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Abstract: 

In this study, two enhancement methods, i.e., toughen the epoxy matrix by commercially 

available nanosilica and enhance the interfaces of fibres and matrix by autoxidation of 

dopamine were applied together in carbon fibre reinforced polymer laminates with potential 

large-scale applicability. Significant enhancements were found for Mode I interlaminar 

fracture toughness and interlaminar shear strength with the combined addition of nanosilica 

and polydopamine in the laminates. The enhancement mechanism is proposed as well. Salt 

spray tests were applied in this study to simulate a marine environment for the laminates. 

Model I interlaminar fracture toughness and interlaminar shear strength both decreased 

under the simulated marine environment with an increase in immersion time, but the 

deterioration was significantly mitigated when nanosilica and polydopamine were added 

together with still much higher mechanical properties measured after 3 weeks of salt spray 

immersion than in neat laminate without salt spray immersion, providing promising 

evidence for maritime engineering applications of such laminates. 
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1. Introduction 

Growing demand exists for carbon fibre reinforced polymer (CFRP) composite materials 

with enhanced properties, which are essential for applications in engineering fields, 

especially in harsh environments. As CFRP is a combination of fibre and matrix, its 

properties are dominated by high strength and stiffness in fibres as well as low strength in 

the ductile polymer matrix and the interfaces between fibres and matrix. These poor 

polymer properties and weak interfaces between fibres and polymer significantly limit the 

applications of CFRP. Consequently, it is of interest to enhance the polymer resin as well as 

the interfaces between the resin and fibre of the CFRP composites to extend laminate 

applications in various fields.  

Significant work has been done to enhance polymer matrix as well as interfaces in 

recently years, with some studies focusing on large-scale production and commercialization. 

The use of nanoparticles to toughen polymer matrix is one promising method, employing 

such particles as nanosilica, halloysite nanotubes, and carbonaceous nanoparticles such as 

graphene nanoplatelets and graphene oxide. Improvements in Young’s modulus, fracture 

toughness and tensile strength have been reported [1-6]. However, one of the challenges in 

using nanoparticles is the achievement of homogeneous dispersion of high weight/volume 

ratio nanoparticles in matrix while maintaining comparatively low viscosity. The difficulty 

is that viscous resin systems cannot easily impregnate continuous fibres or fibre fabric 

during CFRP production. Meanwhile, based on a resin infusion process, the filtering of 

dense fibre bundles against agglomerated nanofillers can lead to severe segregation and 

depletion of nanofillers in matrices [7-8], also significantly offsetting the enhancement 

effects of nanoparticles in laminates. One of the solutions is the use of in situ synthesized 



  

4 
 

methods such as the sol-gel manufacturing process, whereby particle size and excellent 

distribution are unaffected during any further processes. Several commercially produced 

nanosilica-modified epoxies are available, such as Nanopox F400, a concentration of 40 wt% 

nanosilica in diglycidyl ether of bisphenol A (DGEBA) epoxy resin [9], with an average 

particle size of 20 nm and a narrow range of particle size distribution. In our previous 

research, only 2 wt% nanosilica added in the epoxy improved the fracture toughness and 

corrosion rate under a marine environment [9]. Meanwhile Sprenger reported using 

nanoparticles no longer further improvement the delamination fracture value when the 

value reached to 500 J/m
2
. Above that value, the dominated delamination fracture of 

laminate often changes from matrix failure to interfacial failure [10]. Therefore, the 

addition of a single type of nanoparticle did not further mitigate the occurrence of 

delamination fracture. 

Sizing is a method of wetting out fibre surfaces to improve the poor interfacial adhesion 

of CFRP. Polydopamine (PDA) is a bionic material which has excellent adhesion to a range 

of solid surfaces, such as metals, oxides, polymers and ceramics by autoxidation of 

dopamine in basic aqueous solutions [11]. Recently, it has also been applied to modify 

nanoparticles such as carbon nanotubes [12], graphene [13] and clay [14], revealing 

excellent ability to improve the mechanical, thermal and electromagnetic interference 

shielding performance of polymer matrices. In addition, PDA has been used to modify 

short carbon fibres, revealing significant improvement in tensile strength and Young's 

modulus [12]. Furthermore, Yang et al. reported that the catechol groups in PDA were 

forming hydrogen bonds with polar groups in epoxy [15]. In addition, the interfacial 

covalent bonding was forming between PDA and epoxy because of the primary and 
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secondary amine groups in PDA may react with epoxy groups and the amine hardener may 

react with PDA [16, 17]. We reported using a simple method for surface modification to 

improve the load transfer between carbon fibre and epoxy matrix, increase the fractured 

interface friction and reduce unstable crack growth in CFRP composites [18]. 

The application of CFRP composites in maritime engineering was initially the demand of 

building lightweight, strong, corrosion-resistant durable naval vessels. CFRP can overcome 

corrosion problems experienced with steel or aluminium alloys and environmental 

degradation suffered by wood. As well, CFRP can significantly reduce the weight of a 

structure but still maintain the desired performance and structural integrity. However, under 

the marine environment, the mechanical properties of laminates degrade due to UV, 

moisture, temperature and ageing – creating the potential of accidentally creating fracture. 

Bastioli et al. reported water aging may strongly affect the matrix behaviour, by producing 

changes in its chemical and physical nature by itself or in conjunction with other chemical 

or physical agents such as heat and ultraviolet light [19, 20]. Moreover, the fibre/matrix 

interface can be degraded by a hydrolysis reaction of unsaturated groups within the resin 

under marine conditions [21-23]. A concern is the incomplete understanding and shortage 

database of using fibre reinforced composites as marine structures with long-term durability. 

Consequently, to efficiently enhance the properties of CFRP and extend its applications in 

the harsh marine environment, there is interest in improving the mechanical performance at 

least to offset the deterioration generated by that environment. 

Current enhancements to interfacial adhesion rely on sizing wet-out fibre surfaces. 

However, the inherent poor properties of polymer matrix render these solutions inefficient. 

Furthermore, polymer matrix enhancement can only toughen the matrix itself, with less 
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enhancement of the interfaces. In this work, we demonstrate a feasible hybrid method to 

enhance the laminate, with potential large-scale application under marine environments. 

Commercially available nanosilica can provide the necessary polymer matrix toughness, 

while polydopamine on carbon fibre surfaces can provide significant interfacial adhesion 

among fibres and matrix. With those hybrid enhancements, laminates can offset 

deterioration under a simulated marine environment and still achieve superior mechanical 

performance to that displayed by neat laminate without salt water immersion. 

2. Experiments 

2.1. Polydopamine for CFRP interfacial enhancement  

The as-received carbon fabric was submerged in acetone for 48 h to wash off the 

commercial sizing and impurity. For fabrication of the PDA sizing fibres, 4 g dopamine 

hydrochloride (Sigma, Australia) was dissolved in a mixed solution of deionized water 

(4000 mL) and aqueous solution of TRIS (3.6 g tris(hydroxymethyl)aminomethane, 1000 

mL deionized water), with magnetic stirring for 30 min. 200 gm unidirectional carbon fibre 

fabrics (Hexcel, USA) were prepared into 8 layers with the size of 30 cm *30 cm then 

placed in a container and the mixed solution was transferred to the container. The container 

was shaken by a benchtop orbital shaker (Labec, Australia) at 100 rpm for 24 hrs at 

ambient temperature. Then, the modified carbon fibre fabrics were collected, washed with 

deionized water several times to remove the residual dopamine, and dried in a vacuum oven 

at 40 ℃ for 24 hrs. Finally, the thickness of PDA layer on the carbon fabric was 50-100 nm. 

From our previous report, approximately 3.2 wt% of polydopamine was coated on the 

carbon fabric [20]. 
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2.2. PDA-SiO2-CFRP composites preparation 

A vacuum-assisted resin transfer moulding (VARTM) process was used to fabricate the 

CFRP composites, as shown in the schematic drawing in Fig. 1. In this procedure, a flat 

metal plate was first treated with a releasing agent. For the PDA-SiO2-CFRP, the raw resin 

was prepared by using a diglycidyl ether of bisphenol A (DGEBA) epoxy resin, Araldite-F 

(Ciba-Geigy, Australia) to dilute the commercialized Nanopox F400 resin (40 wt% 

nanosilica) to 2 wt% nanosilica epoxy resin. A piperidine (Sigma-Aldrich, Australia) 

hardener was added at the ratio of 100:5 by weight while being stirred slowly. A PDA-

modified carbon fibre ply stack was next placed on the metal plate between two PTFE films, 

one above and one below the stack. A 10-um thick non-stick film was inserted in the 

middle layer of the stack to create the initial delamination. The peel films were placed 

between two infusion meshes (above and below the peel films). Then the mixture resin was 

placed in a vacuum oven to preheat to 80 
o
C and degassed as well. After that, the resin was 

pumped into the vacuum bag and placed in a hot press machine (Carver Inc. USA) with a 

pressure at 10 KN/m
2
 and curing temperature at 120 

o
C for 24 hrs. Finally, the cured panel 

thickness was measured to be approximately 3 mm for all plates and the fibre volume was 

measured at nearly 32 vol.%. Test specimens were cut from the cured panels by means of 

bandsaw cutting and polisher polished. As controls for evaluation, pure CFRP and 2% 

SiO2-CFRP were prepared separately. Figure 1 illustrates the hybrid enhancement strategy 

used in this study. 

2.3. Characterizations 

The Mode I interlaminar fracture toughness was measured using double cantilever beam 

tests carried out on a universal testing machine (Instron, US) fitted with a 500 N load cell in 
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accordance with the ASTM D 5528 standard. The dimensions of the test specimen were 

125 mm×25 mm×3 mm. Test specimens were clamped in the jaws of the machine via the 

block hinges with a load rate of 1 mm/min while the load–displacement data was recorded. 

The fracture surfaces of test specimens were examined using a scanning electron 

microscope (SEM; Inspect F50, FEI, US). The SEM samples were selected around the pre-

crack tip area and coated with gold to form a thin 1 nm conductive layer. The interlaminar 

shear strength (ILSS) was measured using a 3-point short beam strength test following the 

ASTM D-2344 standard. The specimens were cut to the dimensions of 50 mm×12 mm×3 

mm. A minimum of 8 specimens per batch were tested. 

Specimens were placed in a salt spray test machine for periods of 1 and 3 weeks 

following the ASTM b117 standard. 5 wt% NaCl solvent was used to simulate marine 

water and the test temperature was 42 
o
C. Specimens were then washed in running water 

and oven dried at 60 
o
C for 48 hrs. Model I interlaminar fracture toughness and interlaminar 

shear strength were characterized after the immersion. 

3. Results and discussion  

3. 1. Hybrid enhancement on CRPF laminates 

Figure 2(a) shows load-crack opening displacement (COD) curves obtained from Mode 1 

interlaminar fracture toughness tests for different laminates. The neat CFRP shows a saw-

tooth shaped curve which forms as the load increases and decreases alternately, 

demonstrating unstable energy release during crack propagation. In comparison, for the 

SiO2-CFRP sample, the COD curve shows a saw-tooth shaped curve similar to that of the 

neat CFRP but with higher load capacity than that of the neat CFRP. For the PDA-SiO2-
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CFRP specimen, however, the force regularly increases to the peak point and then drops in 

a relatively smooth movement, while the load capacity increases further, as shown in 

Figure 2(a). These COD curves indicate that the addition of nanosilica alone can increase 

the load capacity but may not improve the interface adhesion. With PDA added in the SiO2-

CFRP specimen, however, the interfacial adhesion also improves [24]. Figure 2(b) shows 

typical Mode I delamination crack growth resistance curves (R-curves) calculated from the 

COD curves. Generally, the R-curves grow to a plateau with crack propagation.  

The gradual formation of a fibre-bridging zone behind the crack front is the main 

toughening process in these CFRP composites [25]. The average value of GIC during 

propagation is 540 J/m
2
 for CFRP and 630 J/m

2
 for SiO2-CFRP, with about 17% 

improvement which is attributed to the deflection of the cracking paths because of the 

presence of the rigid nanosilica particles consuming more energy [9]. The average 

propagation GIC value for PDA-SiO2-CFRP is 750 J/m
2
, which is a 39% increment 

compared to that of CFRP, as the PDA can further provide strong adhesions between 

carbon fibre and epoxy resin [11]. Table 1 shows a summary of the GIC values for the 

nanosilica enhanced CFRP and its improvement ratios. As shown in the Table, Tsai et al. 

reported that compared with neat laminate, GIC values increased by 8.4% and 14.5% when 

10 wt% and 20 wt% silica nanoparticles respectively were added in the laminate [26].     

Obviously, the 2 wt% sol-gel form of nanosilica provided a greater increment of the GIC 

than the 20 wt% unmodified nanosilica. Similarly, Zeng et al. reported that in laminates 

modified with 4 wt% and 6 wt% silica nanoparticles, the GIC values increased by 15% and 

19%, respectively [27]. However, further increases in the concentration of nanosilica did 

not further increased the GIC value. Meanwhile, Carolan et al. reported the use of a hybrid 
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of nanosilica and polysiloxane core-shell rubber (CSR) to toughen the GIC. They found that 

the use of 8 wt% SiO2 with 8 wt% CSR significantly improved the GIC value by 41% 

compared to that of neat CFRP [28]. In comparison, the hybrid enhancement in the PDA-

SiO2-CFRP of the current study used only 3 wt% PDA and 2 wt% nanosilica to achieve a 

39% increment in the GIC value. This result demonstrates a marked advantage over the use 

of enhancement of simple matrices by nanoparticles. 

Table 1 also shows that the average ILSS value of the neat CFRP laminate is 55.7 MPa; 

this value increases to 59.9 MPa for SiO2-CFRP and 67.8 MPa for PDA-SiO2-CFRP with 

increments of 8% and 22%, respectively. In the report of Zhang et al. [29], the ILSS values 

were 46 MPa and 50.7 MPa for laminates with 2.5 wt% and 10 wt% GO nanoparticles, the 

values increasing by 1% and 12% respectively compared with those of the neat laminate. 

Srivastava et al. found that, with 3% carbon blacks (CBs), 3% multi-walled carbon 

nanotubes (MWCNTs) and 3% graphene nanoplatelets (GnPs) added in the laminate, the 

ILSS values increased by -29%, 5% and 7%, respectively [30]. Thus a significant 

advantage has been demonstrated of hybrid enhancement as a feasible way to enhance the 

interlaminar properties of laminates, compared with single nanoparticle enhancement.  

Figure 3 shows a schematic drawing of the proposed toughening mechanisms for 

different laminates, with SEM images of fracture surfaces. Figure 3(a) shows a clean and 

smooth surface of the fibres in a CFRP fracture surface, indicating that the fracture 

mechanism is primarily interfacial debonding. The epoxy resin detaches completely from 

the carbon fibre surfaces because of weak bonding in the interfaces. This finding indicates 

that fibre/epoxy debonding is the dominant failure mechanism, and the most likely failure 

site in the laminates is still the interface. Although the SiO2-CFRP fracture toughness 
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surface is also clean and smooth, as observed in Figure 3(b), the fractured resin surface is 

rougher than that of the neat epoxy Figure 3(a), because the rigid nanosilica particles can 

deflect cracking paths, resulting in a higher GIC and a rougher fracture surface, as shown in 

Figure 3(b). From our previous publication [18] regarding the PDA-CFRP laminate, with 

the enhancement on the interfaces, a higher GIC value has been reported with rough fracture 

surfaces been observed, as shown in Figure 3(c). In contrast, in the PDA-SiO2-CFRP 

fractured surface, a significantly different interface microstructure is shown in Figure 3(d). 

A large amount of epoxy adhering to the PDA treated carbon fibre surfaces and the rough 

fractured epoxy surface indicate that the failure mechanism is a combination of epoxy resin 

fracture and interface debonding. The development of these microstructures is related to 

both PDA-enhanced interactions between carbon fibre and epoxy and nanosilica toughened 

epoxy matrix. Therefore, the overall GIC value is significantly increased. 

3.2 Marine environment effects on the hybrid enhancement of laminates 

Figure 4(a) shows the Mode I interlaminar fracture toughness GIC values after 0, 1 and 3 

weeks’ salt spray testing to simulate marine environment effects on laminate mechanical 

properties. Generally speaking, the marine environment will deteriorate Mode I 

interlaminar fracture toughness. As shown in the figure, after a week’s salt spray test, the 

GIC values decrease to 0.61 KJ/m
2
 for SiO2-CFRP and 0.72 KJ/m

2
 for PDA-SiO2-CFRP, 

respectively. Moreover, the GIC values continue to decrease, reaching 0.58 KJ/m
2
 for SiO2-

CFRP and 0.68 KJ/m
2
 for PDA-SiO2-CFRP after 3 weeks’ salt spray testing. Such trends of 

deterioration effects have also been reported previously [9, 31]. After a period of salt water 

permeation, it is found that laminates began to swell, and the moisture sorption caused by 

the volume swelling gradually increased. Meanwhile, physical or chemical degradation, 



  

12 
 

such as hydrolysis of the polymer, chain breakage, creation of small molecules and 

extraction of these molecules from the composite began, and mass loss of composite 

occurred [32]. However, the deterioration of the laminate GIc values was diminished by the 

addition of nanosilica, as reported by us previously [9], with further mitigation when PDA 

and nanosilica were added together. As a result, the GIc values of SiO2-CFRP and PDA-

SiO2-CFRP after 3 weeks’ salt spray testing were still 7% and 26% higher respectively than 

those of the neat CFRP (0.54 KJ/m
2
) without any salt spray test. This finding shows that the 

hybrid enhancement significantly improved the Mode I interlaminar fracture toughness 

under the marine environment.  

Figure 4(b) shows that the ILSS values of all laminates decreases after the salt spray test. 

The highest ILSS result after the salt spray test still comes from the PDA-SiO2-CFRP 

laminate, with reduction rates of 5% in 7 days and 9% in 21 days compared with that in 0 

day as shown in Table 2. For the SiO2-CFRP laminate, it has the similar reduction rates of 5% 

in 7 days and 9% in 21 days, respectively. However, CFRP has a reduction rate of 9% in 7 

days observed indicates that SiO2 or PDA-SiO2 are applied in CFRP can efficiently reduce 

the degradation of mechanical properties under marine environment. Interestingly, the ILSS 

value of the SiO2-CFRP laminate after the 3-week salt spray test decreases to a value which 

is even 2.3% lower than that of the neat CFRP without the salt spray test. However, the 

ILSS value of the PDA-SiO2-CFRP laminate is still 11% higher than that of the unmodified 

CFRP. Hence, it can be concluded that in terms of mechanical properties, PDA-SiO2-CFRP 

laminate is superior to SiO2-CFRP laminate under marine environment. 

Figure 5 shows SEM images of interlaminar fracture toughness surfaces after different 

salt spray periods. The morphologies of the fracture surfaces changed significantly with the 



  

13 
 

salt spray duration. Figures 5(a)-(c) shows SEM images of the fracture surfaces of SiO2-

CFRP without and after 1 and 3 weeks of salt spray tests. The fracture surfaces become 

smoother as the salt spray duration increases. Especially in Figure 5(c), the fracture 

surfaces of SiO2-CFRP after 3 weeks’ salt spray were very similar to that of the neat CFRP 

fracture surface shown in the SEM image of Figure 3(a). This result indicates that, due to 

salt water permeation, the nanosilica/resin interfaces have been attacked by salt water, 

weakening the ability of rigid silica particles to deflect cracking paths. Therefore, the 

fracture surface of SiO2-CFRP becomes smoother. For PDA-SiO2-CFRP, as shown in 

Figure 5(d)-(f), significant amount of resin still adheres to the PDA treated carbon fibre 

surfaces. Although the resin surfaces are less rough, the PDA layers do not show significant 

damage. Therefore, most of deboning comes from the epoxy resin fracture, indicating that 

the salt water on the PDA layer may serve as an effective layer to slow the deterioration 

effects of swelling on the interfaces. 

4. Conclusion 

In this study, with the use of hybrid enhancements of CFRP laminates by nanosilica and 

polydopamine, CFRP shows significant improvement of mechanical properties. Increments 

of 39% in Mode I interlaminar fracture toughness and 26% in interlaminar shear strength 

were obtained for the PDA-SiO2-CFRP compared with those of the neat CFRP. The 

enhanced mechanism was mainly the result of the enhancement of interfacial bonding 

among epoxy and carbon fibres by the PDA and the toughening of rigid nanosilica particles 

by the epoxy matrix. In the marine environment, the mechanical properties deteriorated 

with an increase in time. However, that deterioration could be effectively offset by the 
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combined enhancements from nanosilica and PDA, an outcome that successfully 

demonstrates a promising use of CFRP laminates under marine environments. 
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Figure 1. Schematic drawing demonstrating the hybrid enhancement strategy by toughening 

epoxy matrix with nanosilica and enhancing the interface by applying polydopamine on 

carbon fibre surfaces. 
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Figure 2. (a) Typical load-crack opening displacement curves obtained from Mode 1 

interlaminar fracture toughness tests and (b) typical Mode I delamination crack growth 

resistance curves (R-curves) for different laminates. 
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Figure 3. Schematic drawings of failure mechanism for (a) neat CFRP; (b) SiO2-CFRP; (c) 

PDA-CFRP and (d) PDA-SiO2-CFRP, with corresponding SEM images of the fractured 

surfaces after model I interlaminar fracture toughness characterizations. 
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Figure 4. (a) Model I interlaminar fracture toughness and (b) interlaminar shear strength of 

neat CFRP, SiO2-CFRP and PDA-SiO2-CFRP laminates with different salt spray durations 

used to simulate marine environment effects on laminate performance. 
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Figure 5. SEM images of fracture surfaces of (a)-(c) SiO2-CFRP and (d)-(f) PDA-SiO2-

CFRP laminates (a) and (d) before salt spray testing and (b) and (e) after 1 week and (c) 

and (f) 3 weeks of salt spray testing.  
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Table 1. Selected interlaminar fracture toughness and interlaminar shear strength values 

with simple nanosilica enhancement on matrix or with current hybrid enhancement.  

 GIC (KJ/m
2
) Improvement (%) Ref. 

CFRP 0.54 ± 0.02 -  

2% SiO2-CFRP 0.63 ± 0.02 17 

3%PDA-2% SiO2-CFRP 0.75 ± 0.01 39 

GFRP 0.83 - 26 

10% SiO2-GFRP 0.90 8 

20% SiO2 GFRP 0.95 15 

CFRP 0.54 - 27 

4% SiO2-CFRP 0.62 15 

6% SiO2-CFRP 0.64 19 

8% SiO2-CFRP 0.62 15 

10% SiO2-CFRP 0.62 15 

12% SiO2-CFRP 0.61 13 

CFRP 1.25 - 28 

4% SiO2-CFRP 1.17 -6 

8% SiO2-CFRP 1.31 5 

8% SiO2-4%CSR-CFRP 1.52 22 

8% SiO2-8%CSR-CFRP 1.76 41 

 ILSS (MPa) Improvement (%)  

CFRP 55.7 ± 1.4 -  

2% SiO2-CFRP 59.9 ± 1.6 8 

PDA-2% SiO2-CFRP 67.8 ± 1.6 22 

CFRP 45.5 - 29 

2.5% GO-CFRP 46.0 1 

10% GO-CFRP 50.7 11 

CFRP 44.6 - 30 

3% CB-CFRP 31.8 -29 

3% MWCNTs-CFRP 46.7 5 

3% GnPs-CFRP 47.5 7 
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Table 2. The reduction rate of salt spray test compared to properties at 0 day of each 

specimen  

Salt spray test  7 days 21 days 

GIC CFRP NA NA 

SiO2-CFRP -4%  -9%  

PDA-SiO2-CFRP -4 -9%  

 

ILSS CFRP -9%  NA 

SiO2-CFRP -5%  -9%  

PDA-SiO2-CFRP -5%  -9%  

 

 




