplasty surgical approach on gait. J Orthop Res 2004; 22: 44-50.
519	68.	Mantovani G, Lamontagne M, Varin D, Cerulli GG, Beaule PE. Comparison of total hip
520		arthroplasty surgical approaches by Principal Component Analysis. Journal of
521		Biomechanics 2012; 45: 2109-2115.
522	69.	Martinez-Ramirez A, Weenk D, Lecumberri P, Verdonschot N, Pakvis D, Veltink PH.
523		Assessment of asymmetric leg loading before and after total hip arthroplasty using
524		instrumented shoes. Journal of NeuroEngineering and Rehabilitation 2014; 11 (1) (no
525		pagination).

526	70.	McCrory JL, White SC, Lifeso RM. Vertical ground reaction forces: objective measures
527		of gait following hip arthroplasty. Gait Posture 2001; 14: 104-109.
528	71.	Meneghini RM, Smits SA, Swinford RR, Bahamonde RE. A randomized, prospective
529		study of 3 minimally invasive surgical approaches in total hip arthroplasty:
530		comprehensive gait analysis. The Journal of arthroplasty, vol. 232008:68-73.
531	72.	Miki H, Sugano N, Hagio K, Nishii T, Kawakami H, Kakimoto A, et al. Recovery of
532		walking speed and symmetrical movement of the pelvis and lower extremity joints
533		after unilateral THA. Journal of Biomechanics 2004; 37: 443-455.
534	73.	Muller M, Schwachmeyer V, Tohtz S, Taylor WR, Duda GN, Perka C, et al. The direct
535		lateral approach: impact on gait patterns, foot progression angle and pain in
536		comparison with a minimally invasive anterolateral approach. Arch Orthop Trauma
537		Surg 2012; 132: 725-731.
538	74.	Nankaku M, Akiyama H, Kanzaki H, Kakinoki R. Effects of vertical motion of the
539		centre of mass on walking efficiency in the early stages after total hip arthroplasty.
540		Hip International 2012; 22: 521-526.
541	75.	Nankaku M, Tsuboyama T, Kakinoki R, Kawanabe K, Kanzaki H, Mito Y, et al. Gait
542		analysis of patients in early stages after total hip arthroplasty: effect of lateral trunk
543		displacement on walking efficiency. Journal of Orthopaedic Science 2007; 12: 550-
544		554.
545	76.	Nantel J, Termoz N, Vendittoli PA, Lavigne M, Prince F. Gait patterns after total hip
546		arthroplasty and surface replacement arthroplasty. Archives of physical medicine
547		and rehabilitation, vol. 902009:463-469.

548	77.	Queen RM, Schaeffer JF, Butler RJ, Berasi CC, Kelley SS, Attarian DE, et al. Does
549		Surgical Approach During Total Hip Arthroplasty Alter Gait Recovery During the First
550		Year Following Surgery? Journal of Arthroplasty 2013; 28: 1639-1643.
551	78.	Rathod PA, Orishimo KF, Kremenic IJ, Deshmukh AJ, Rodriguez JA. Similar
552		Improvement in Gait Parameters Following Direct Anterior & Posterior Approach
553		Total Hip Arthroplasty. Journal of Arthroplasty 2014; 29: 1261-1264.
554	79.	Reininga IHF, Stevens M, Wagenmakers R, Boerboom AL, Groothoff JW, Bulstra SK,
555		et al. Comparison of Gait in Patients Following a Computer-Navigated Minimally
556		Invasive Anterior Approach and a Conventional Posterolateral Approach for Total Hip
557		Arthroplasty: A Randomized Controlled Trial. Journal of Orthopaedic Research 2013;
558		31: 288-294.
559	80.	Rosenberg AG. Gait abnormalities following surface hip replacement: a comparative
560		study of patients with surface and total hip replacements. Proceedings of the
561		Institute of Medicine of Chicago 1982; 35: 77-82.
562	81.	Rosler J, Perka C. The effect of anatomical positional relationships on kinetic
563		parameters after total hip replacement. International Orthopaedics 2000; 24: 23-27.
564	82.	Shrader MW, Bhowmik-Stoker M, Jacofsky MC, Jacofsky DJ. Gait and Stair Function in
565		Total and Resurfacing Hip Arthroplasty: A Pilot Study. Clinical Orthopaedics and
566		Related Research 2009; 467: 1476-1484.
567	83.	Stansfield BW, Nicol AC. Hip joint contact forces in normal subjects and subjects with
568		total hip prostheses: walking and stair and ramp negotiation. Clinical Biomechanics
569		2002; 17: 130-139.

570	84.	Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko YP. Asymmetric
571		leg loading during sit-to-stand, walking and quiet standing in patients after unilateral
572		total hip replacement surgery. Clinical Biomechanics 2008; 23: 424-433.
573	85.	Tanaka R, Shigematsu M, Motooka T, Mawatari M, Hotokebuchi T. Factors
574		influencing the improvement of gait ability after total hip arthroplasty. Journal of
575		Arthroplasty 2010; 25: 982-985.
576	86.	van den Akker-Scheek I, Stevens M, Bulstra SK, Groothoff JW, van Horn JR, Zijlstra W.
577		Recovery of gait after short-stay total hip arthroplasty. Archives of Physical Medicine
578		and Rehabilitation 2007; 88: 361-367.
579	87.	Varin D, Lamontagne M, Beaule PE. Does the anterior approach for tha provide
580		closer-to-normal lower-limb motion? Journal of Arthroplasty 2013; 28: 1401-1407.
581	88.	Vogt L, Banzer W, Pfeifer K, Galm R. Muscle activation pattern of hip arthroplasty
582		patients in walking. Research in Sports Medicine 2004; 12: 191-199.
583	89.	Vogt L, Brettmann K, Pfeifer K, Banzer W. Walking patterns of hip arthroplasty
584		patients: Some observations on the medio-lateral excursions of the trunk. Disability
585		and Rehabilitation 2003; 25: 309-317.
586	90.	Waldman G, Foucher KC. Clinical and biomechanical characteristics of total hip
587		arthroplasty responders and nonresponders. Arthritis and Rheumatism 2012; 64:
588		S346-S347.
589	91.	Ward SR, Jones RE, Long WT, Thomas DJ, Dorr LD. Functional recovery of muscles
590		after minimally invasive total hip arthroplasty. Instr Course Lect 2008; 57: 249-254.
591	92.	Wesseling M, Meyer C, Corten K, Simon J-P, Desloovere K, Jonkers I. Does surgical
592		approach or prosthesis type affect hip joint loading one year after surgery? Gait &
593		posture 2016; 44: 74-82.

594	93.	Whatling GM, Dabke HV, Holt CA, Jones L, Madete J, Alderman PM, et al. Objective
595		functional assessment of total hip arthroplasty following two common surgical
596		approaches: the posterior and direct lateral approaches. Proceedings of the
597		Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, vol.
598		2222008:897-905.
599	94.	Wimmer MA, Hildebrand M, Moisio KC, Foucher KC, Della Valle CJ, Berger RA, et al.
600		Recovery after minimally invasive total hip arthroplasty: a gait study. Minerva
601		Ortopedica E Traumatologica 2012; 63: 101-110.

Acknowledgements and Funding

This research was supported by the Australian Government Research Training Program Scholarship for Mr Jasvir S. Bahl and Mr Maximillian J Nelson. JBA is currently supported by a National Health & Medical Research Council Early Career Research Fellowship (ID: 1120560). DT is currently supported by a National Health & Medical Research Council Career Development Fellowship (ID: 1126229).

Contributions

JSB & JA were responsible for the conception and design of the research, reviewing articles, analysing data, interpreting the results of the review, writing and drafting the manuscript, and approving the final version of the manuscript. MJN was responsible for performing the review, interpreting results of the research and revising the manuscript. MT was responsible for conception and design of the review, interpreting the results, and revision of the manuscript for important intellectual content. JK was responsible for interpreting the results of the review and revision of the article for important intellectual content. LBS and DT were responsible for conception and design of the review, interpreting the results of the review, revision of the article for important intellectual content. All authors read and approved the final version of the manuscript.

Role of the funding source

None of the funding sources had input into the study design, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Figure 1. Flowchart of study selection process

Figure 2. A (left) illustrates the change in walking speed following THA compared to the preoperative status. B (right) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study.

Figure 3. A (left) illustrates the change in step length following THA compared to the preoperative status. B (right) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study.

Figure 4. A (top) illustrates the change in sagittal plane hip flexion/extension ROM following THA compared to the pre-operative status. B (bottom) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study.

Figure 5. A (top) illustrates the change in coronal plane hip abduction/adduction ROM following THA compared to the pre-operative status. B (bottom) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study.

Author (year)	Study Design	Study An	alyses	Sample size	(n=)	Mean age, SD (yea	ars)	Mean BMI,	SD (kg/m²)	Surgical approach	Follow-up time point(s)	QI Score (of 26)
		Pre vs post	Post vs control	Patients (THA)	Controls	Patients (THA)	Controls	Patients (THA)	Controls			
Agostini et al 2014 ²⁷	Case control		✓	20	20	66.1 ± 7.2	65.4 ± 5.1	M = 26.1 ± 2.1; F = 27.7 ± 5.0	M = 24.4 ± 3; F = 23.2 ± 2.5	Posterolateral	3 mo, 6 mo, 12 mo	22
Ajemian et al 2004 35	Case series	~		11	N/A	62.6 ± 8.6	N/A	NR	N/A	Not specified	Pre-op, 4 mo, 8 mo	12
Aminian et al 1999 36	Case series	\checkmark		12	N/A	64.5 ± 8.7	N/A	27.8 ± 2	N/A	Not specified	Not specified	11
Atallah et al 2014 37	Case control		\checkmark	17	14	65.9 ± 6.5	39.7 ± 17	NR	NR	Not specified	Not specified	15
Beaulieu et al 2010 38	Case control		✓	20	20	66.2 ± 6.7	63.5 ± 4.4	27.2 ± 5	24.9 ± 3.5	Lateral	6-15 mo	19
Behery and Foucher 2014 39	Case series	✓		125	N/A	61 ± 10	N/A	28.2 ± 5	N/A	Not specified	Pre-op, 15 mo	7
Bennett et al 2008 28	Case control		✓	134	10	74.4 ± 2.2	64 ± 3.6	NR	NR	Posterior	9-10 mo	18
Bennett et al 2006 ⁴⁰	RCT	\checkmark	✓	a: 8 b: 9	10	a: 60.8 ± 5.8 b: 60.1 ± 6.2	64 ± 3.6	a: NR b: NR	NR	a: Posterior b: Posterior (small incision)	Pre-op, 1.38 mo	14
Berman et al 1991 ⁴¹	Prospective cohort	✓	~	21	91	NR	NR	NR	NR	Anterolateral	Pre-op, 0-4 mo, 5-8 mo, 9-12 mo, 13-18	11
Bhargava et al 2007 42	Case control		\checkmark	20	NR	51.6 (SD NR)	NR	NR	NR	Posterior	6-51 mo	15
Bianchi et al 2012 ⁴³	Case series	✓		a: 19 b: 17 c: 19	N/A	a: 64.4 ± 4 b: 65.9 ± 4 c: 65.2 ± 3.5	N/A	a: 27.5 ± 3.7 b: 27.1 ± 3.7 c: 26.1 ± 4	N/A	a: Posterolateral (28mm head) b: Posterolateral (36mm head) c: Posterolateral (≥42mm	Pre-op, 2 mo, 4 mo	21
Bouffard et al 2011 44	Case control		✓	12	11	50.8 ± 6.1	45.7 ± 8.2	26.7 ± 4.7	26.3 ± 3	Posterior (large diameter	12 mo	21
Casartelli et al 2013 ²⁹ Cichy et al 2008 ⁴⁵	Case control Case series	\checkmark	✓	26 30	26 N/A	65 ±8 63.6 ± 8.9	N/A	NR NR	N/A	Posterior & anterior [‡] Anterolateral	6 mo Pre-op, 1 mo	21 17
Colgan et al 2016 ²⁴	Prospective	\checkmark	\checkmark	10	NR	55.4 ± 7	NR	27.1 ± 2.3	NR	Anterolateral	Pre-op, 8 weeks	19
da Cunha et al 2016 $^{ m 46}$	cohort Case series	\checkmark		93	N/A	59.7 ± 11.3	N/A	28.2 ± 4.7	N/A	Lateral	Pre-op, 3 mo	20
Foucher 2016 ³²	Case series	✓		145	N/A	61 ± 10	N/A	28.5 ± 5	N/A	Not specified	Pre-op, 12 mo	17
Foucher et al 2015 ⁹	Case series	\checkmark		145	N/A	61 ± 10	N/A	28 ± 5	N/A	Not specified	Pre-op, 14 mo	17
Foucher et al 2007 ⁵	Prospective	~	✓	28	25	63.6 ± 7.1	57.6 ± 7.7	NR	NR	Posterior & lateral [*]	Pre-op, 14 mo	17
Foucher et al 2010 ⁴⁷	conort Case control		✓	26	24	60 ± 9	54 ± 6	NR	NR	Not specified	3 weeks, 12 mo	15
Foucher et al 2011 ⁴⁸	RCT	✓	\checkmark	a: 13 b: 13	25	a: 57 ± 8 b: 63 ± 9	54 ± 6	a: 27 ± 3 b: 27 ± 3	28 ± 6	a: Anterolateral b: Two incision (anterior and	3 weeks, 3 mo, 6 mo, 12 mo	23

49	D			25	45					buttock)		24
Holnapy et al 2013 ~	Prospective cohort	v	v	a: 25 b: 22 c: 25	45	a: $M = 60.1 \pm 2.4$; $F = 59.9 \pm 3.4$ b: $M = 61.3 \pm 3.4$; $F = 62.2 \pm 2.4$ c: $M = 61.2 \pm 2.9$; $F = 60.8 \pm 3.0$	$M = 60.9 \pm 3.2;$ F = 60.4 ± 4.1	a: $M = 30.3 \pm 3.4$; $F = 30.1 \pm 3.1$ b: $M = 30.7 \pm 2.8$; $F = 29.8 \pm 3.3$ c: $M = 31.3 \pm 3.4$; $F = 28.9 \pm 2.7$	$M = 24.3 \pm 2.8;$ F = 25.3 ± 2.4	a: Lateral b: Anterolateral c: Posterior	Pre-op, 3 mo, 6 mo	21
Horstmann et al 2013 50	Prospective cohort	\checkmark	√	52	24	58 ± 9	54 ± 6.6	NR	NR	Lateral	Pre-op, 6 mo	19
Husby et al 2009 51	Case series	\checkmark		12	N/A	56 ± 8	N/A	28.2 ± 6.5	N/A	Lateral	Pre-op, 1 week, 5 weeks	24
Isobe et al 1998 52	Case series	✓		31	N/A	59.5 ± 8.8	N/A	NR	N/A	Not specified	Pre-op, 6 mo, 12 mo, 18 mo, 2 y, 3 y, 4 y, 5 y, 6 y	15
Jensen et al 2015 53	Prospective cohort	\checkmark	\checkmark	19	20	55 ± 6	57±7	28.4 ± 2.8	25.6 ± 2.9	Posterolateral	Pre-op, 2 mo, 6 mo	22
Jensen et al 2014 54	Case series	\checkmark		38	N/A	56 ± 5.6	N/A	27.8 ± 3.6	N/A	Not specified	Pre-op, 2 mo, 6 mo	11
Judd et al 2015 55	Case series	\checkmark		5	N/A	62.4 ± 7.3	N/A	31.84 ± 4.3	N/A	Posterior	Pre-op, 8 wk	19
Kanzaki et al 2008 56	Case control		\checkmark	9	11	46.3 ± 12.4	48.9 ± 8.2	20.6 ± 2.5	19.6 ± 1.7	Anterolateral (Dall's)	4 wk, 6 mo	18
Kiss et al 2012 ²⁵	Prospective cohort	~	✓	a: 40 b: 40	40	a: 71.3 ± 3.7 b: 70.1 ± 1.4	70.8 ± 3.1	a: 29.9 ± 2.4 b: 29.8 ± 1.6	25.6 ± 3.8	a: Lateral b: Anterolateral	Pre-op, 3 mo, 6 mo, 12 mo	23
Klausmeier et al 2010 ⁵⁷	Prospective cohort	\checkmark	✓	a: 11 b: 12	10	a: 57 ± 7.3 b: 56.9 ± 3.3	59.9 ± 5.3	a: 31.1 ± 4.1 b: 32 ± 5.1	26.3 ± 3.9	a: Anterolateral b: Anterior	Pre-op, 6 wk, 4 mo	21
Krych et al 2011 ⁵⁸	RCT	✓		a: 8 b: 11	N/A	a: 64.5 ± 13.4 b: 65.64 ± 12.1	N/A	a: 29.38 ± 6.5 b: 28.45 ± 3.4	N/A	a: Posterior (mini-incision) b: Two incision (anterior and buttock)	Pre-op, 2 mo, 12 mo	21
Krych et al 2010 59	Case series	✓		Total 21 a: 10 b 11	N/A	Total 63 ± 13 a: NR b: NR	N/A	Total 30 ± 6 a: NR b: NR	N/A	a: Posterior (mini-incision) b: Two incision (anterior and buttock)	Pre-op, 6 wk	15
Lavigne et al 2010 ⁶⁰	Randomised double-blind	✓	~	24	14	49.8 ± 7.3	44.4 ± 6.3	27.8 ± 3.9	25.8 ± 2.9	Posterior	Pre-op 3 mo, 6 mo, 12 mo	24
Lenaerts et al 2009 61	Case series	\checkmark		20	N/A	63 ± 9.8	N/A	27.4 ± 3.9	N/A	Lateral	Pre-op, 6 wk	15
Li et al 2015 ⁶²	Case control		~	15	15	64 ± 2.7	58 ± 1.5	30.7 ± 1.5	24.5 ± 0.7	Not specified	> 12 mo	14
Li et al 2014 63	Case control		✓	15	38	64.27 ± 2.8	44.97 ± 2	30.74 ± 1.5	24.72 ± 0.4	Anterior	> 12 mo	14
Loizeau et al 1995 64	Case control		~	4	4	67.3 ± 8	58.9 ± 8.9	NR	NR	Not specified	3.8 у	16
Lugade et al 2008 ⁶⁵	Prospective	√	✓	20	10	57 ± 5.2	59.9 ± 5.3	31.9 ± 4.3	26.3 ± 3.9	Anterior & lateral ^{\star}	Pre-op, 6 wk, 4 months	22
Lugade et al 2010 ⁶⁶	Prospective cohort	\checkmark	✓	a: 12 b:11	10	a: 56.9 ± 3.4 b: 57 ± 7.3	59.9 ± 5.3	a: 32 ± 5.1 b: 31.1 ± 4.1	26.3 ± 3.9	a: Anterior b: Anterolateral	Pre-op, 6 wk, 4 mo	22
Madsen et al 2004 67	Case control		~	a: 10 b: 10	9	a: 60.7 ± 8.4 b: 63.6 ± 8	54 ± 9.5	a: NR b: NR	NR	a: Anterolateral b: Posterolateral	6 mo	20

Maffiuletti et al 2009 30	Case control		~	a: 17 b: 17	17	a: 69 ± 5 b: 68 ± 6	69 ± 4	a: 27.2 ± 4.2 b: 25.6 ± 3.3	25.5 ± 2.7	a: Posterior b: Anterior	6 mo	21
Mantovani et al 2012 68	Case control		~	a: 20 b: 20	20	a: 60.5 ± 6 b: 66.2 ± 6.7	63.5 ± 4.4	a: 28.5 ± 4.9 b: 27.2 ± 5	24.9 ± 3.5	a: Anterior b: Lateral	11 mo 10 mo	15
Martinez-Ramirez et al 2014 69	Case series	~		19	N/A	62 ± 9	N/A	NR	N/A	Not specified	Pre-op, 6-8 mo	17
Mayr et al 2009 34	Prospective cohort	\checkmark	~	a: 16 b: 17	20	a: 66 ± 10 b: 68 ± 10	27.9 ± 3.3	a: 27 ± 3.8 b: 29 ± 3.6	NR	a: Anterior b: Anterolateral	Pre-op, 6 weeks, 3 mo	22
McCrory et al 2001 70	Case control		\checkmark	27	35	59.7 ± 13.8	27.5 ± 5.7	NR	NR	Not specified	10.5 mo	16
Meneghini et al 2008 ⁷¹	Case series	\checkmark		a: 8 b: 8 c: 7	N/A	a: 54 ± 9 b: 54 ± 9 c: 54 ± 9	N/A	a: 26 ± 2.3 b: 26 ± 2.3 c: 26 ± 2.3	N/A	a: Two incision (anterior and buttock) b: Posterior (mini incision) c: Anterplatoral (mini incision)	Pre-op, 6 wk	20
Miki et al 2004 72	Case series	~		17	N/A	52.6 (SD NR)	N/A	NR	N/A	Posterior	Pre-op, 1 mo, 3 mo, 6	20
Muller et al 2012 73	Case series	\checkmark		a: 15 b: 15	N/A	a: 64.3 ± 7 b: 66.2 ± 8	N/A	a: 26.9 ± 3.3 b: 27 ± 3.1	N/A	a: Anterolateral b: Direct lateral	Pre-op, 3 mo	22
Nankaku et al 2012 74	Case control		\checkmark	18	18	47.7 ± 10	47.4 ± 15.3	20.4 ± 2.1	20.8 ± 1.9	Direct lateral (Dall's)	4 weeks	18
Nankaku et al 2007 75	Case control		\checkmark	15	14	47 ± 10.2	46 ± 13.2	20.3 ± 2.2	20.7 ± 1.9	Anterolateral (Dall's)	4 weeks	20
Nantel et al 2009 76	Case control		\checkmark	10	10	49 ± 7.5	48.6 ± 6	29.9 ± 6.6	26.4 v 3.4	Posterior	6 weeks	21
Perron et al 2000 ¹²	Case control		\checkmark	18	15	65.6 ± 6	65.5 ± 6.5	NR	NR	Posterior & anterolateral ^{\star}	10.7 mo	17
Queen et al 2011 ¹⁰	Case series	\checkmark		a: 8 b: 12 c: 15	N/A	a: 58 ± 7 b: 55.3 ± 8.2 c: 55.4 ± 10.9	N/A	a: NR b: NR c: NR	N/A	a: Lateral b: Posterior c: Anterolateral	Pre-op, 6 weeks	20
Queen et al 2013 ⁷⁷	Case series	\checkmark		a: 10 b: 10 c: 10	N/A	a: 60 ± 6.5 b: 57 ± 6.2 c: $57 + 11.2$	N/A	a: NR b: NR	N/A	a: Lateral b: Posterior	Pre-op, 6 weeks, 12 mo	19
Rathod et al 2014 ⁷⁸	Case series	\checkmark		a: 11 b: 11	N/A	a: 58 ± 6.7 b: 61.8 ± 9.1	N/A	a: 25.9 ± 2.2 b: 25.43 ± 3	N/A	a: Anterior b: Posterior	Pre-op, 6 mo, 12 mo	24
Reininga et al 2013 79	Prospective	✓	~	40	30	60.5 ± 9.5	65.8 ± 6	26.2 ± 3.5	23.9 ± 3.2	Posterior	Pre-op, 6 weeks, 3 mo, 6 mo	23
Rosenberg 1982 80	Case control		~	10	10	66.4 ± 6.9	64.9 ± 4.8	NR	NR	Anterolateral	> 12mo	15
Rosler and Perka 2000 81	Prospective	~	~	26	10	64.6 ± 7.7	42.1 ± 13.5	NR	NR	Lateral	Pre-op, 14.4 wk, 27.8	13
Shrader et al 2009 82	Prospective	~	~	7	7	51.9 ± 10.1	50.4 ± 8.2	NR	NR	Posterolateral	Pre-op, 3 mo	20
Sicard-Rosenbaum et al 2002 11	Case control		~	15	30	59.9 ± 14.9	60.2 ± 15	NR	NR	Not specified	23.6 mo	14
Stansfield and Nicol 2002 83	Case control		✓	5	M = 5; F = 6	52.6 ± 6.6	M = 49.4 ± 5; F = 49.7 ± 5.2	NR	M = NR; F = NR	Not specified	18.6 mo	11

Talis et al 2008 84	Case control		✓	27	27	56 ± 10	55 ± 9	NR	NR	Not specified	19 mo	17
Tanaka et al 2010 ⁸⁵	Prospective	✓	✓	43	26	59.7 ± 7.9	61.3 ± 11.4	NR	NR	Posterolateral	Pre-op, 2 mo, 6 mo, 12	20
Tateuchi et al 2011 31	Case control		~	12	12	63.2 ± 7.2	63.4 ± 5.1	22.5 ± 3.3	21.6 ± 2.1	Not specified	> 6 mo	18
van den Akker-Scheek et al 2007	Prospective cohort	\checkmark	~	63	19	62 ± 12.6	61.7 ± 9.4	26.4 ± 3.3	24.9 ± 2.3	Not specified	Pre-op, 6 weeks, 6 mo	19
Varin et al 2013 ⁸⁷	Case control		✓	a: 20 b: 20	20	a: 66.2 ± 6.7 b: 60.5 ± 6	63.5 ± 9.4	a: 27.2 ± 5 b: 28.5 ± 4.9	24.9 ± 3.5	a: Lateral b: Anterior	10.6 mo 9.6 mo	20
Vogt et al 2004 88	Case control		\checkmark	14	10	63 ± 4	61± 6	NR	NR	Posterolateral	6 weeks	13
Vogt et al 2003 89	Case control		\checkmark	12	10	61.5 ± 6.7	59.5 ± 6.1	NR	NR	Not specified	6 weeks	16
Waldman and Foucher 2012 $^{ m 90}$	Case series	\checkmark		132	N/A	60.5 ± 10	N/A	28.5 ± 4	N/A	Not specified	Pre-op, 12 mo	8
Ward et al 2008 ⁹¹	Case series	V		a: 11 b: 10 c: 18 d: 30	N/A	a: 55 ± 2 b: 64 ± 2 c: 61 ± 2 d: 64 ± 1	N/A	a: 28.9 ± 1.2 b: 27.8 ± 1.1 c: 29.8 ± 1 d: 26.1 ± 0.5	N/A	a: Anterolateral (mini incision) b: Anterolateral (Judet mini incision) c: Posterior d: Posterior (mini incision)	Pre-op, 6 weeks, 6 mo	14
Wesseling et al 2016 92	Case control		✓	12	18	47.75 ± 13.2	53 ± 5	25.52 ± 3	23.67 ± 3	Anterior	12 mo	17
Whatling et al 2008 93	Prospective cohort	~	~	a: 14 b: 13	16	a: 64.21± 10.9 b: 60.46 ± 11.5	46.25 ± 7.4	a: NR b: NR	NR	a: Direct lateral b: Posterior	Not stated	10
Wimmer et al 2012 ⁹⁴	Prospective cohort	~	✓	a: 10 b: 12 c: 7	23	a: 59 ± 7.3 b: 55.7 ± 9.9 c: 57 ± 11.8	53.8 ± 6.5	a: 26.7 ± 2.2 b: 28.9 ± 3.8 c: 30.7 ± 6.6	26.1 ± 4.9	a: Two incision (anterior and buttock) b: Anterolateral (mini incision) c: Posterolateral (mini incision)	6 weeks, 3 mo	16

+ Surgical approaches combined; *Missing gait data where authors were contacted; SD, standard deviation; RCT, randomised controlled trial; NR, not reported; N/A, not applicable; mo, months; wk, week; y, year.

A CE

Table 1. Summary of findings for gait parameters across each time point. Change from pre-operative to post-operative and comparison of post-operative THA patients to healthy individuals

Pre	-operative	e vs post	-operative	Post-operative THA patients vs healthy individuals						
Follow-up time points and variables	Study groups (n=)	I ² , %	SMD (95% CI)	Strength of evidence*	Follow-up time points and variables	Study groups (n=)	I ² , %	SMD (95% CI)	Strength of evidence*	
6 weeks					6 weeks					
	20	70		Madavata	Valasitu	10	60		Madavata	
Velocity	20	70	0.32(0.14 - 0.50)	Moderate	Cingle lineb evene at time	13	69 70	-1.81(-2.22(0-1.40))	Noderate	
Single limb support time	5	30	0.44 (0.19 - 0.69)	Moderate	Single limb support time	0	79	-0.72(-1.38(0)-0.05)	Moderate	
Double limb support time	3	50	-0.03(-0.46(0.0.40))	Moderate	Double limb support time	3	91	2.22(0.26 - 4.19)	Noderate	
Stride length	11	8/	0.40(0.19 - 0.61)	Moderate	Stride length	8 Г	61	-1.90(-2.43(0-1.37))	Noderate	
Stride time	5	70	0.04 (-0.13 (0 0.20))	Strong	Step Width	2 2	10	1.33 (0.91 - 1.75) 1.26 (1.00 to 0.92)	Moderate	
Step Width	5 10	75	0.05(-0.25(0)0.55)	Moderate	Hin flovion /ovtonsion POM	۲ ۸	49	-1.50(-1.90(0-0.65))	Moderate	
Step length	10	/5	0.41 (0.23 - 0.59)	Moderate	Hip flexion/extension ROM	4	0	-2.59(-3.11(0-2.00))	Moderate	
Hip flexion/extension ROM	4	00 20	0.49(-0.29(01.27))	Strong	Hip internal /ovternal ROM	4	44	-1.70(-2.50(0-1.15))	Moderate	
Hip internal/ovternal POM	4	59	0.35(-0.19(0)0.60)	Strong	hip internal/external KOW	4	15	0.18 (-0.25 (0 0.59)	Moderate	
	4	9	0.50 (0.05 - 0.07)	Strong						
3 months					3 months					
Valasitu	17	62			Valasitu	10	0.7		Madavata	
Velocity	1/	03	0.78(0.57 - 0.99)	Wioderate	Velocity	10	82	-1.22(-1.83(0-0.61))	Noderate	
Single limb support time	5	28	0.59(0.35 - 0.82)	Strong	Single limb support time	4 5	/8	-0.73(-1.59(0)0.12)	Moderate	
Stride time	7	21	0.03 (0.38 - 0.88)	Moderate	Double limb support time	5	97	-0.28(-2.05(0)1.58)	Moderate	
Stride time	3	60	-0.38(-0.68(0-0.07))	Moderate	Stride length	0	80	-1.60 (-2.45 to -0.74)	Noderate	
Step width	8 7	90	0.02 (-0.03 (0 0.00))	Nioderate	Step width	8 2	94	1.90(0.60 - 3.20)	Moderate	
Step length	/	31	0.52(0.33 - 0.71)	Strong	Step length	3	0	-0.88(-0.68(0,-0.01))	Noderate	
Hip flexion/extension ROM	4	80	1.07 (0.31 - 1.84)	Moderate	Swing time	3	0	-0.39(-0.67t0-0.11)	Strong	
Hip abduction/adduction ROM	5	95	1.03 (0.24 - 1.82)	/ Moderate	HIP flexion/extension ROM	5	56	-1.88 (-2.47 to -1.28)	Strong	
Hip Internal/external ROM	4	89	0.50(0.01 - 1.00)	Moderate	Hip abduction/adduction ROM	4	0	-1.41(-1.83 to -0.99)	Strong	
Peak nip flexion angle	3	86	0.16 (-0.47 to 0.78)	Moderate	Hip internal/external ROM	4	79	0.26 (-0.60 to 1.11)	Noderate	
Peak hip abouction angle	2	0	-0.39 (-0.62 to -0.16)	Moderate		3	99	-0.20 (-3.31 to 2.90)	Moderate	
					Peak pelvis obliquity angle	4	96	-0.24 (-1.83 to 1.34)	Moderate	
			Y		Minimum pelvis obliquity angle	4	96	-0.41 (-1.96 to 1.13)	Moderate	
					Peak hip abduction moment	4	21	0.02 (-0.44 to 0.49)	woderate	
6 months					6 months					
Velocity	9	32	1.01 (0.81 – 1.21)	Strong	Velocity	8	64	-0.69 (-1.10 to -0.29)	Moderate	

Cadence 6 96 -0.08 (-1.05 to 0.89) Moderate Double limb support time 7 88 0.18 (-0.51 to 0.88) Moderate Pre-operative vs post-operative Post-operative THA patients vs healthy individuals Moderate Post-operative THA patients vs healthy individuals Follow-up time points Study 1 ² SMD (95% Cl) Strength of Follow-up time points Study 1 ² SMD (95% Cl) Strength of	ngth of
$\frac{\text{Pre-operative vs post-operative}}{\text{SMD}} = \frac{\text{Post-operative THA patients vs healthy individuals}}{\text{SMD}}$	ngth of dence*
Follow-up time points Study l^2 % SMD (95% Cl) Strength of Follow-up time points Study l^2 % SMD (95% Cl) Strength	ngth of dence*
and variables groups evidence* and variables groups (n=)	
Stance phase 3 34 -0.14 (-0.42 to 0.13) Limited Stride length 7 0 -0.78 (-1.06 to -0.49) 5	Strong
Pelvic obliquity ROM 4 98 -0.81 (-2.60 to 0.99) Moderate Step length 4 51 -0.35 (-0.68 to -0.01) 5	Strong
Swing time 5 75 0.36 (-0.14 to 0.86) Mod	oderate
Hip flexion/extension ROM 3 0 -1.33 (-1.83 to -0.82)	Strong
Pelvis obliquity ROM 5 95 0.28 (-1.02 to 1.57) Mod	oderate
12 months 12 months	
Velocity 11 78 1.28 (1.01 – 1.56) Moderate Velocity 7 77 -0.59 (-1.08 to -0.11) Moderate	oderate
Hip abduction/adduction ROM 4 39 0.33 (-0.19 to 0.86) Strong Single limb support time 2 0 -0.82 (-1.23 to -0.41) Moc	oderate
Hip internal/external ROM 4 9 0.36 (0.05 – 0.67) Strong Double limb support time 3 59 -0.38 (-0.83 to 0.08) Moc	oderate
Stride length 3 0 -1.27 (-1.63 to -0.91) Moc	oderate
Step length 3 90 -0.54 (-1.46 to 0.38) Moc	oderate
Hip flexion/extension ROM 3 65 -1.16 (-1.83 to -0.49) 5	Strong
Peak hip extension angle 4 97 0.11 (-1.68 to 1.91) Moc	oderate
Pelvis obliquity ROM 4 78 0.09 (-0.47 to 0.65) Moc	oderate
Pelvis flexion/extension ROM 5 73 0.48 (0.00 – 0.96) Moc	oderate
24 months	
Velocity 2 0 -0.57 (-0.98 to -0.15) Li	Limited

* Strength of evidence was determined as per Van Tulder et al 2003²⁵

P C'

Ρ

Value

.484

.932

.354

.245

.271

.210

Velocity 6 weeks Velocity 3 months Step length 6 weeks Velocity 12 months Stride length 6 weeks Ρ Ρ Ρ β (95% CI) β (95% CI) Ρ β (95% CI) β (95% CI) β (95% CI) Value Value Value Value .046 -0.25 -.094 .406 -.021 Age .324 -.052 .045 -.029 (-0.77 to 0.27) (-.102 to -.001) (-.185 to -.003) (-.107 to .048) (-.086 to .044) BMI -.002 .968 .055 .437 .011 .970 .255 .275 -.012 (-.093 to .204) (-.867 to .889) (-.106 to .102) (-1.244 to 1.755) (-.433 to .409) Sample -.008 .217 -.005 .508 -.002 .583 -.011 .033 -.034 size (-0.20 to .005) (-.019 to .010) (-.010 to .006) (-.020 to -.001) (-.112 to .045) .206 Surgical .195 .431 .224 .537 .725 .354 Approach* (-.290 to .998) (-.315 to .705) (-.532 to .981) (-.477 to 1.927)

-.006

.051

Table 1. Meta Regression Analysis of Factors Potentially Related to Heterogeneity

.386

.073

.003

(-.007 to .014)

(-.105 to .011)

% females

Risk of bias -.047

.497

.107

-.005

-.062

(-.017 to .007)

(-.131 to .007)

*Comparison of the gluteal muscle sparing (anterior) approach to the more conventional posterior and lateral surgical approaches.

(-.042 to .144)

(-.037 to .025)

.645

.246

-.016

-.041

(-.040 to .008)

(-.132 to .050)

.141

.326

.011

-.095

(-.012 to .034)

(-.254 to .064)

Α	Std. Mean Difference	SE	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% CI
Velocity 6 weeks		-		, , , , , , , , , , , , , , , , , , , ,	, ,
Klausmeier 2010	-0.24	0.27	4.7%		-0.24 [-0.77, 0.29]
Klausmeier b 2010	0.58	0.19	5.9%		0.58 [0.21, 0.95]
Lugade 2008	0.25	0.2	5.8%	+	0.25 [-0.14, 0.64]
Lugade 2010	0.61	0.26	4.9%		0.61 [0.10, 1.12]
Lugade b 2010	-0.39	0.26	4.9%		-0.39 [-0.90, 0.12]
Mayr 2009	0.49	0.25	5.0%		0.09 [0.52 0.34]
Mayr b 2009	-0.09	0.22	4 1%		-0.09 [-0.32, 0.34]
Queen 2011 Queen 2013	0.81	0.29	4.5%		0.81 [0.24, 1.38]
Queen b 2011	0.86	0.25	5.0%		0.86 [0.37, 1.35]
Queen b 2013	0.8	0.29	4.5%		0.80 [0.23, 1.37]
Queen c 2011	0.75	0.23	5.3%		0.75 [0.30, 1.20]
Queen c 2013	0.9	0.28	4.6%		0.90 [0.35, 1.45]
Reininga 2013	0.26	0.14	6.7%		0.00 [-0.27, 0.27]
Tanaka 2010	0.20	0.13	7.1%		0.11 [-0.11 0.33]
Vanden Akker-Scheek 2007	0.38	0.37	3.5%		0.38 [-0.35, 1.11]
Ward b 2008	-1.27	0.39	3.3%		-1.27 [-2.03, -0.51]
Ward c 2008	0.6	0.37	3.5%		0.60 [-0.13, 1.33]
ward d 2008	0.5	0.31	4.2%		0.50 [-0.11, 1.11]
			100.0%	•	0.32 [0.14, 0.50]
Total (95% CI)				•	
Test for overall effect: Z = 3.42	ni ^a = 62.56, df = 19 2 (P = 0.0006)	9 (P < 0.0	JUU1); I* = 70%		
Velocity 3 months	0.43	0.13	9.1%		0.43 [0.18, 0.68]
da Cunha 2010	0.43	0.18	8.1%		0.43 [0.08, 0.78]
Klausmeier 2010	1.07	0.24	6.9%		1.07 [0.60, 1.54]
Klausmeier b 2010	1.14	0.25	6.7%		1.14 [0.65, 1.63]
Lavigne 2010	0.9	0.18	8.1%		0.90 [0.55, 1.25]
Lugade 2008	1.16	0.24	6.9%		1.16 [0.69, 1.63]
Lugade 2010	0.48	0.25	6.7%		0.48 [-0.01, 0.97]
Lugade b 2010	0.77	0.31	5.6%		0.17 [0.16, 1.38]
Mayr 2009	0.69	0.36	4.8%		0.69 [-0.02, 1.40]
Muller 2012	0.17	0.31	5.6%		0.17 [-0.44, 0.78]
Muller b 2012	0.5	0.19	7.9%		0.50 [0.13, 0.87]
Reininga 2013	0.96	0.54	2.9%		0.96 [-0.10, 2.02]
Shrader 2009	2.12	0.45	3.7%		2.12 [1.24, 3.00]
Ward 2008	0.14	0.46	3.6%		0.14 [-0.76, 1.04]
Ward b 2008	1.74	0.39	4.4%		- 1.74 [0.98, 2.50]
Ward c 2008	1.03	0.32	5.4%		1.03 [0.40, 1.66]
ward d 2008			100.0%	•	0.78 [0.57, 0.99]
Total (95% CI) Heterogeneity: Tau ² = 0.11; Cl	hi² = 43.48, df = 16	6 (P = 0.0	002); I² = 63%		
Test for overall effect: Z = 7.28	3 (P < 0.00001)				
Valacity 6 months	1.04	0.42	5.1%		1.04 [0.22, 1.86]
velocity 6 months	1.04	0.31	8.3%		1.04 [0.43, 1.65]
Ajemian 2004	1.65	0.27	10.2%		1.65 [1.12, 2.18]
Berman 1991	0.88	0.42	5.1%		0.88 [0.06, 1.70]
Lavigne 2010 Martinez Demirez 2014	0.23	0.4	18.1%		0.23 [-0.35, 1.01]
Rathod 2014	1	0.21	14.3%		1.00 [0.59, 1.41]
Rathod b 2014	1.01	0.2	15.2%		1.01 [0.62, 1.40]
Reininga 2013	1.14	0.17	18.1%		1.14 [0.81, 1.47]
Tanaka 2010			100.0%	•	1.01 [0.81, 1.21]
Total (95% CI)					
Heterogeneity: Tau ² = 0.03; Cl Test for overall effect: Z = 9.94	hi² = 11.79, df = 8 \$ (P < 0.00001)	(P = 0.16); I² = 32%		
Velocity 12 months					
Behery 2013	0.79	0.11	12.4%		0.79 [0.57, 1.01]
Berman 1991	1.41	0.20	9.2%		0.91 [0.42 1.40]
Foucher 2007	1.25	0.1	12.6%		1.25 [1.05 1 45]
Foucher 2016	2.26	0.24	9.6%	У —	2.26 [1.79, 2.73]
Queen 2013	1.7	0.35	7.3%	· · · · · · · · · · · · · · · · · · ·	- 1.70 [1.01, 2.39]
Queen b 2013	1.23	0.26	9.2%	— —	1.23 [0.72, 1.74]
Queen c 2013	0.52	0.47	5.3%		0.52 [-0.40, 1.44]
Rathod 2014	0.79	0.35	7.3%		0.79 [0.10, 1.48]
Rathod b 2014	1.94	0.38	0.7% 11.0%		1.94 [1.20, 2.68]
Tanaka 2010	1.29	0.18	11.0%		1.28 [0.84, 1.04]
Total (95% CI)			100.0%		1.28 [1.01, 1.56]
Heterogeneity: Tau ² = 0.15; Cl	hi² = 45.09, df = 10	0 (P < 0.0	0001); l² = 78%	,	
Test for overall effect: Z = 9.18	3 (P < 0.00001)				

-2 -1 0 1 2 Favours [Decrease] Favours [Increase]

	т	на		Co	ntrol			Std. Mean Difference	Std. Mean Difference
В	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random, 95% CI
Volocity 6 wooks vs b	althy cu	hiacte						,	,
velocity 6 weeks vs in	eatiny su	bjects							
Kanzaki 2008	53.2	9.1	9	70.2	5.7	11	6.0%		-2.20 [-3.36, -1.03]
Klausmeier 2010	1.04	0.17	11	1.29	0.17	10	7.0%		-1.41 [-2.39, -0.43]
Lugade 2008	1.06	0.21	20	1.29	1.17	10	8.3%		-0.31 [-1.08, 0.45]
Lugade 2010	1.08	0.2	12	1.28	0.17	10	7.4%		-1.03 [-1.93, -0.12]
Lugade B 2010	0.97	0.26	11	1.28	0.17	10	7.1%		-1.34 [-2.31, -0.37]
Mayr 2009	83.82	16.78	13	127.8	11.24	20	6.5%	←	-3.14 [-4.21, -2.07]
Mayr B 2009 Napkaku 2007	82.19	27.65	16	127.8	11.24	20	7.8%		-2.21 [-3.06, -1.36]
Nankaku 2007	49.5	8.4	18	67.2	6.7	14	7.7%		-2.25 [-3.11, -1.40]
Reininga 2013	1.1	0.2	40	1.6	0.2	30	9.1%		-2.47 [-3.11, -1.84]
Tanaka 2010	0.677	0.151	43	1.018	0.249	26	9.5%	<u> </u>	-1.74 [-2.31, -1.17]
van den Akker-Scheek 2007	0.95	0.17	63	1.32	0.15	19	9.2%		-2.21 [-2.83, -1.59]
Total (95% CI)			283			208	100.0%		-1.81 [-2.22, -1.40]
Heterogeneity: Tau ² = 0.38;	Chi² = 38.3	39, df = 1	2 (P = 0.0	001); l ² =	69%			•	
Test for overall effect: Z = 8.	61 (P < 0.	00001)							
Velocity 3 months vs	nealtny s	ubjects							
Agostini 2014	0.78	0.1	20	0.99	0.17	20	10.7%		-1.48 [-2.18, -0.77]
Klausmeier 2010	1.18	0.17	11	1.29	0.17	10	9.9%		-0.62 [-1.50, 0.26]
Klausmeier B 2010	1.2	0.18	12	1.29	0.17	10	10.1%		-0.49 [-1.35, 0.36]
Lugade 2008	1.19	0.16	20	1.28	1.17	10	10.5%		-0.13 [-0.89, 0.63]
Lugade 2010	1.19	0.17	12	1.28	0.17	10	10.1%		-0.51 [-1.36, 0.35]
Lugade B 2010	1.17	0.17	11	1.28	0.17	10	9.9%		-0.62 [-1.50, 0.26]
Mayr 2009	93.07	27.19	16	127.8	11.24	20	10.4%	<u> </u>	-1.70 [-2.48, -0.93]
Mayr B 2009	87.07	5.5	15	127.8	11.24	20	8.2%	←	-4.30 [-5.56, -3.04]
Reininga 2013	1.2	0.2	40	1.6	0.2	30	11.3%	_ _	-1.98 [-2.56, -1.40]
Shrader 2009	110.4	9.95	7	120.5	13.68	7	8.9%		-0.79 [-1.89, 0.31]
Total (95% CI)			164			147	100.0%		-1.22 [-1.83, -0.61]
Heterogeneity: Tau ² = 0.78;	Chi² = 48.	89, df = 9	(P < 0.00	001); l ² =	82%			-	
Test for overall effect: Z = 3.	90 (P < 0.	0001)							
Mala alter Contantha card									
velocity 6 months vs	leaning s	ubjects							
Agostini 2014	0.92	0.18	20	0.99	0.17	20	13.8%		-0.39 [-1.02, 0.23]
Kanzaki 2008	66.2	5.4	9	70.2	5.7	11	10.1%		-0.69 [-1.60, 0.22]
Madsen 2004	1.17	0.2	10	1.21	0.12	9	10.2%		-0.23 [-1.13, 0.68]
Madsen B 2004	1.17	0.18	10	1.21	0.12	9	10.1%		-0.25 [-1.15, 0.66]
Nantel 2009	1.31	0.2	10	1.25	0.18	10	10.4%		0.30 [-0.58, 1.18]
Reininga 2013	1.3	0.2	40	1.6	0.2	30	15.1%		-1.48 [-2.02, -0.95]
Tanaka 2010	0.792	0.153	43	1.018	0.249	20	15.3%		-1.15 [-1.67, -0.62]
Vali dell Akkei-Scheek 2007	1.14	0.10	03	1.52	0.15	15	13.176		-1.03 [-1.00, -0.49]
Total (95% CI)			205			134	100.0%	•	-0.69 [-1.10, -0.29]
Heterogeneity: Tau ² = 0.21;	Chi ² = 19.3	21, df = 7	(P=0.00	18); l ² = 64	%			•	
Test for overall effect: Z = 3.	36 (P = 0.	(8000							
Velocity 12 months vs	healthy	subjects							
	y								
Agostini 2014	1	0.22	20	0.99	0.17	20	14.3%	_ _	0.05 [-0.57, 0.67]
Bennett 2008	0.99	0.23	134	1.34	0.13	10	13.8%		-1.55 [-2.21, -0.88]
Foucher 2007	1.06	0.11	28	1.06	0.13	25	15.2%	-+-	0.00 [-0.54, 0.54]
Perron 2000	1.07	0.142	18	1.25	0.1	15	13.0%		-1.08 [-1.82, -0.34]
Varia 2012	0.029	0.143	43	1.010	0.249	20	10.4%		-0.99 [-1.50, -0.47]
Varin P 2012	1.14	0.21	20	1.29	0.15	20	14.0%		-0.01 [-1.45, -0.10]
Valin D 2010	1.01	0.15	20	1.25	0.15	20	14.070		0.10[-0.40, 0.10]
Total (95% CI)			283			136	100.0%	-	-0.59 [-1.08, -0.11]
Heterogeneity: Tau ² = 0.33;	Chi ² = 26.0	09, df = 6	(P=0.00	02); I ² = 7	7%			-	
Test for overall effect: Z = 2.	40 (P = 0.	02)							
Velocity 24 months ve	healthy	subjects							
. clocity 14 months VS	neatiny	Subjects	•						
Sicard-Rosenbaum 2002	1.1	0.2	15	1.3	0.33	30	42.0%		-0.67 [-1.30, -0.03]
Talis 2008	1.1	0.2	27	1.2	0.2	27	58.0%	_ - - 	-0.49 [-1.03, 0.05]
Total (95% CI)			42			57	100.0%	•	-0.57 [-0.98, -0.15]
Heterogeneity: Tau ² = 0.00:	Chi ² = 0.1	7, df = 1 (P = 0.68)	; l² = 0%				◆	
Test for overall effect: Z = 2.	69 (P = 0.	007)	,						
	-								
								-2 -1 0 1	2 -
								Favours [Decrease] Favours [In	crease]

Figure 2. A (left) illustrates the change in walking speed following THA compared to the pre-operative status. B (right) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study.

	Ctal Maan			Std. Mean Difference	Std. Mean Difference ACC	CEPTED MANUSCRIPT	ТН	A		Con	trol			Std. Mean Difference	Std. Mean Difference
Α	Difference	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	В	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Step length 6 weeks						Step length 6 weeks vs	health	v subiec	ts						
Cichy 2008	0.24	0.12	11.7%		0.24 [0.00, 0.48]	• • • • • • • • • • • • • • • • • • •		,							
Husby 2009	0.55	0.21	8.3%		0.55 [0.14, 0.96]	Reininga 2013	67.6	10.2	40	79.7	11.6	30	53.1%		-1.11 [-1.62, -0.60]
Queen 2011	0.86	0.3	5.8%		0.86 [0.27, 1.45]	van den Akker-Scheek 2007	0.58	0.08	63	0.71	0.07	19	46.9%	_ _	-1.65 [-2.23, -1.08]
Queen 2013	0.74	0.15	10.5%		0.74 [0.45, 1.03]										
Queen b 2011	0.31	0.28	6.2%		0.31 [-0.24, 0.86]	Total (95% CI)			103			49	100.0%	\bullet	-1.36 [-1.90, -0.83]
Queen b 2013	0.6	0.13	11.3%		0.60 [0.35, 0.85]	Heterogeneity: Tau ² = 0.07;	Chi ² = 1.9	5, df = 1	(P = 0.16);	l² = 49%					
Queen c 2011	0.25	0.17	9.8%	+	0.25 [-0.08, 0.58]	Test for overall effect: 7 = 4	99 (P < 0	00001)							
Queen c 2013	0.63	0.13	11.3%		0.63 [0.38, 0.88]										
Reininga 2013	-0.07	0.11	12.1%	-	-0.07 [-0.29, 0.15]	Step length 3 months v	s health	ny subje	cts						
Vanden Akker-Scheek 2007	0.24	0.08	13.1%	+	0.24 [0.08, 0.40]										
						Kiss 2012	379.6	38.7	40	428.2	61.2	40	34.6%		-0.94 [-1.40, -0.48]
lotal (95% CI)			100.0%	$ \bullet $	0.41 [0.23, 0.59]	Kiss B 2012	374.6	49.5	40	428.2	61.2	40	34.5%		-0.95 [-1.42, -0.49]
Heterogeneity: Tau ² = 0.06; Test for overall effect: Z = 4	Chi ² = 36.53, df = 9 39 (P < 0.0001)	(P < 0.000	1); I² = 75%			Reininga 2013 🔨 🔨	72.7	7.8	40	79.7	11.6	30	31.0%		-0.72 [-1.21, -0.23]
rest for overall enect. 2 = 4.	55 (F < 0.0001)					Total (95% CI)			120			110	100.0%		.0 88 [.1 15 .0 60]
Step length 3 months						Hotorogonoity: Tau ² = 0.00:1	°hi2 – 0 5	7 df - 0	(D = 0.75).	12 - 00/		110	100.076		-0.00 [-1.10, -0.00]
da Cunha 2010	0.46	0.13	26.2%		0.46 [0.21, 0.71]	Helelogeneily. Tau- = 0.00, 1	0.0	07, UI = 2	(P = 0.75),	I ⁻ - U%					
Kiss 2012	0.51	0.2	16.2%		0.51 [0.12, 0.90]	l est for overall effect: $Z = 6.3$	31 (P < 0.	.00001)							
Kiss b 2012	0.34	0.2	16.2%		0.34 [-0.05, 0.73]	Stan langth 6 months y	e hoalti		oto						
Lavigne 2010	1	0.26	11.1%		1.00 [0.49, 1.51]	Step length o months v	5 licalu	iy subje	013						
Muller 2012	1	0.36	6.5%		1.00 [0.29, 1.71]	Kiss 2012	388.1	585.7	40	428.2	61.2	40	26.7%	_ _	-0.10 [-0.53, 0.34]
Muller b 2012	0	0.33	7.6%		0.00 [-0.65, 0.65]	Kiss B 2012	423 5	397	40	428.2	612	40	26.7%	_	-0.09[-0.53_0.35]
Reininga 2013	0.53	0.2	16.2%		0.53 [0.14, 0.92]	Reininga 2013	75.1	8.5	40	79.7	11.6	30	24.5%		-0.46 [-0.94, 0.02]
Total (95% CI)			100.0%		0.52 [0.33, 0.71]	van den Akker-Scheek 2007	0.63	0.0	63	0.71	0.07	19	22.1%		-0.84 [-1.37 -0.31]
Heterogeneity: Tau ² = 0.02;	Chi ² = 8.67, df = 6 (P = 0.19); I	² = 31%	•			0.00	0.1	00	0.11	0.07	10	22.170	-	0.04[1.07, 0.04]
Test for overall effect: Z = 5.	26 (P < 0.00001)	,,				Total (95% CI)			183			129	100.0%	•	-0.35 [-0.68, -0.01]
Stan Janeth C mantha	, ,					Heterogeneity: Tau ² = 0.06;	Chi ² = 6.1	1, df = 3	(P = 0.11);	l² = 51%				•	
Step length 6 months						Test for overall effect: Z = 2.0	03 (P = 0.	.04)							
Berman 1991	0.78	0.31	14.9%		0.78 [0.17, 1.39]			.,							
Kiss 2012	0.09	0.3	15.3%	-	0.09 [-0.50, 0.68]	Step length 12 months	vs heal	thy subj	ects						
Kiss b 2012	1.56	0.22	18.0%	│ — <u>—</u>	1.56 [1,13, 1.99]	Donnott 2000	0.52	0.1	104	0.60	0.04	10	24.00/		1 64 [0 04 0 07]
Lavigne 2010	1.38	0.29	15.6%		1.38 [0.81, 1.95]	Bennell 2000	0.55	0.1	154	0.09	0.04	10	31.2%		-1.04 [-2.31, -0.97]
Reininga 2013	0.79	0.22	18.0%	_ 	0.79 [0.36, 1.22]	KISS 2012	411.4	65.4	40	428.2	61.2	40	34.4%	-++	-0.26 [-0.70, 0.18]
Vanden Akker-Scheek 2007	0.74	0.21	18.3%		0.74 [0.33, 1.15]	Kiss B 2012	439.9	69.1	40	428.2	61.2	40	34.4%		0.18 [-0.26, 0.62]
Total (95% CI)			100.0%	•	0.90 [0.50, 1.31]	Total (95% CI)			214			90	100.0%		-0.54 [-1.46, 0.38]
Heterogeneity: Tau ² = 0.19;	Chi ² = 19.91, df = 5	(P = 0.001); l² = 75%	-		Heterogeneity: Tau ² = 0.58; (Chi² = 19.	.79. df = 2	2 (P < 0.00	01): l ² = 90%	6			-	
Test for overall effect: Z = 4.	39 (P < 0.0001)					Test for overall effect: 7 = 1	15 /D = 0	25)		,	-				
	,			+ + + + +		reation overall elicol. Z = 1.	··· (· = 0.								
				-2 -1 0 1 2										-2 -1 0 1 2	1
			Fav	ours [Decrease] Favours [Increase	a l									ravours [Decrease] ravours [Increa	sej

Figure 3. A (left) illustrates the change in step length following THA compared to the pre-operative status. B (right) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study.

Α	Std. Mean Difference	SE	Weight		Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% CI
Hip flexion/extension	on ROM 6 weeks		AC	CEPTED MANUSCRIPT		
Klausmeier 2010	-0.18	0.18	27.3%			-0.18 [-0.53, 0.17]
Klausmeier b 2010	1.37	0.31	24.6%			1.37 [0.76, 1.98]
Mayr 2009	0.98	0.36	23.4%			0.98 [0.27, 1.69]
Mayr b 2009	-0.1	0.31	24.6%			-0.10 [-0.71, 0.51]
Total (95% CI)			100.0%			0.49 [-0.29, 1.27]
Heterogeneity: Tau ² = Test for overall effect:	0.55; Chi ² = 24.14, df = 7 = 1.24 (P = 0.22)	3 (P < 0.00	01); I ² = 88%			
Hip flexion/extension	on ROM 3 months					
Klausmeier 2010	0.38	0.16	30.7%		- C	0.38 [0.07, 0.69]
Klausmeier b 2010	1.85	0.42	23.5%			1.85 [1.03, 2.67]
Mayr 2009	1.63	0.48	21.7%			1.63 [0.69, 2.57]
Mayr b 2009	0.7	0.4	24.1%			0.70 [-0.08, 1.48]
Total (95% CI)			100.0%			1.07 [0.31, 1.84]
Heterogeneity: Tau ² =	0.47; Chi ² = 15.18, df =	3 (P = 0.00	2); l ² = 80%			
Test for overall effect:	Z = 2.76 (P = 0.006)					
					-2 -1 0 1 2	

Favours [Decrease] Favours [Increase]

D	TH	IA		Control				Std. Mean Difference	Std. Mean Difference	
D	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Hip flexion/extension	6 weeks v	s health	y subject	5						
Klausmeier 2010	28.94	9.25	11	48.33	6.62	10	20.7%		-2.29 [-3.45, -1.14]	
Klausmeier B 2010	33.13	5.2	12	48.33	6.62	10	20.1%	Y	-2.49 [-3.65, -1.32]	
Mayr 2009	27.67	5.99	13	42.55	4.07	20	25.7%	←→	-2.96 [-3.99, -1.93]	
Mayr B 2009	26.38	8.16	16	42.55	4.07	20	33.5%	/ <u> </u>	-2.54 [-3.45, -1.64]	
Total (95% CI)			52			60	100.0%	•	-2.59 [-3.11, -2.06]	
Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 9	; Chi² = 0.79, 9.68 (P < 0.00	df = 3 (P 001)	= 0.85); l² =	• 0%			\rightarrow	•		
Hip flexion/extension	3 months	vs healt	hy subjec	ts						
Agostini 2014	12.4	6.2	20	19.2	4.4	20	24.7%	_	-1.24 [-1.92, -0.56]	
Klausmeier 2010	35.12	10.44	11	48.33	6.62	10	18.4%		-1.43 [-2.42, -0.45]	
Klausmeier B 2010	36.85	5.81	12	48.33	6.62	10	17.7%		-1.78 [-2.81, -0.76]	
Mayr 2009	30.08	4.21	16	42.55	4.07	20	18.5%		-2.95 [-3.93, -1.97]	
Mayr B 2009	31.75	5.91	15	42.55	4.07	20	20.9%	-	-2.14 [-2.99, -1.28]	
Total (95% CI)			74			80	100.0%		-1.88 [-2.47, -1.28]	
Heterogeneity: Tau ² = 0.26	; Chi² = 9.05,	df = 4 (P	= 0.06); l ² =	56%				-		
Test for overall effect: Z = 6	6.13 (P < 0.00	001)								
Hip flexion/extension	6 months	vs healt	hy subjec	ts						
Agostini 2014	13.3	6.3	20	19.2	4.4	20	57.0%		-1.06 [-1.73, -0.40]	
Madsen 2004	34	7.4	10	46.4	3.9	9	19.4%		-1.97 [-3.11, -0.83]	
Madsen B 2004	39.4	5.3	10	46.4	3.9	9	23.7%		-1.42 [-2.46, -0.39]	
Total (95% CI)			40			38	100.0%		-1.33 [-1.83, -0.82]	
Heterogeneity: Tau ² = 0.00	; Chi² = 1.85,	df = 2 (P	= 0.40); l ² =	= 0%				-		
Test for overall effect: Z = 5	5.16 (P < 0.00	001)								
Hip flexion/extension	12 months	vs hea	Ithy subje	cts						
Agostini 2014	16.3	5.2	20	19.2	4.4	20	35.0%	_ _	-0.59 [-1.22, 0.04]	
Varin 2013	41.8	5.3	20	51.2	5	20	31.3%		-1.79 [-2.53, -1.04]	
Varin B 2013	44.7	5.9	20	51.2	5	20	33.6%	_	-1.17 [-1.84, -0.49]	
Total (95% CI)			60			60	100.0%		-1.16 [-1.83, -0.49]	
Heterogeneity: Tau ² = 0.23	; Chi² = 5.79,	df = 2 (P	= 0.06); l ² =	65%				-		
Test for overall effect: Z = 3	8.38 (P = 0.00	07)								
									<u> </u>	
								-2 -1 U 1 2 Favours [Decrease] Favours [Incre	asel	

Figure 4. A (top) illustrates the change in sagittal plane hip flexion/extension ROM following THA compared to the pre-operative status. B (bottom) compares post-operative THA patients to healthy individuals. Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study

Α	Std. Mean Difference	SE	ACCEPTED N	IANUSCRIPT	Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
Hip abduction/adduct	ion ROM 6 weeks					
Klausmeier 2010	0.12	0.55	17.6%			0.12 [-0.96, 1.20]
Klausmeier b 2010	0.56	0.55	17.6%			0.56 [-0.52, 1.64]
Mayr 2009	0.88	0.36	30.0%			0.88 [0.17, 1.59]
Mayr b 2009	-0.14	0.31	34.8%			-0.14 [-0.75, 0.47]
Total (95% CI)			100.0%		-	0.33 [-0.19, 0.86]
Heterogeneity: Tau ² = 0. Test for overall effect: Z	11; Chi² = 4.94, df = 3 = 1.24 (P = 0.22)	(P = 0.18);	l² = 39%			
Hip abduction/adduct	ion ROM 3 months					
Ajemian 2004	1.64	0.33	19.0%			1.64 [0.99, 2.29]
Klausmeier 2010	0.17	0.04	21.7%		-	0.17 [0.09, 0.25]
Klausmeier b 2010	1.05	0.29	19.6%			1.05 [0.48, 1.62]
Mayr 2009	1.9	0.25	20.1%		- Y -	1.90 [1.41, 2.39]
Mayr b 2009	0.48	0.29	19.6%			0.48 [-0.09, 1.05]
Total (95% CI)			100.0%			1.03 [0.24, 1.82]
Heterogeneity: Tau ² = 0.	74; Chi ² = 73.54, df = 4	(P < 0.000	001); I ² = 95%			
Test for overall effect: Z	= 2.56 (P = 0.01)					
Hip abduction/adduct	ion ROM 12 month	S		×		
Klausmeier 2010	0.12	0.55	17.6%			0.12 [-0.96, 1.20]
Klausmeier b 2010	0.56	0.55	17.6%		/ · · ·	0.56 [-0.52, 1.64]
Mayr 2009	0.88	0.36	30.0%			0.88 [0.17, 1.59]
Mayr b 2009	-0.14	0.31	34.8%			-0.14 [-0.75, 0.47]
Total (95% CI)			100.0%		•	0.33 [-0.19, 0.86]
Heterogeneity: Tau ² = 0.	11; Chi ² = 4.94, df = 3	(P = 0.18);	l² = 39%		-	
Test for overall effect: Z	= 1.24 (P = 0.22)					
						+
				Favo	-2 -1 0 1 urs [Decrease] Favours [Inc	2 crease]
_	тыл		Control		Std Mean Difference	Std. Mean Difference
В	Mean SD	Total	Mean SD Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Hin abduction/adduct	ion ROM 6 weeks v	s healthy	subjects			
	ion it om o weeks v	o nearriy :				
Klausmeier 2010	8.38 3.41	11 /	13.63 5.56 10	24.3%		-1.11 [-2.04, -0.17]

Klausmeier B 2010	8.02	2.36	12	13.63	5.56					
Mayr 2009	6.68	2.42	13	13.76	3.18					
Mayr B 2009	7.55	2.21	16	13.76	3.18					
Total (95% CI)			52							
Heterogeneity: Tau ² = 0.17; Chi ² = 5.36, df = 3 (P = 0.15); I ² = 44%										
Test for overall effect: Z = 5.65 (P < 0.00001)										
Hip abduction/adduction ROM 3 months vs healthy subjects										

60
20
20
10
10

Heterogeneity: Tau² = 0.00; Chi² = 2.75, df = 3 (P = 0.43); l² = 0% Test for overall effect: Z = 6.55 (P < 0.00001)

-1.76 [-2.36, -1.15]

-1.31 [-2.25, -0.37]

-2.37 [-3.30, -1.45]

-2.17 [-3.02, -1.33]

Figure 5. A (top) illustrates the change in coronal plane hip abduction/adduction ROM following THA compared to the pre-operative status. B (bottom) compares post-operative THA patients to healthy individuals.Studies listed as (Author) a, b, c represent different surgical approaches used and reported in the study

10

20

20

60

24.1%

24.5%

27.1%

100.0%

