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Abstract 

Projections of climate change show some regions of the world getting warmer, colder, dryer or wetter. 

Consequently, the effects of climate change on insect pests can alter the threat to agricultural systems. 

As a result of changed climate, areas can become more or less suitable for insect pests. Neoleucinodes 

elegantalis is one of the major pests of solanaceous crops in South America. Host plants for N. 

elegantalis are widely present in South America, however, N. elegantalis is absent from many regions 

in South America. Hence, future climate effects on suitability for development and spread of N. 

elegantalis in South America should be investigated. Due to these reasons, we developed a model of 

the climate for N. elegantalis using CLIMEX software for South America using A2 Special Report on 

Emissions Scenarios (SRES) for 2030, 2050, 2070 and 2100 and using two models, CSIRO-Mk3.0 and 

MIROC-H. The results of both models indicate that areas in South America that are climatically 

suitable at the present time will become climatically unsuitable for N. elegantalis by 2100 as a 

consequence of progressive increase of dry stress. This was confirmed using developmental bioassays, 

where survival was lowest at low relative humidity levels. There are also altering areas that are 

currently unsuitable that become suitable in the future. These results are helpful in developing future 

strategies to take advantage of new opportunities in solanaceous crops in regions that may be 

unsuitable for N. elegantalis and provide important information for anticipated possible risks of 

infestation of N. elegantalis. 

Keywords: Climate change, small tomato borer, Solanaceae, CLIMEX 
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Introduction 

Insects are small ectotherms, thus their development is dependent on environmental temperature 

(Colinet et al., 2015). The biological and ecological process involved in insects' life are determined by 

temperature (Angilletta, 2009; Chown and Terblanche, 2006; Parmesan, 2006). Climate change has 

been shown to be important in several study areas in biology (Parmesan, 2006) because of forecasts of 

an increase of 4 °C and predictions in seasonal rainfall patterns from the present and 2100 (Dukes and 

Mooney, 1999). As a result, many papers have been published about the impact of these changes in 

areas of entomology, as thermal tolerance physiology (Bozinovic et al., 2011; Marshall and Sinclair, 

2012; Renault et al., 2004), biocontrol (Butler and Trumble, 2010; Colinet and Hance, 2010), forensic 

entomology (Catts and Goff, 1992; Higley and Haskell, 2001), disease vector biology (Khormi and 

Kumar, 2014; Lambrechts et al., 2011; Paaijmans et al., 2010), and plant pathology (Shabani and 

Kumar, 2013; Shabani et al., 2014). The effects of climate change on insect pests can be a major threat 

to global food security (Chakraborty and Newton, 2011). These changes can have negative impacts in 

the productivity of food crops in agricultural systems (Crespo‐ Pérez et al., 2015; Perez et al., 2010; 

Wheeler and von Braun, 2013).  Therefore, predictions of pest distribution under current and future 

climate are important to make informed decisions or prepare best methods to reduce risks in 

agricultural systems (Crespo‐Pérez et al., 2015). 

Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae), known as a small tomato borer, is one 

of the major pests of solanaceous crops in South America. This species is native to the Neotropical 

region (Montilla et al., 2013). It is an oligophagous pest of great economic importance. Their larvae 

attack fruits, causing direct damage in many species of the family Solanaceae. N. elegantalis females 

lay eggs on younger fruits (Figure 1a). After hatching, the larvae burrow directly into the fruit where 

they feed (Figure 1b). As the entire larval development occurs inside the fruit it is difficult to control 

this pest. In tomato (Solanum lycopersicum), the losses caused by attacks of N. elegantalis can be high 
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(Gravena and Benvenga, 2003; Miranda et al., 2005; Picanço et al., 2007). Tomato workers usually 

leave tomato damaged by N. elegantalis on the ground in field tomato cultivation (Figure 2). 

The major host plants of N. elegantalis are Capsicum annuum, Cyphomandra betacea, Solanum 

lycopersicum, Solanum melongena and Solanum quitoense (Picanço et al., 1997; Diniz and Morais, 

2002; Olckers et al., 2002; Morales et al., 2007; Picanço et al., 2007; Díaz M et al., 2011; Díaz-

Montilla et al., 2015; EPPO, 2015). Other minor species attacked by N. elegantalis has been observed, 

such as in Solanum aculeatissimum, Solanum aethiopicum, Solanum capsicoides, Solanum hazenii, 

Solanum palinacanthum, Solanum pseudolulo, Solanum robustum, Solanum sessiliflorum, Solanum 

sisymbriifolium, Solanum umbellatum, Solanum viarum and wild or weed species such as Solanum 

acerifolium, Solanum atropurpureum, Solanum crinitum, Solanum hirtum, Solanum lycocarpum and 

Solanum rudepannum (Díaz-Montilla et al., 2015; Díaz M et al., 2011; Diniz and Morais, 2002; 

Morales et al., 2007; Olckers et al., 2002; Picanço et al., 1997; Picanço et al., 2007). All these host 

plants for N. elegantalis are widely present in South America (GBIF, 2016).  

Modelling software has increasingly been used in species distribution modelling (Lamsal et al., 2017; 

Shabani et al., 2016, 2013, 2015, Galdino et al., 2016; Ramirez-Cabral et al., 2017; Shabani and 

Kumar, 2014), whereof many techniques can be implemented in available programs such as Maxent 

(Phillips et al., 2006), BIOMOD (Thuiller et al., 2009), R packages (Hijmans and Elith, 2011), 

CLIMEX (Sutherst et al., 2007b), EcoMod (Guo and Liu, 2010), VisTrails SAHM (Morisette et al., 

2013) and BIOCLIM (Booth et al., 2014). 

The CLIMEX software has been considered a comprehensive and reliable inferential modelling 

software (Kriticos et al., 2007). The advantages of this program are that it can produce a niche model 

through parameters that have an ecophysiological basis. Besides this, it is possible to describe the 

species' potential future distribution through a combination of the climate where the species occurs and 

its climatic responses (Webber et al., 2011). 
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In the future, as a result of the changed climate, some regions can become warmer or colder and dryer 

or wetter. As a result, for N. elegantalis, as for other insects, areas will become more or less suitable in 

the future since insects are ectotherms. The distribution of this species is dependent on climate factors, 

known as growth and stress indices that increase or limit the geographical distribution (Sutherst et al., 

2007b).  

Recent research shows the effects of climate change in potential risk levels of invasive Neoleucinodes 

elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) 

cultivation in the present and under predicted climate change (da Silva et al., 2017). In this study 

reduced suitable areas for N. elegantalis were observed in South America. However, there was no 

evidence of the reason for this decrease of suitable areas using other Global Climate Models, such as 

MIROC-H. In addition, there is no evidence the responsible parameters of decrease areas suitable for 

N. elegantalis in development bioassays. 

In this research, we highlight a potential global distribution model for N. elegantalis using CLIMEX 

and N. elegantalis data from South America where it has high occurrence and is one of the most 

important pests in solanaceous crops. The model results were used to illustrate potential distribution 

and show the major factors limiting the distribution for N. elegantalis using two global climate models 

(GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). We used the A2 SRES (Special Report on 

Emissions Scenarios) emission scenarios for 2030, 2050, 2070 and 2100 to run these models. 

According to the major factors limiting future distribution of N. elegantalis, we performed a 

development bioassay experiment with stress parameters to determine the validity of the model. 

Materials and Methods 

CLIMEX  

CLIMEX is a bioclimatic niche model considered quite appropriate for estimating the potential 

distribution of poikilothermal species (Kriticos et al., 2007; Shabani et al., 2012; Sutherst and 

Maywald, 1985; Sutherst et al., 2007b). In CLIMEX it is possible to predict and map the potential 
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distribution through the climatic parameters that illustrate the species’ response to climate (Sutherst et 

al., 2007a). The growth of a species in favourable seasons is maximized and in unfavourable seasons is 

minimized (Sutherst and Maywald, 1985; Sutherst et al., 2007b; Sutherst and Maywald, 2005). The 

main assumption of CLIMEX is that climate is the decisive factor in the species distribution, given that 

they are poikilothermal species (Kriticos et al., 2007). This assumption is considered the main criticism 

of CLIMEX because it does not include ecological processes, like dispersal and biotic interactions, in 

the modelling process. On the other hand, other factors can be included through geographic information 

systems and remote sensing software after the modelling process in CLIMEX (Davis et al., 1998). 

Based on the geographic range or phenological records of species, it is possible in CLIMEX to infer 

parameters that illustrate the species' response to climate (Shabani and Kumar, 2015; Sutherst et al., 

2007b). CLIMEX enables the users to combine the growth and stress indices into an Ecoclimatic Index 

(EI). The EI is a general annual index of climatic suitability, which describes the climatic suitability of 

a location for a species, scaled from 0 to 100. For example, EI close to 0 indicates that the location is 

not favourable for the long-term survival of the species while an EI of greater than 30 represents a very 

favourable climate for a species (Kriticos et al., 2015). In favourable climate conditions the annual 

growth index (GIA) describes the potential for population growth. To determine the value of the GIA 

index, temperature (TI) and moisture (MI) indices are used, which represent the requirements for 

growth of a species. Besides this, users can include stress indices that represent the extremes of 

temperature and moisture for survival of a species. Thus it is possible to determine species' distribution 

considering adverse seasonal conditions (Sutherst et al., 2007b). 

Distribution data of Neoleucinodes elegantalis and its hosts 

A total of 81 records where N. elegantalis is present were obtained from literature (Fig. 3) (Supporting 

material). Data representing major, minor and weed host plants attacked by N. elegantalis was 

collected from EPPO database on quarantine pests (EPPO, 2015) and the Global Biodiversity 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

Information Facility (GBIF, 2015). The GBIF database contained 13462 records of plants that are host 

for N. elegantalis in South America (Fig. 2). 

Climate: Data, Models and Scenarios 

We used the CliMond 10’ gridded climate data for modelling in CLIMEX (Kriticos et al., 2012). The 

average minimum monthly temperature (Tmin), average maximum monthly temperature (Tmax), average 

monthly precipitation (Ptotal) and relative humidity at 09:00 h (RH09:00) and 15:00 h (RH15:00) were 

used for representing historical climate (average period 1950–2000). These five variables were also 

used to characterize the climate in the future. The distribution of N. elegantalis in South America in 

2030, 2050, 2070 and 2100 was modeled in the A2 SRES scenario using two Global Climate Models 

(GCMs), CS and MR. 

We selected CS and MR from 23 GCMs based on three requirements. The first requirement was 

availability of all required variables for CLIMEX, as temperature, precipitation and humidity. We 

required an output of comparatively small horizontal grid spacing (resolution) as a second requirement. 

The third requirement, based on a regional scale, was that these two GCMs performed well in 

comparison with other GCMs for the aspects of climate (Kriticos et al., 2012; Hennessy et al., 2007). 

Both these GCMs predict that temperature will increase and rainfall will decrease by 2100, however the 

predicted values are different between them. Approximately a rise of 4.31 °C and decrease of 1% in 

rainfall are predicted by the MR model, whilst the CS model predicts an increase of 2.11 °C and 

decrease of 14% in rainfall (Chiew et al., 2009; Suppiah et al., 2007). 

We chose the A2 SRES scenario because its assumptions are consistent with current trends. The factors 

that relate to greenhouse gases, demographic, financial and technological factors are included in this 

scenario, drawn from independent and self-reliant nations (Bernstein et al., 2007). 

Parameters in the CLIMEX software 

We fitted a CLIMEX model for N. elegantalis, based on data of 46 location records and additional 

biological data on the species. The data from 35 location records in Paraguay and south, south-eastern 
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and north-eastern Brazil were set aside while adjusting parameters as it was only used for model 

validation. The parameter values were taken from biological data from a comprehensive literature 

review and unpublished data from the Integrated Pest Management Lab at Universidade Federal de 

Viçosa, Minas Gerais, Brazil, where there is a rearing of N. elegantalis for biological bioassays. It is 

recommended to use the data of the known distribution because it produces a model suited to predict 

the potential distribution (Kriticos and Leriche, 2010). Firstly, we had the aim of building a CLIMEX 

model demonstrating the climate favourable for N. elegantalis, based on part of the known data 

distribution in South America and biological data for this species. The stress parameter values in 

CLIMEX were chosen from biological data and according to a satisfactory prediction observed 

between the potential and known distribution of N. elegantalis in South America. 

Temperature Index 

The thermal requirement of N. elegantalis has been studied by Moraes and Foerster (2015). The results 

show the lower temperature threshold for N. elegantalis is 8.8 °C and that above 30 °C the eggs are 

infertile. Because of this, we used the limiting low temperature (DV0) of 8.8 °C and set the limiting 

high temperature (DV3) at 30 °C. Temperatures between 15 °C and 27 °C are cited as highly 

favourable for N. elegantalis to survive, develop and (Marcano, 1991a; Marcano, 1991b; Moraes and 

Foerster, 2015), thus the lower (DV1) and upper (DV2) optimal temperatures were set at 15 °C and 27 

°C, respectively. Thermal accumulation (PDD) for N. elegantalis was determined by Moraes and 

Foerster (2015) as 588.2 °C days for its full development, thus PDD was set to 588.2 °C days. 

Moisture Index 

Our settings for the highest EI values in localities that had the N. elegantalis records were based on 

parameters derived from distributions in wet tropical regions and the highest densities of N. elegantalis 

in the field in south-eastern Brazil occur in rainfall seasons (Silva, 2010). The lower soil moisture 

threshold (SM0) was set at 0.35 and the upper soil moisture threshold (SM3) was set at 2.5. The values 

of the lower optimum soil moisture threshold (SM1) and the upper soil moisture threshold (SM2) were 
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0.7 and 1.5 respectively. These values resulted in the highest EI values within areas with records of N. 

elegantalis in Colombia. 

Cold Stress 

Poikilothermal species may die if the daily thermal accumulation is not sufficient to maintain 

metabolism (Sutherst et al., 2007b). Thus, the species cannot survive when a threshold number of 

degree-days above the developmental temperature threshold (DVCS) are not achieved. The threshold 

parameter is known as the cold stress degree-day threshold (DTCS) and is in units of degree-days. This 

stress is accumulated by a rate known as cold stress degree-day rate units per week (DHCS). The 

DTCS was set at 15 °C days and DHCS was set at -0.001 week
-1

. Secondly, we considered that 

poikilothermal species may not survive if exposed to extremely low temperatures (Sutherst et al., 

2007b). These values were based on existing research into insect pests of solanaceous crops with 

similar distributions as N. elegantalis in South America (Desneux et al., 2010), as well as research 

published by the European and Mediterranean Plant Protection Organization (EPPO, 2014). These 

selections allowed better adjustment according to location records of N. elegantalis. 

Heat Stress 

The N. elegantalis' eggs have no viability above 30 °C (Moraes and Foerster, 2015). Thus, the heat 

stress parameter (TTHS) was set at 30°C and the accumulation rate (THHS) was set at 0.0007 week
-1

, 

which tallies with the non-occurrence of the species in central-western Brazil.  

Dry Stress 

The distribution of known N. elegantalis are in most part in humid regions (Kottek et al., 2006). The 

threshold soil moisture level for dry stress (SMDS) was set at 0.35 and the stress accumulation rate 

(HDS) at -0.001 week
-1

. These values provide an increase of dry stress in Central Brazil where N. 

elegantalis is not found in tomato crops. 

Wet Stress 
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Rainfall can negatively affect insects, mainly larvae neonate of Lepidoptera, causing mortality by 

dislodgement by rainfall and drowning (Varella et al., 2015). Due to these reasons, we considered this 

parameter as important. The wet stress parameter (SMWS) was set at 2.5 and the stress accumulation 

rate (HWS) 0.002 week
-1

. These selections allowed better adjustment according to location records of 

N. elegantalis. 

All parameter values used in the CLIMEX software are shown in Table 1. 

Development bioassays 

Development bioassays under three different relative humidity conditions (30, 45 and 60%) were 

performed to confirm the negative effects of dry stress on N. elegantalis. These values were used 

because the models indicated that dry stress affects suitability areas for N. elegantalis and, during 

drought, relative humidity levels fall. Bioassays were conducted with eggs, prepupae and pupae of N. 

elegantalis obtained from a laboratory rearing. The experimental design was completely randomized 

with four replications. Each replication was a Petri dish (9 cm in diameter x 2 cm in height) containing 

10 eggs, prepupae or pupae. Petri dishes were placed in three biochemical oxygen demand (B.O.D.) 

incubator at 25 ± 5 °C and a photoperiod of 12 h, each one with a different relative humidity. We tested 

mortality data for normality. Means were submitted to analysis of variance (ANOVA) followed by 

Tukey's test at P < 0.05 when normally distributed, and to Kruskal-Wallis analysis when not. Statistical 

analysis was performed using R-Studio software version 0.99.896. 

Results 

Current time 

The recorded distribution data of N. elegantalis is shown in Fig. 3 and its host in Fig. 4. We observe 

that N. elegantalis is absent in large areas in South America where there are many records of its host. 

Climate conditions seem to have great influence on its distribution. Our modelling has a high 

agreement with the Ecoclimatic Index, with 95% agreeing with the current distribution of N. 
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elegantalis (Fig. 3) and no predictions of suitable climatic conditions in large areas where N. 

elegantalis is absent (Fig. 5).  

The model results demonstrate that most countries of South America have areas with suitable climatic 

conditions for N. elegantalis (Fig. 5). The model results indicate that the Uruguay, south, south-eastern 

and north-eastern Brazil, south Paraguay, north and eastern Argentina, central and north-western 

Bolivia, south-eastern, central and north-western Peru, south, central and north Ecuador, south-western, 

western, north-western and north Colombia, north-western, north, eastern, central and south Venezuela, 

western Guyana, south Suriname and eastern French Guiana have areas with highly suitable climatic 

conditions (EI>30) for N. elegantalis (Fig. 5). The areas that represent highly suitable regions equals 

2.52 million ha (Table 2). 

The validation of the model is shown in Fig 6. Based on EI values, we find a high match between the 

model predictions and the known distribution of this species in South America. 97% of the occurrence 

records in Paraguay and south, south-eastern and north-eastern Brazil are within the suitable categories, 

confirming that the values selected for the various parameters in CLIMEX are adequate. 

Future climate 

Figs. 7 and 8 show the results of the models CS and MR, respectively, with the A2 emission scenarios 

for EI and the major factors of stress for N. elegantalis distribution for the future in 2030, 2050, 2070 

and 2100. 

a) Projection by CS model 

In most of the countries in South America, the CS GCM projects a progressive reduction in areas with 

climatic conditions suitable for N. elegantalis by 2030, 2050, 2070 and 2100 in comparison with 

distribution at the current time (Fig. 7 and Table 2). The areas highly (30<EI<100) and less suitable 

(0<EI<30) for N. elegantalis will reduce progressively in each projected time period (Table 2). In 

South America, between 2030 and 2100, the areas highly (30<EI<100) and less suitable (0<EI<30) for 

N. elegantalis will have reduced from 1.63 to 1.02 million ha and from 1.72 to 0.80 million ha, 
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respectively, and the areas that are unsuitable will have increased by 1.53 million ha, from 12.02 to 

13.55 million ha (EI=0) (Table 2). 

Although the CS GCM predicts a reduction in the areas suitable for N. elegantalis, Uruguay, south 

Brazil, eastern Argentina, north-western Bolivia, south-eastern, central and north-western Peru, south, 

central and north Ecuador, south-western, western, north-western and north Colombia will remain 

highly suitable for N. elegantalis by 2030, 2050, 2070 and 2100. Besides this, the CS GCM predicts 

that regions in south Chile may become suitable for N. elegantalis by 2100 (Fig. 7). In addition, the CS 

GCM predicts that north-eastern Brazil, south Paraguay, north Argentina, central Bolivia, Venezuela, 

Guyana, Suriname and French Guiana are projected to become totally unsuitable for N. elegantalis by 

2100 (Fig. 7). 

The modeled results by CS GCM indicate that dry stress is a major factor restraining N. elegantalis in 

these areas. In most countries in South America, the CS GCM projects a progressive increasing of dry 

stress for N. elegantalis by 2030, 2050, 2070 and 2100 (Fig. 7). Consequently, this leads to a 

progressive decrease in areas suitable for N. elegantalis. Large areas suitable for growth of N. 

elegantalis remain without dry stress by 2030, 2050, 2070 and 2100 (Fig. 7). These results indicate that 

the dry stress has negative effect on growth of N. elegantalis. 

b) Projection by MR model. 

A progressive reduction of areas can be seen with climatic conditions suitable for N. elegantalis by 

2030, 2050, 2070 and 2100 in comparison with the distribution at the current time in the results from 

MR GCM (Fig. 8 and Table 2). On the other hand, large areas in south Chile may become highly 

suitable for N. elegantalis. In Chile the MR model predicts a progressive increase of areas suitable for 

N. elegantalis from now to 2100 (Fig. 8). Besides this, the MR GCM also predicts that areas in regions 

of the corresponding countries will remain highly suitable for N. elegantalis by 2100 (Fig. 8). 
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The MR GCM predicts that in French Guiana, Suriname, Guyana, large areas of Paraguay and 

Venezuela are projected to become unsuitable for N. elegantalis from 2050 to 2070. In addition, these 

countries and nearly all areas in north-eastern Brazil and Bolivia are projected to become totally 

unsuitable for N. elegantalis by 2100 (Fig. 8). 

The results of the MR GCM predicts that 1.62 million ha in South America will become highly suitable 

(30<EI<100) for N. elegantalis in 2030 (Table 2). On the other hand, this value may decrease to 0.74 

million ha by 2100. Moreover the MR GCM predicts over 50% reduction in areas less suitable 

(0<EI<30), from 1.76 to 0.94 million ha, and the unsuitable areas (EI=0) will have an increase of 1.68 

million ha, from 12.00 to 13.68 million ha, for N. elegantalis from 2030 to 2100 (Table 2). 

The MR GCM predicts that dry stress is the major factor restricting N. elegantalis distribution. The MR 

GCM projects an expansion in dry stress areas for N. elegantalis by 2030, 2050, 2070 and 2100 (Fig 5). 

The dry stress areas appear to expand more slowly between 2030 and 2050. However the expanding 

dry stress areas is easily noted between 2070 and 2100 (Fig. 8). 

We demonstrate that both GCMs, CS and MR, indicate a reduction of areas suitable for N. elegantalis 

in South America. However they show some differences in the dimension of areas (Table 2) and the 

rate and spatial extent of expansion of the dry stress areas (Figs. 7 and 8) for N. elegantalis predictions 

based on future climate. 

Development bioassays 

Here, we found differences among the insect stages. All eggs hatched independently of the humidity 

condition. Pupae survival was higher than 80% in all treatments, with means statistically similar 

according to the Kruskal-Wallis test (χ
2
 = 0.944, d.f. = 2, P = 0.623). However, prepupae survival at 

relative humidity of 30% was less than 40%, being statistically different from the other treatments 

according to the Tukey's test (F2;11 = 11.43; P = 0.0034). The treatments with relative humidities of 45 

and 60% had statisticaly similar survival of aproximately 70% (Fig. 9). 

Discussion 
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The model presented here shows a high degree of reliability due to the parameter values used that were 

based on recent biological studies and realistic distribution of this species in South America. The high 

percentage of accordance with the distribution of N. elegantalis in South America highlights the 

consistency and suitability of this model. In CLIMEX, a species’ climatic requirements are inferred 

from its known geographical distribution (Sutherst et al., 2007b). 

The CS and MR GCMs show some differences in the results. These results highlight the uncertainties 

associated with the state of climate predictions for the future. We also highlight that some differences 

between the GCMs can be explained by differences of origin and attributes for atmospheric and ocean 

parameters, considered for each GCM (Suppiah et al., 2007). In addition, the differences can be 

attributed to assumptions and predictions of CS and MR GCMs, in terms of rainfall and temperature 

projected rates of change (Chiew et al.,2009; Suppiah et al., 2007). 

Both MR and CS GCMs predict that French Guiana, Suriname, Guyana, Venezuela, Paraguay, areas in 

the north-eastern Brazil and Bolivia may become climatically unsuitable for N. elegantalis by 2100. 

This reduction is a result of expansion of dry stress in these areas (Figs. 7 and 8). The CS GCM 

predicts higher expansion of dry stress than MR GCM by 2030, 2050, 2070 and 2100 since the CS 

GCM incorporates a decrease of 14% of mean annual rainfall, while MR GCM has only a 1% decrease 

(Chiew et al., 2009; Suppiah et al., 2007). 

Other factors are important for the growth of N. elegantalis, for example temperature determines 

survival, development, reproductive performance, population dynamics, and distribution of insects 

(Angilletta, 2009; Chown and Nicolson, 2004; Chown and Terblanche, 2006). Above 30 °C, N. 

elegantalis' eggs are infertile, indicating that this temperature is deleterious to N. elegantalis (Marcano, 

1991b; Moraes and Foerster, 2015). Besides this, humidity may be as important as temperature 

(Boardman et al., 2013; Colinet et al., 2015). The distribution of N. elegantalis in Colombia is recorded 

in humid regions (Díaz et al., 2011) and the highest densities of N. elegantalis in the field in south-
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eastern Brazil occurrs in rainfall seasons (Silva, 2010). According to Marcano (1991a), development of 

N. elegantalis is favored by a relative humidity above 65%. Based on available distribution data (Fig. 

1), we observe that regions where N. elegantalis are recorded are humid climate zones (Kottek et al., 

2006). These results confirm that areas with high humidity are important for the growth of N. 

elegantalis. On the other hand, dry stress is the major factor restricting N. elegantalis under future 

climate scenarios (Figs. 7 and 8). This is reinforced by the results found here that less than 40% of N. 

elegantalis prepupae survives at a relative humidity of 30%. This may be due to a higher dehydration 

vulnerability during this stage, since the insect cuticle is more permeable compared to the pupal stage. 

If a stage is compromised, the development of the insect may be disrupted, resulting in failure to 

complete its life cycle.  

The suitability projections predicted and mapped for N. elegantalis are only based on climatic factors. 

There are other factors that can affect species distributions, including host plant distributions, genetic 

diversity, dispersal ability (including anthropogenic spread pathways), the presence of competing or 

predatory species, natural succession, adaptations, evolution and other non-climatic factors (Jarnevich 

et al., 2015). Further research could include these factors. Thus it is possible to further refine the 

modelling results of CLIMEX and determine relationship of future climatic effects between N. 

elegantalis and their hosts. It should also be noted that the areas quoted here do not account for land 

use, soil types and so the overall areas will be much lower.  

The predictions reported in this study indicate that large areas in South America that are climatically 

suitable for N. elegantalis at the current time will reduce by 2100 (Table 2). The dry stress in South 

America will be high by 2100 (Figs. 7 and 8), meaning that more regions in South America may have 

less impacts of N. elegantalis in solanaceous crops. 

In summary, this research demonstrates that climate change may reduce suitable areas for N. 

elegantalis in South America, mainly where currently N. elegantalis has been causing high losses in 

solanaceous crops. This progressive reduction of suitable areas for N. elegantalis is caused by 
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progressive increase of dry stress in these areas due to a decrease of predicted rainfall. We confirm this 

fact through lowest survival of N. elegantalis pre pupae stage under 30% of relative humidity. In 

regions that will not have an increase in dry stress in the future, N. elegantalis in these areas may 

remain, causing losses in solanaceous crops. In addition, regions in south Chile that have no records of 

N. elegantalis may become suitable for this pest by 2100. This modelling is helpful in developing 

current and future strategies to reduce losses in solanaceous crops caused by N. elegantalis in areas that 

currently are or become suitable for this pest in the future since they provide important information to 

anticipate possible risks and reduce infestation of N. elegantalis. Besides this, here we report the major 

factors that limit the growth of N. elegantalis, which is dry stress and confirm this fact through 

development bioassays. This finding can be useful for the integrated pest management programs and 

better knowledge about factors that limit the growth of N. elegantalis. 
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Table 1 CLIMEX parameter values used for N. elegantalis modelling 

Index Parameter Values Reference 

Temperature DV0 = lower threshold 8.8 °C 

Marcano, 1991a; Marcano, 

1991b; Moraes & Foerster, 2015 

 

DV1 = lower optimum temperature 15 °C 

Marcano, 1991a; Marcano, 

1991b; Moraes & Foerster, 2015 

  DV2 = upper optimum temperature 27 °C 

Marcano, 1991a; Marcano, 

1991b; Moraes & Foerster, 2015 

 

DV3 = upper threshold 30 °C 

Marcano, 1991a; Marcano, 

1991b; Moraes & Foerster, 2015 

Moisture  SM0 = lower soil moisture threshold 0.35 Silva, 2010 

 

SM1 = lower optimum soil moisture 0.7 Silva, 2010 

  SM2 = upper optimum soil moisture 1.5 Silva, 2010 

 

SM3 = upper soil moisture threshold 2.5 Silva, 2010 

 Cold stress DTCS = degree day threshold 15 °C days 

Desneux et al.,2010; EPPO, 

2014 

 

DHCS = stress accumulation rate  -0.001 week
-1

 Desneux et al.,2010 

Heat stress  TTHS = temperature threshold 30 °C Moraes & Foerster, 2015 

 

THHS = stress accumulation rate 0.0007 week
-1

  

Dry stress SMDS = soil moisture threshold 0.35 Kottek et al.,2006 

 

HDS = stress accumulation rate  -0.001 week
-1

  

Wet Stress  SMWS = soil moisture threshold 2.5  

 

HWS = stress accumulation rate 0.002 week
-1

  

Degree Days PDD= degree days per generation 588.2 Moraes & Foerster, 2015 

Values without units are dimensionless indices of a 100 mm single bucket soil moisture model (0 = 

oven dry, 1 = field capacity). 
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Table 2 Area (millions of hectares) with the Ecoclimatic Index (EI) for N. elegantalis at current time 

and projected using CLIMEX under the CS and the MR GCMs running the SRES A2 scenario and for 

2030, 2050, 2070 and 2100 for South America.  

Area (Hectares x 1.000.000) 

Index Current  
CSIRO-Mk3.0 

 

MIROC-H 

 
2030 2050 2070 2100 

 

2030 2050 2070 2100 

Unsuitable 9.80   12.02 12.55 12.97 13.55   12.00 12.51 13.05 13.68 

Low suitability 3.87 

 

1.72 1.45 1.21 0.80 

 

1.76 1.49 1.25 0.94 

High suitability 2.52   1.63 1.37 1.19 1.02   1.62 1.62 1.06 0.74 
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Figure legends  

Figure 1 Female (a), damage and larvae (b) of N. elegantalis in tomato fruit 

Figure 2 Commercial tomato cultivation (a), tomato trusses (b), tomato left by workers on the ground 

(c and d) with exit holes of N. elegantalis larvae 

Figure 3 The known distribution of N. elegantalis in South America. 

Figure 4 The known distribution of host plants for N. elegantalis in South America. 

Figure 5 The Ecoclimatic Index (EI) for N. elegantalis, modeled using CLIMEX for current climate. 

Figure 6 Current and potential distribution of N. elegantalis in validation region based on EI index. 

The areas in white (EI=0), blue (0<EI<30) and red (30<EI<100) indicate unsuitable, low suitability and 

high suitability areas for N. elegantalis, respectively. 

Figure 7 The climate (EI) and dry stress for N. elegantalis projected using CLIMEX under CS GCM 

running the SRES A2 scenario for 2030, 2050, 2070 and 2100 for South America. 

Figure 8 The climate (EI) and dry stress for N. elegantalis projected using CLIMEX under the MR 

GCM running the SRES A2 scenario and for 2030, 2050, 2070 and 2100 for South America. 

Figure 9 Survival of N. elegantalis prepupae at relative humidities of 30, 45 and 60%. Means followed 

by the same letter do not differ by the Tukey’s test (P < 0.05). 
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Fig. 3  
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Highlights  

 

1. The predictions reported in this study indicate that large areas in South America that are climatically suitable for 

Neoleucinodes elegantalis at the current time will reduce by 2100. 

2. This progressive reduction of suitable areas for N. elegantalis is caused by progressive increase of dry stress in 

these areas due to a decrease of predicted rainfall.  

3. Survival of N. elegantalis was lowest at low relative humidity levels.  

4. The modelling results are useful for the integrated pest management programs and better knowledge about factors 

that limit the growth of N. elegantalis. 
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