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Highlights

• A method is developed to characterise highly irregular shape patterns.

• Features are defined based on best-fitting ellipsoids.

• The method is demonstrated successfully on three biomedical data sets.

• Shape patterns are learned automatically from the data.

• Landmark points are not required.
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Abstract

A method is developed to characterise highly irregular shape patterns, es-

pecially those appearing in biomedical settings. A collection of best-fitting el-

lipsoids is found using principal component analysis, and features are defined

based on these ellipsoids in four different ways. The method is defined in a gen-

eral setting, but is illustrated using two-dimensional images of dimorphic yeast

exhibiting pseudohyphal growth, three-dimensional images of cancellous bone

and three-dimensional images of marbling in beef. Classifiers successfully distin-

guishes between the yeast colonies with a mean classification accuracy of 0.843

(SD = 0.021), and between cancellous bone from rats in different experimental

groups with a mean classification accuracy of 0.745 (SD = 0.024). A strong

correlation (R2 = 0.797) is found between marbling ratio and a shape feature.

Key aspects of the method are that local shape patterns, including orientation,

are learned automatically from the data, and the method applies to objects

that irregular in shape to the point where landmark points cannot be identified

between samples.
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bone, marbling in beef

1. Introduction

1.1. Shape analysis

Shape analysis is vital in many biological applications, providing information

on growth mechanisms and assisting in the detection of a variety of medical

conditions [1]. In a review of shape analysis techniques, Loncaric defined the5

shape of an object as a binary image representing the extent of the object, and

grouped shape analysis methods based on whether the method considers the

shape boundary or the interior [2]. Extensive work has been done in both of

these areas, and a comprehensive review has been conducted by Pavlidis [3].

Many studies have appeared in which the shape of two-dimensional (2D) ir-10

regular objects is characterised in a biological context. Elliptic Fourier analysis

has been used to describe the shape of otoliths in fish [4], leaves for plant species

identification [5, 6], mussel shells [7], and the human mandible [8]. Multiple reso-

lution skeletons have been used to characterise the geometry of non-rigid objects,

such as pseudopods on white blood cells [9]. Landmark methods have been used15

to describe the shape of the human frontal bone [10] and Old World Talpidae

(mole) skulls [11]. The latter studies used projections of three-dimensional (3D)

computed tomography (CT) scans onto a 2D plane, which means that not all

available information was utilised.

Cootes et al. extended landmark methods to the idea of point distribution20

models [12], leading to statistical shape models (SSMs). The central idea of

SSMs is to extract the mean shape and several modes of variation from a col-

lection of training shapes using statistical methods [13]. SSMs encompass both

active shape models (ASMs) and active appearance models (AAMs).

ASMs are similar to active contour models (“Snakes”) [14], and for this rea-25

son are sometimes called “Smart Snakes” [12], in the sense that data from the

image is used to iteratively deform the shape model in order to fit the model
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to the data. However, the key step in ASMs is that constraints for allow-

able deformations are learned from training data [15]. ASMs have been used

to model the shape of resistors, hands [12, 16], the left ventricle in echocardio-30

grams [12, 17], prostates in magnetic resonance (MR) images, ventricles in brain

MR images [17], and car brake components [18]. ASMs have also been used for

classification, for example to classify plant seeds, and to recognise faces and

handwritten postcodes [19]. Hill et al. extended ASMs to 3D using contours,

and used these to segment 3D MR head images [15]. Lu et al. used a combina-35

tion of ASMs, AAMs, and texture analysis to estimate bone fracture risk from

dual-energy X-ray absorptiometry images of the human femur [20]. Although

modelling the shapes is an automated process, the landmark points need to be

manually located in the training images in a consistent manner. In particular,

landmark points placed on one sample must correspond to equivalent landmarks40

on the other samples [12].

Shape context is similar to the work presented here in that a histogram of

local shape descriptors is constructed [21]. This method then relies on identify-

ing points of similarity of objects under the assumption of overall similarity. For

example, silhouettes of hands in different poses may be identified by matching45

finger tips and the gaps between fingers.

Additional recent work on shape analysis includes a “bag of words” approach

[22], a moment invariant approach for disconnected shapes [23], shape registra-

tion in the context of directional data [24], scalable methods [25], extensions

of landmark methods [26], extensions of chamfer matching [27], characterising50

shape by modelling electric charge distributions (similar to ideas used for skele-

tonisation), extension of shape context [28], methods based on depicting the

overall shape as a union of ellipses [29] and unsupervised learning methods [30].

All these methods apply to characterising or comparing the overall shapes of

objects but are not useful for characterising local shape attributes of objects in55

situations where the overall shape of the object carries no significant informa-

tion.

Here, the focus is on characterising the shape of objects that are irregular
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in shape to the point that there are no recognisable landmarks for comparing

samples. The illustrative examples presented in this paper are pseudohyphal60

growth exhibited by dimorphic yeast colonies [31], the structure of cancellous

bone [32–34] and the structure of marbling in beef [35]. The method is fully

automatic and does not require user input during training. Final shape features

for characterising or classifying are learned automatically from training data.

In this study, ellipsoids are fit to local structure samples to extract various65

local shape characteristics. The measured properties are recorded in vectors

referred to as shape primitives. The Euclidean distance between shape primi-

tives reflects similarity in local shape patterns and clusters of shape primitives,

called clustered shape primitives (CSPs), represent shape patterns that occur

commonly within the object. A histogram of occurrences of these CSPs may be70

viewed as a quantitative descriptor of local shape patterns in the object.

The idea of fitting ellipsoids and then using CSPs to characterise shape

patterns has been explored in a preliminary study [34], in which the method

was trialled on the same 3D cancellous bone data that is used in the current

study. In the preliminary study, a single and simplistic version of this approach75

was presented [34]. In the current study, various methods of recording the

shape primitives are explored in depth, including whether or not to interrogate

the data directly and whether to include directional information. A potential

issue with scaling is addressed. In addition, the process is applied to two more

problems: classifying yeast colonies based on shape and finding a connection80

between marbling structure and the amount of marbling in beef.

1.2. Morphology of dimorphic yeasts

Dimorphic yeasts, such as Saccharomyces cerevisiae, respond to nutrient de-

privation by forming multicellular filaments called pseudohyphae [36]. S. cere-

visiae is used for the production of bread, wine, and ale, making it of interest85

to understand and optimise growth behaviour [31]. Pseudohyphae exhibit com-

plex shape patterns and developing methods to quantify such patterns is an

open area of research.
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Binder et al. defined a set of spatial indices to quantify the shape of the yeast

colonies based on radial and angular growth, and demonstrated how the values90

of the indices change with time [31]. Ruusuvuori et al. developed a classifier

that distinguished between yeast phenotypes (smooth versus fluffy) based on a

large database of pre-defined features [37]. The process was automated, except

for the definitions of the features, but relied on textural information and thus

is not transferrable to the analysis of binary images of yeast colonies.95

1.3. Structure of cancellous bone

A common coarse model for the structure of cancellous bone, especially in

human bone, is that of rods and plates. Attributes such as trabecular number

(number of rods), trabecular thickness and trabecular spacing provide useful

descriptions of the structure. At a time when shape information for cancellous100

bone was only available via analysis of 2D slices across the bone, these at-

tributes were derived using histomorphometry [38]. Rods and plates are fairly

pronounced in load bearing bones of larger animals, including humans, but this

pattern is much less apparent in rats – the pattern of trabecular structure in

cancellous bone in rats is not easily parameterised according to consistent geo-105

metric attributes.

Martin and Bottema characterised the 3D structure of cancellous bone in rat

tibiae by measuring the thickness of the bone in 13 directions at a collection of

subsampled points [33]. The 13 directions in which thickness measurements were

made were determined by the positioning of the tibia of the rat in the scanner,110

rather than the important directions being learned from the data itself. By

instead fitting ellipsoids to the data, the local orientation may be determined

independently of the laboratory coordinate frame.

1.4. Marbling in Beef

Flecks of fat in beef steaks are known as marbling. The number of flecks,115

their distribution, shape and size affect consumer demand [39], [40], [41]. Mar-

bling is also of scientific interest because of the link between marbling and fat
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metabolism. Previous work has focussed on characterising the shape of mar-

bling flecks in the steaks, meaning that the flecks have been viewed as shapes

in the plane. The shape of individual flecks were characterised in terms of120

area, eccentricity, and a measure of irregularity of shape in 2D [42]. However,

when viewed in 3D, the marbling consists a of large connected highly irregular

structure and, in consequence, the methods used to characterise the shape of

individual marbling flecks in 2D do not apply analogously in 3D.

Here, local 3D shape patterns are used to determine if there is a connection125

between shape patterns of marbling in 3D and the amount of marbling.

1.5. Contribution an structure of the paper

The contribution of the paper lies in the method for constructing shape

primitives and the use of clustering to determine common local shape patterns.

This builds on previous work [34] in the sense that local oriented thickness130

patterns form the basis of local shape features. But here the orientations are

determined automatically and adaptively from the data at each point. This

avoids bias introduced by assuming a single preferred orientation within samples

and inconsistencies of overall orientation between samples relative to a fixed

laboratory reference frame.135

The core of the method is described in Section 2 and is applied to shape

analysis tasks on three data sets described in Section 3. The feature selection

and classification strategies described in Section 4 should not be viewed as part

of the proposed method. The strategies employed here were chosen to allow

comparison to previous work and as conservative methods suitable for three140

example studies, all of which comprise small numbers of samples.

2. Representing local shape

2.1. Fitting ellipsoids

Let X denote a binary function on n-dimensional Euclidean space (Rn), and

let Ω denote the set {p ∈ Rn : X(p) = 1} . If n = 2, then X is a binary image.145

7
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Figure 1: A demonstration of the process of fitting an ellipse in 2D using a slice taken from

the cancellous bone data set as an example. The object Ω is shown in white. (a) First, a

disk Bp
r (blue) is drawn at p (blue cross). Here, the region Ω∩Bp

r (shaded) contains more than

one connected component. (b) Second, the connected component Ωp containing the largest

number of occupied points (now shaded) is found. This represents the dominant local shape

pattern at p. (c) Third, an ellipse Ep (now blue) is fit to Ωp (shaded). The ellipse Ep and the

connected component Ωp have the same volume.

The set Ω is the object of interest in the image or array, and the objective is to

characterise the shape patterns of Ω. For a point p ∈ Ω, let Bp
r denote the open

ball of radius r centred at p. Let Ωp denote the largest connected component

of Ω ∩ Bp
r and let Ep denote the ellipsoid that best fits Ωp in the sense that

the n-dimensional volume of Ep and Ωp are equal and that vol (Ep ∩ Ωp) is150

maximal subject to the condition of equal volume (Figure 1). The best fitting

ellipsoid Ep is easily found by applying principal components on the coordinates

of the points in Ωp. The directions of the n axes of the ellipsoid are given by

the unit eigenvectors u1,u2, . . . ,un, each of which has n components, ui =

(ui,1, ui,2, . . . , ui,n) . The lengths of each axis `i, i = 1, . . . , n, are given by the155

corresponding eigenvalues, normalised to ensure the volume of Ep is equal to the

volume of Ωp. Let Li, i = 1, . . . , n, be the length of the longest line segment in

the direction given by ui, passing through the centroid of Ep, and lying entirely

inside the object Ω (Figure 2).

Four definitions of shape primitive vectors vp based on the constructions160

above will be considered.

Definition 1 (Oriented ellipsoid parameters).

vp = (`1u1,1, `1u1,2, . . . , `1u1,n, `2u2,1, `2u2,2, . . . , `2u2,n−1, . . . , `nun,1) .

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) (b)

Figure 2: An illustration of the difference between the length measurements `i, i = 1, 2,

and Li, i = 1, 2, using the ellipse fit in Figure 1. (a) The lengths `1 and `2 correspond to the

lengths of the major and minor axes of the ellipse, respectively. (b) The lengths L1 and L2

are the lengths of the longest line segments lying entirely inside Ω and passing through the

centroid of the ellipse, measured in the directions of the major and minor axes, respectively.

The thickness of the object, rather than the ellipse, is measured here.

Oriented ellipsoid parameter shape primitives retain all orientation and length

information embodied in Ep to represent the local shape of Ωp. Since the unit

vectors are orthogonal, the ellipsoid may be specified by a total of n(n+1)/2 pa-

rameters instead of the full n2 components need to specify n vectors of length n.165

Definition 2 (Oriented object parameters).

vp = (L1u1,1, L1u1,2, . . . , L1u1,n, L2u2,1, L2u2,2, . . . , L2u2,n−1, . . . , Lnun,1) .

Oriented object parameter shape primitives capture information about the

local orientation and thickness of the segment of Ω more directly. This method

has the drawback that the centroid of the ellipsoid is not guaranteed to fall

inside the object Ω, in which case Li = 0 for all i = 1, . . . , n.

Definition 3 (Ellipsoid shape parameters).

vp = (`1, `2, . . . , `n) ,

Ellipsoid shape parameter shape primitives retain only information about170

the lengths of the axes of the ellipsoids.

9
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Definition 4 (Object shape parameters).

vp = (L1, L2, . . . , Ln) .

Object shape parameter shape primitives retain only information about the

thickness of the object locally at p.

Regardless of which of the four previous definitions are used, vp captures

information about the shape of the corresponding connected component Ωp
175

in some way. For an object Ω, the collection {vp : p ∈ Ω} corresponds to a

collection of local shape patterns occurring throughout Ω.

2.2. Clustered shape primitives

The objective is to characterise the similarities and differences in the shape of

objects sampled from m classes. The classes are denoted by Gg, g = 1, 2, . . . ,m,180

and the full data set is G =
⋃
Gg.

The collection of all shape primitives in a data group Gg is

Fg = {vp : p ∈ Ω, X ∈ Gg} ,

and is called the representation space for group g. Shape primitives close to

each other in space represent similar shape patterns. Hence, common local

shape patterns occurring in the collection Gg may be identified by clustering

the vectors in Fg. The resulting cluster centres are referred to as clustered shape185

primitives (CSPs), and may be viewed as quantitative shape descriptors learned

automatically from the data. The CSPs for data group Gg are vectors Cg
k , k =

1, 2, . . . ,K, of the same dimension as the shape primitives vp. With m groups

and K CSPs per group, there are M = Km CSPs in total. For convenience,

these are labelled sequentially as Cj , where C(g−1)K+k = Cg
k , g = 1, 2, . . . ,m190

and k = 1, 2, . . . ,K.

The CSP map Y associated with X is obtained by replacing every point p ∈
Ω by the label of the CSP closest to vp. That is,

Y (p) = arg min
j∈{1,2,...,M}

{‖Cj − vp‖} ,

10
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where ‖ · ‖ is the Euclidean norm. The normalised histogram of CSP labels

associated with X is

hX = (h1, h2, . . . , hM ) , (1)

where hj is the proportion of points in Ω with label j. The histogram hX

represents the shape content of X and numbers hj are viewed as features for

classifying X.

In practice, the choice of the parameter r will affect the information captured195

by the ellipsoids. If r is very small compared to the characteristic radius of

shape features in Ω, then Bp
r will often fall entirely inside the object Ω. Thus,

the majority of ellipsoids fit to the object will be balls and so will fail to capture

information about the orientation and thickness of the components. If r is very

large compared to the characteristic radius of the shape features of Ω, then the200

largest component inside Bp
r will not capture local structure. For a sensible

choice of r, local information is captured well (Figure 3). The parameter r

may be determined empirically, or by domain knowledge of the scale of the

components of interest.

3. Examples205

Three data sets were used in this study: binary images (2D) of yeast colonies,

blocks of cancellous bone (3D) obtained from rat tibiae and marbling in beef

striploins (3D).

3.1. Yeast colony data

The yeast colony study is retrospective, based on data described in [31].210

Single cells of the S. cerevisiae AWRI796 strain were used to initiate the growth

of 10 individual yeast colonies with 50 µM ammonium sulphate nutrient con-

centration. Each of the colonies was imaged successively over time, with images

being taken at t = {23, 48, 73, 87, 115, 162, 211, 233} hours after initialisation of

growth. The images were converted into 2D binary images using customised215

software [43, 44], where pixels were assigned as ‘occupied by yeast cells’ (Ω) or

11
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Figure 3: A demonstration of the effect of the parameter r on the information captured by

the ellipse, using the same 2D example as in Figures 1 and 2. The set Ω is shown in white,

the connected component Ωp is shaded, and the fit ellipse is shown in blue with the cross

representing its centroid. (a) The parameter r is very small compared to the size of the

components of the object, and the resulting ellipse is a disk. (b) The choice of r appears to

be sensible. (c) The value of r is very large compared with the size of the object components.

The image has been zoomed out, but the starting point p has been kept consistent with that in

Figure 1. The connected component Ωp is very large, and the ellipse appears to fail to capture

shape information at the local level. In this case, the centroid of the ellipse falls outside of

the set Ω.

‘unoccupied’ (Figure 4). Depending on the size of the colony at the time of

imaging, the resolution varied. For t = 23, 48 hours, the resolution was approx-

imately 0.61 µm ×0.61 µm per pixel, and for t = 73 through 233 hours, the

resolution was approximately 1.52 µm ×1.52 µm per pixel. More details may220

be found in Binder et al. [31].

The data set was separated into eight experimental groups corresponding

to each of the eight timesteps. For each timestep, five of the colonies were

randomly assigned to the training set, and the remaining five were assigned to

the testing set.225

3.2. Cancellous bone data

The data for the cancellous bone study was also collected as part of a previ-

ous study [32]. Thirty female rats were randomly assigned to three experimen-

tal groups of 10 rats each. At the beginning of the study (week 0), the sham

group underwent a sham surgery, where an incision was made but no organs230

were removed. This was the control group. The ovx group underwent a full

12
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(e) (f) (g) (h)

Figure 4: An illustration of the growth of colony number 5 for each of the eight time steps.

(a)–(h) The colony was imaged at t = {23, 48, 73, 87, 115, 162, 211, 233} hours, respectively.

For t = 23 and t = 48 hours, the resolution is approximately 0.61 µm ×0.61 µm per pixel.

For t = 73, . . . , 233 hours, the resolution is approximately 1.52 µm ×1.52 µm per pixel.

ovariectomy, and the ovx+zol group underwent a full ovariectomy plus subse-

quent treatment with zoledronic acid, a bisphosphonate, starting two weeks after

surgery (week 2). The rats in the sham and ovx groups received saline injections

at the same time as the rats in the ovx+zol group received the zoledronic acid235

injections.

Micro-computed tomography (µ-CT) scans of the right tibia of each rat were

taken at t = {0, 2, 4, 8, 12} weeks after surgery. Since two rats died between

weeks 8 and 12, the scans from week 8 were used in the current study. The

resolution of the scans was 8.70 µm ×8.70 µm×8.70 µm per voxel. For each240

of the 30 rats, a rectangular block of size 121× 121× 400 voxels was manually

segmented from the µ-CT reconstruction, corresponding to bone of approximate

size 1 mm × 1 mm × mm. The longest edge of each block was roughly parallel

to the main axis of the tibia, and the first cross-sectional slice was approximately

1.2 mm from the growth plate of the bone. After segmentation, each voxel was245

assigned as ‘occupied by bone’ (Ω) or ‘unoccupied’, resulting in a data set of 30

binary bone blocks (Figure 5). Further details may be found in Fazzalari et

al. [32].

Each bone block was divided into three sub-blocks, with the first sub-block

13
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Figure 5: Examples of cancellous bone taken from rat tibiae eight weeks after the beginning of

the study, one for each experimental group. The bottom of each block corresponds to the slice

closest to the growth plate (slice 1). (a) The sham group corresponds to the control group.

(b) The rats in the ovx group underwent an ovariectomy at the beginning of the study. (c)

Rats in the ovx+zol group underwent an ovariectomy at the beginning of the study, and were

subsequently treated for bone loss with zoledronic acid.

14
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comprising the first 100 slices counting from the growth plate end, the sec-250

ond sub-block comprising slices 101–200, and the third sub-block comprising

slices 201–300. The last 100 slices furthest from the growth plate were not used

in the study because in some cases the bone was too sparse to meaningfully

characterise the structure (Figure 6). A total of nine groups were used in the

study, corresponding to three experimental groups and three distances from the255

growth plate. The reason for distinguishing between different distances from

the growth plate was that the rats in the study were growing and new bone was

being formed by endochondral ossification at the growth plate. Hence, different

structure patterns may occur at different distances from the growth plate, in

addition to differences in the structure between the three experimental groups.260

For each of the three experimental groups, five of the 10 rats were randomly

assigned to the training set and the remaining five rats were assigned to the

testing set.

3.3. Beef marbling data

The data for the marbling in beef was originally acquired for a study on265

associating vitamin A intake and fat metabolism. Details of the study design the

acquisition of the images have been described previously in detail [42]. Briefly,

Striploins from 20 Angus steers were frozen and then sliced into 25 steaks, each

4 mm thick. The steaks were photographed at a resolution 7.5 pixels per mm.

The steak images were manually segmented to retain the rib eye area and the270

marbling within. All further image analysis steps were performed automatically

using software written by one of the authors (MJB) in Matlab. The images were

converted to grayscale, filtered to remove lighting effects resulting in flattened

images and then converted to binary images using a threshold (Figure 7). For

each striploin, the 25 binary images were stacked to form a 3D array representing275

the marbling within the striploin. The marbling ratio for each striploin was

taken to be the number of “on” voxels (voxels representing marbling) divided

by the number of voxels comprising the full striploin.

As an example of the use of 3D shape descriptors in the present study,

15
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Figure 6: An illustration of splitting up a rectangular block into three sub-blocks, using a

block from the ovx group as an example. The slices closest to the bottom of the image are

always closest to the growth plate of the bone. (a) The original bone block. (b) From bottom

to top: sub-blocks 1–4. The first three sub-blocks are used in the study.
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Figure 7: Example steak image. (a) Original photograph of a steak. (b) The binary version

showing the marbling.

the objective was to determine the correlation between the marbling ratio and280

structure of the 3D marbling as represented by local shape patterns. Thus, in

this example, the shape features are used for regression rather than classification.

4. Implementation details

For all three data sets, the objective was to describe the shape characteristics

of the object Ω. For each data set, the points at which the ellipsoids were

initialised were subsampled from the set of points in Ω. In the case of the yeast

colony data, let ∂Ω be the subset of Ω comprising boundary pixels, that is,

pixels in Ω with at least one unoccupied neighbour. Let c be the centroid of the

colony, found by taking the average values of the occupied x and y coordinates,

and let

R = arg min
p∈∂Ω

{||c− p||} .

That is, R is the radius of the largest disk Bc
R centred at c that fits entirely

inside the colony. Let Ωfil = Ω\Bc
R, so named because this is the “filamentous”285

part of the colony (Figure 8). Ellipses were initialised at a subsampled set of
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Figure 8: The subset Ωfil corresponding to the filamentous part of the colony (white region).

Ellipsoids were only initialised within this region. This example is colony 5 imaged at t = 233

hours.

points p ∈ Ωfil, since the shape of the filamentous part of the colony is of interest.

In the case of the cancellous bone data and the marbling data, ellipsoids were

initialised at a randomly subsampled set of points from Ω.

For all data sets, the best fitting ellipsoid Ep to Ωp was found as described290

in Section 2.1. Shape primitives were constructed according to the general

construction given in Definitions 1–4. For the beef marbling data, only Defi-

nition 1 was considered because of the disparity between the in-plane and be-

tween plane resolution of the data. For the oriented object parameter (Defini-

tion 2) and object shape parameter (Definition 4) shape primitives, if Li = 0295

for all i = 1, . . . , n, then those shape primitives were omitted from the repre-

sentation space. The proportion of centroids of all ellipsoids fit to all images or

arrays falling outside the object Ω was recorded in order to ascertain whether

an unreasonable proportion of shape primitives was being omitted.

For the yeast colony data and the cancellous bone data, CSPs were com-300

puted by clustering each representation space Fg constructed from the training

images for each group g. A K-means clustering algorithm with 100 iterations

and one replicate was used for clustering, with K = 10 clusters per class for

yeast and cancellous bone data sets. The value K = 10 was based on prelimi-

nary experiments and previous work [45]. This resulted in M = 80 or M = 90305
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CSPs in total for yeast colonies and cancellous bone, respectively (Table 1).

For the regression problem in the case of the marbling example, there was no

previous work to guide the number of clusters. Hence, separate trails were con-

ducted with the value of K = 4, 6, 10, 14, 18, 22. Normalised histograms (sum

of columns equals one) of CSP labels were computed for all images or arrays in310

the data set.

For the yeast colony and cancellous bone data sets, linear discriminant anal-

ysis was used as the classifier during the training and testing steps. The best

combination of three features was found by exhaustive search. Each combi-

nation of features was tested individually and the combination that gave the315

highest classification accuracy was selected for the testing step. The K-means

algorithm was repeated 30 times. For each definition of the shape primitives,

the entire process was repeated five times with the parameter r set at varying

lengths (Table 1).

For the beef marbling data, the choice of r was restricted by the discrepancy320

between the in-plane resolution (voxel side length 0.133 mm) and the between-

plane resolution (voxel side length 4.0 mm). Only the value of r = 6.78 mm

was considered. This corresponds roughly to a ball comprising three steaks in

diameter. Ten striploins were randomly selected for training the linear regression

and resulting regression line was used to predict the proportion of marbling for325

the remaining 10 striploins.

5. Results and discussion

5.1. Yeast colonies

When fitting ellipses to the yeast colony data, the largest proportion of ellipse

centroids that fell outside the colony was 3.11× 10−2 for r = 75.6 µm with the330

proportions dropping for smaller and larger values of r (Table 2). In the context

of yeast colonies, the possibility of centroids of the ellipses falling outside Ω did

not pose a serious problem, since this caused relatively few feature vectors to

be excluded from the representation space.
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Table 1: Numerical details of the classifier for each data set. # pts is the number of subsampled

points at which the ellipsoids were initialised, n is the dimension, K is the number of clusters

obtained using K-means clustering, M is the number of CSPs, # fts is the number of best

features selected during classification, and r is the radius of the balls (in µm) used to initialise

the ellipsoids. The values of r correspond to whole numbers of pixels or voxels.

Data set # pts n K M # fts r

Yeast colonies 10000 2 10 80 3 3.03, 15.2, 75.6, 303, 909

Cancellous bone 10000 3 10 90 3 17.4, 43.5, 131, 261, 435

Beef marbling 10000 3 10 10 1 6780

Table 2: The proportion of ellipses fit to all 80 images whose centroids fell outside the colony

as a function of r (in µm) when ellipses were fit to yeast colony data.

r 3.03 15.2 75.6 303 909

Proportion 6.00× 10−4 8.27× 10−3 3.11× 10−2 7.28× 10−4 0

When the shape primitives were recorded using oriented ellipsoid parameters335

(Definition 1), the highest classification accuracy was achieved using r = 303 µm

(Table 3). Here, information about the orientation and size of the ellipses was

included in the shape primitives. Using disks Br with r < 303 µm results in

ellipses that capture information at the local level. Although there appears to

be some filamentation at the local level, these small filaments seem to be similar340

in shape regardless of the development of the larger filaments. These ellipses

fail to capture the shape of the larger filaments. For r = 909 µm the ellipses

are very large and capture information about a large area of the colony, leading

to information without much discriminative power (Figure 9). The ellipses fit

using disks Br, r = 303 µm result in a good tradeoff between picking out345

information at the local and the global level.

When oriented object parameters were recorded in the shape primitives (Def-

inition 2), the best classification score was achieved when the ellipses were fit

using disks of radius r = 15.2 µm. Here, the orientation of each ellipse was
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Figure 9: An illustration of an ellipse (blue) fit using a ball Br of radius r = 909 µm using

colony number 5 at t = 233 hours after initiation of growth as an example. The connected

component Ωp is shaded.

recorded, along with the length of the colony itself in the major and minor350

directions of the ellipse. If disks Br with r < 15.2 µm are used to fit the el-

lipses, then the ellipses fall too close to the boundary of the colony, resulting in

length measurements that do not accurately capture the shape patterns of the

colony. For r > 15.2 µm the ellipses are large, giving centroids and directions

that result in length measurements with little discriminatory power (Figure 9).355

Using disks with r = 15.2 µm results in the centroids of the ellipsoids falling far

from the boundaries of the filaments, meaning that oriented object parameters

would extract useful information about the length and width of the filaments

(Figure 10).

When only ellipsoid shape parameters were recorded in the shape primi-360

tives (Definition 3), the highest classification accuracy was obtained with r =

75.6 µm. This suggests the ellipses fit the data closely, being of a compara-

ble length and width to that of the filaments themselves. When only object

shape parameters were recorded (Definition 4), the best classification accuracy

occurred at r = 3.03 µm (Table 3). This suggests the ellipses do not fit the365

data closely, but their centroids correspond to a set of subsampled points at

which informative object shape parameter measurements are made.

The highest classification accuracy overall (µ = 0.843, σ = 0.020) was
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Figure 10: An illustration of an ellipse (red) fit using a ball Br of radius r = 15.2 µm

using one filament (white) isolated from colony number 5 at t = 233 hours. The largest

connected component Ωp that intersects with Bp
r is shaded in grey. The blue and orange lines

show the length measurements in the major and minor directions of the ellipse, respectively.

Oriented object parameters appear to adequately capture the shape of the filament at this

point, whereas the thickness of the ellipse itself does not extract as much information about

the shape of the colony.
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Table 3: Best classification accuracy as a function of r (µm) for yeast colony data. Columns

two to five correspond to the accuracy obtained using each of the four methods to record the

shape primitives (Definitions 1–4, respectively). For each method, 80 CSPs were computed

and 30 trials were conducted. The highest accuracy achieved by each method is shown in

bold.

r Oriented ellipsoid

parameters

Oriented object

parameters

Ellipsoid shape

parameters

Object shape

parameters

3.03
µ = 0.722,

σ = 0.014

µ = 0.819,

σ = 0.025

µ = 0.744,

σ = 0.022

µ = 0.785,

σ = 0.018

15.2
µ = 0.702,

σ = 0.023

µ = 0.843,

σ = 0.021

µ = 0.776,

σ = 0.019

µ = 0.773,

σ = 0.025

75.6
µ = 0.763,

σ = 0.033

µ = 0.808,

σ = 0.020

µ = 0.840,

σ = 0.028

µ = 0.633,

σ = 0.025

303
µ = 0.827,

σ = 0.020

µ = 0.815,

σ = 0.023

µ = 0.755,

σ = 0.010

µ = 0.576,

σ = 0.021

909
µ = 0.478,

σ = 0.009

µ = 0.485,

σ = 0.013

µ = 0.413,

σ = 0.019

µ = 0.471,

σ = 0.016

achieved by recording oriented object parameters, after fitting ellipses using

disks of radius r = 15.2 µm (Table 3). This result suggests that interrogating370

the data directly, and including directional information in conjunction with this,

is the most effective way of extracting information from the yeast colony data.

5.2. Cancellous bone

When ellipsoids were fit to the cancellous bone data, a large proportion of

centroids fell outside of the bone itself. The proportion increased with r, with375

the largest proportion being 0.340 when balls of radius r = 435 µm were used

to fit the ellipsoids (Table 4).

When oriented ellipsoid parameters were used for the shape primitives (Def-

inition 1), the highest classification accuracy was achieved at r = 131 µm (Ta-

ble 5). If balls of smaller radius are used, then the subset Ωp is small and does380

not contain much meaningful information about the local structure. In fact, the
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Table 4: The proportion of ellipsoids fit to all 90 sub-blocks whose centroids fall outside the

bone as a function of r (in µm) for cancellous bone data.

r 17.4 43.5 131 261 435

Proportion 7.28× 10−4 6.33× 10−3 0.083 0.236 0.340

balls Bp
r are likely to fall entirely inside the bone, for most points p, resulting

in ellipsoids that are also balls. If balls of larger radius are used, then each Ωp

is likely to be large and complicated, and the ellipsoid properties fail to capture

orientation and thickness information at the local level. Choosing r = 435 µm385

means that the diameter of each ball is almost as large as the length of the

two shortest sides of the bone block, so it is not surprising that this choice of r

corresponded to the lowest classification accuracy. The choice r = 151 µm gives

the optimal tradeoff between extracting local versus global information about

the trabecular structure.390

When oriented object parameters were recorded (Definition 2), the equal

highest classification score occurred when the ellipsoids were fit using balls of

radius r = 17.4 and 43.5 µm. The standard deviation for r = 17.4 µm

was slightly smaller than that for r = 43.5 µm (Table 5). As r increased, the

proportion of centroids of the ellipsoids that fell outside the bone also increased,395

and the classification accuracy decreased. This suggests that, although the

ellipsoids fit using balls with r = 17.4 and 43.5 µm may be small and capture

local information only, their centroids most likely do fall close to the centre of the

bone and hence result in meaningful bone thickness measurements, especially

when combined with directional information.400

In the case of the cancellous bone, the classification accuracy tended to

improve when directional information was removed from the shape primitives.

The highest classification accuracy overall (µ = 0.745 σ = 0.024) occurred

at r = 131 µm when only object shape parameters (Definition 4) were recorded

(Table 5). In the context of cancellous rat bone, including directional informa-405

tion in the features does not increase the discriminatory power of the classifier.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Best classification accuracy as a function of r (µm) for cancellous bone data. Columns

two to five correspond to the accuracy obtained using each of the four methods to record the

shape primitives (Definitions 1–4, respectively). For each method, 90 CSPs were computed

and 30 trials were conducted. The highest accuracy achieved using each method is shown in

bold.

r Oriented ellipsoid

parameters

Oriented object

parameters

Ellipsoid shape

parameters

Object shape

parameters

17.4
µ = 0.593,

σ = 0.021

µ = 0.676,

σ = 0.016

µ = 0.633,

σ = 0.025

µ = 0.670,

σ = 0.021

43.5
µ = 0.640,

σ = 0.019

µ = 0.676,

σ = 0.020

µ = 0.670,

σ = 0.014

µ = 0.666,

σ = 0.017

131
µ = 0.663,

σ = 0.026

µ = 0.664,

σ = 0.021

µ = 0.695,

σ = 0.016

µ = 0.745,

σ = 0.024

261
µ = 0.620,

σ = 0.024

µ = 0.649,

σ = 0.029

µ = 0.670,

σ = 0.024

µ = 0.713,

σ = 0.020

436
µ = 0.613,

σ = 0.023

µ = 0.625,

σ = 0.023

µ = 0.657,

σ = 0.019

µ = 0.624,

σ = 0.016

However, the lengths of the bone are measured in the directions of the major,

middle, and minor axes of the ellipsoid. Hence, the length measurements alone

contain some directional information in the sense that the important directions

are learned directly from the data, as opposed to making assumptions about410

the direction of the main axis of the tibia.

5.3. Marbling in beef

The shape analysis of marbling in beef differed from the shape analysis of

the yeast colonies and the cancellous bone in three ways.

First, the anisotropic shape of the voxels limited the range of the radii used415

to define the region for fitting the ellipsoids. If the radii are measured in steak

widths (4 mm), then a ball of radius r = 1 includes voxels from the steak

containing the centre of the ball and the steak on either side (thus the diameter

is 3 steak widths). A ball of radius two includes voxels from 5 steaks and
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Table 6: Regression results for beef marbling data. The first row is the number of clusters.

The second and third rows are the R2 values for the regression of marbling ratio on a single

shape feature for training and testing, respectively.

K 4 6 10 14 18 22

Training R2 0.900 0.958 0.970 0.872 0.878 0.865

Testing R2 0.786 0.759 0.797 0.871 0.832 0.455

thus corresponds to one fifth of the total extent of the striploin in the direction420

perpendicular to the planes of the steaks. Accordingly, a study on varying the

size of the ball was not practical for this data. This illustrates that the size of

the ball may well be constrained by the nature of data. The choice of the radius

of the ball is not part of the method proposed here. This parameter, may be set

according to prior understanding of the data as in the marbling example or by425

experimentation, if necessary. Even in the yeast and cancellous bone examples,

simple inspection of the data (Figure 10, for example), would lead to a sensible

choice for r.

Second, the marbling example was a regression study rather than a classifi-

cation study. This meant that the practice of computing separate CSPs for each430

class could not be implemented on this data. Instead the number of clusters

was viewed as a parameter to be determined by experimentation (Table 6).

Third, the experiment on correlating marbling ratio to a shape parameter

was conducted without any knowledge of ground truth. There is no previous

literature on the relationship between shape of marbling in 3D other properties435

of beef and so there is no claim that the shape parameter provides the cor-

rect correlation. If no correlation had been found, one could equally speculate

that this was because the shape features did not capture pertinent shape infor-

mation or because there is no correlation between marbling ratio and marbling

shape. Since the correlation was found to be quite strong (Table 6), the example440

demonstrates that the shape features do capture pertinent shape information.

The existence of the relationship between marbling ratio and shape is a discovery
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of interest to meat scientists and is currently under further investigation.

The strongest correlation for the testing set (coefficient of determination

R2 = 0.871) was found when 14 clusters were used (Table 6) but this is somewhat445

misleading since, in practice, one has to apply the existing best method to new

data. In this small experiment, the best training score was found with 10 clusters

and if the shape feature from this trial is used, the correlation for the testing

data is still substantial (R2 = 0.797)

The training error reduces only very slightly if more than 14 clusters are450

used, but the testing error drops drastically at 22 clusters. This indicates that

the increasing the number of clusters runs the risk of overfitting.

5.4. Comparison with previous work

In the current study, the definitions of the shape primitives are new. In a

preliminary study [34], each ellipsoid was represented by the shape primitive

vp = (u1,1, u1,2, u1,3, u2,1, u2,2, `1, `2, `3) ,

where the lengths `i, i = 1, 2, 3, were measured in terms of voxel units. The

elements of those shape primitives were not necessarily of equal magnitude (all455

values of the elements of the unit direction vectors, u1,1, u1,2, u1,3, u2,1, u2,2, were

in the interval [−1, 1], whereas `i, i = 1, 2, 3, could vary by up to two orders

of magnitude). Here, all elements of the shape primitives were of comparable

magnitude. This removes possible bias in the clustering step. In addition, all

length measurements were made in µm rather than voxel units, meaning that460

the resolution of the data was accounted for and length measurements were

standardised in some sense. Furthermore, in this study, the entire ellipsoid-

based method for extracting local shape features was validated on two additional

data sets, namely 2D binary images of yeast colonies and 3D binary arrays

representing marbling in beef.465

The best classification scheme for cancellous rat bone proposed in this study

(µ = 0.745, σ = 0.024, 30 trials) significantly outperformed the classification

schemes using shape features alone (µ = 0.607, σ = 0.018, 10 trials, p < 0.001),
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and standard attributes alone (classification accuracy of 0.467, p < 0.001) in

Martin and Bottema [33], as well as the classification scheme proposed using470

ellipsoids (µ = 0.699, σ = 0.014, 30 trials, p < 0.001) in the preliminary

study [34]. The p-values for the first and third comparisons correspond to a

two-sample t-test. The p-value for the second test is the value of the cumulative

distribution function of the normal distribution with mean 0.745 and standard

deviation 0.024 at x = 0.467.475

A key attribute of the method proposed here is that no information is used

regarding the overall shape of samples or large scale shape similarity between

samples. The method does not attempt to classify or characterise overall shape

as to most other methods for shape analysis. The full shape of the object is not

of interest because, in all the three example studies, the overall shape caries little480

or no information (yeast colonies are all essentially round, the cancellous bone

samples are rectangular blocks, the extent of the marbling is determined by the

striploin itself). Instead, shape is characterised in terms of frequencies of local

shape patterns only. Some other methods use frequencies of local shape but do

so as a vehicle for characterising the global shape. Shape context, for example,485

uses histograms of local shape features but also a matching step to align overall

shape [21]. Indeed, the final goal of most shape analysis is to understand the

overall shape for problems in image understanding, image retrieval, handwriting

recognition, etc. In most of these problems, the focus is on objects that are

well understood in terms of within-class and between-class attributes of overall490

shape (distinguishing butterflies from leaves or airplanes, etc.) Naturally, most

algorithms focus on these large scale features.

A consequence is that these other methods cannot be applied to situations

where the global shape is immaterial. Equally, the method proposed here is not

expected to compete well with classical methods for shape analysis on problems495

where overall shape is the objective (or plays a major role) because overall

shape is not considered. The precludes meaningful benchmarking against many

methods.
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6. Conclusion

For the yeast colonies and cancellous bone data sets, the highest classifica-500

tion accuracy was achieved using either oriented object parameters or object

shape parameters, suggesting that interrogating the data directly is advanta-

geous. For the yeast data, recording oriented object parameters resulted in the

highest classification accuracy, suggesting that information about the thickness

and orientation of the colony is important towards the classification. For the505

cancellous bone data, the highest classification score was achieved using object

shape parameters (Definition 4).

For the beef marbling data, computing oriented object parameters was not

practical due to the discrepancy between in-plane and between-plane resolution.

This example shows that, while computing oriented object parameters may be510

preferred, oriented ellipsoid parameters are able to deliver good results when

the former is not practical.

The results from three diverse data sets demonstrate that the shape primi-

tives defined in Section 2 together with the clustering step capture local shape

patterns well enough to distinguish class membership or in the case of beef515

marbling, establish correlations. Local thickness values are computed in only

three directions according to the orientations of the three axis of the ellipsoids

in the 3D data sets and two directions in the case of the yeast colonies. In [33],

13 orientations were used but were fixed over each sample and set according

to an external frame of reference. The fact that, in the present study, better520

results were obtained using less interrogation (three orientations instead of 13)

demonstrates the advantage of defining orientations locally, adaptively and in-

dependent of an external reference frame. The method applies in situations

where the overall shape of the object is not important but local shape patterns

carry useful information.525
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