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Abstract 

 

Hypoxia is a critical issue in aquaculture especially in intensive aquaculture systems. 

Acute hypoxia stress with dissolved oxygen (DO) 0.7±0.1 mg/L for 6 h and chronic 

hypoxia stress with DO 1.1±0.1 mg/L for 4 weeks were used to investigate the response 

of nutritional metabolic pathways in Nile tilapia Oreochromis niloticus. Fish in the acute 

and chronic experiments had different adaptive mechanisms. Upon acute hypoxia stress, 

the contents of liver glycogen and muscle glycogen were significantly lower, but there 

was no significant difference in triglycerides (TG). The lactate dehydrogenase (LDH) 

activities increased after exposure to acute hypoxia stress. The mRNA expression of 

genes involved in glycolysis and glycogenolysis was significantly up-regulated by acute 

hypoxia stress. However, the response of fish to long-term hypoxia stress was different 

from acute hypoxia. Compared with the normoxia treatment, the crude fat in fish 

decreased in the hypoxia group and TG in the liver and muscle were significantly lower. 

Beta oxidation of the liver was enhanced in the hypoxia group, while the hepatic 

glycogen content increased in the hypoxia group. Transcriptomic analysis showed that 

the expression of genes related to carbohydrate synthesis and lipolysis increased in the 

hypoxia group, while genes related to carbohydrate catabolism and fat synthesis showed 

the opposite. This study indicates that fish could utilize carbohydrate as a main energy 

source during acute hypoxia stress, and metabolize more lipid during long-term hypoxia 

stress. A high carbohydrate content in the diet may help reduce negative effects from 

acute hypoxia stress, and an appropriate increase of fat content in the diet may benefit 

fish growth in a hypoxia environment, e.g., in high-density aquaculture ponds. 

 

Keywords: hypoxia stress; Oreochromis niloticus; metabolic response; 

transcriptome
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1. Introduction 

 

Environmental hypoxia is a common challenge for many aquatic species as the aquatic 

environment has a wide range of temporal and spatial variations in oxygen levels 

compared to the terrestrial environment (Zhu C D, et al., 2013). In recent years, natural 

and anthropogenic perturbation including high temperature, algal bloom, water pollution 

and the use of high-density aquaculture has caused local aquatic hypoxia in many parts of 

the world, which seriously restricts the distribution of aquatic species in nature and 

aquaculture development (Robertson C E et al., 2014; Mahfouz M E, et al., 2015). 

Hypoxia could affect the behavior, growth, food consumption and physiological state of 

fish. Juvenile spotted wolffish Anarhichas minor show lower weight gain and feed intake 

in a hypoxia habitat than the fish in the control and in the hyperoxic condition (Foss A, et 

al., 2002). Hypoxia stress also has a negative effect on growth performance and 

immunity of Nile tilapia Oreochromis niloticus (Abdel-Tawwab M, et al., 2015), and fish 

display sluggish behavior (P < 0.05) during hypoxia stress (0.8 and 0.3 mg/L) compared 

with the fish in the normoxic condition (Xu J, et al., 2006). 

A complex process of physiological and biochemical changes is involved in fish to 

cope with hypoxia stress (Terova G, et al., 2008), including low metabolic rate, high 

ventilation and anaerobic respiration, and high haemoglobin O2 affinity (Rahman M S, et 

al., 2007). Except for physiological and biochemical alterations, hypoxia also affects 

nutrient metabolism (Polymeropoulos ET, et al., 2017). In mammals, lactate and glucose 

production is enhanced by hypoxia stress in keratinocytes (Cuninghame S, et al., 2017), 

and hypoxia can stimulate lipolysis and inhibit the uptake of free fatty acids (FFA) in 

adipocytes resulting in elevation of fatty acids in the plasma of obese mice (Yin J, et al., 

2009). The LDH activity in the gills of Leiostomus xanthurus increases significantly after 

12 h hypoxia stress (0.8 mg/L) (Cooper R U, et al., 2002). When amazon fish Astronotus 

ocellatus encountered a hypoxia stress, the blood glucose 
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concentrations significantly decreased (Bie M, 1998). In the liver of juvenile sea bass 

exposed to chronic hypoxia, glycogen content and lactate concentration decrease, and the 

expression of phosphoenolpyruvate carboxy kinase increases, indicating a stimulation of 

anaerobic glycolytic pathways (Cadiz L, 2017). 

Although hypoxia could affect the metabolism of nutrients (Mahfouz M E, et al., 

2015), the differential metabolic responses to long-term and short-term hypoxia stress in 

fish are still little known. Exploring the mechanism of fish adapting to hypoxia will 

provide a better understanding of the nutrition demand and utilization under hypoxia 

stress, and the evolution in hypoxia adaption strategies in aquatic animals. Moreover, it 

will also bring new insights into the understanding of adaption to environmental stress in 

fish and provide a theoretical basis to improve aeration in modern aquaculture, especially 

for the development of high-density aquaculture. Transcriptome sequencing facilitates 

functional genomic studies, including global gene expression, novel gene discovery, and 

assembly of full- length genes (Gu J, et al., 2015). This powerful new technology 

provides a platform to study the genetic and molecular response to a challenging 

environment for a species even without its genome reference database (Zhang G, 2016). 

Therefore, transcriptome was used in this study to obtain a comprehensive understanding 

on the metabolic response in tilapia at the transcriptomic level to explain physiological 

and biochemical observations. 

The hypoxia tolerance of tilapia is higher than other farmed fish, and some tilapia can 

tolerate a hypoxia environment with dissolved oxygen below 0.5 mg/L for a short period 

(Teichert DR, et al., 1997; Stickney RR, 2000; Lim CE, et al., 2006), which makes it a 

suitable model species to study hypoxia stress in an aquatic habitat. Nile tilapia was 

chosen in this study not only because of its great hypoxia tolerance, but also the 

availability of its genome database (Chen XW, et al., 2017; Li HL, et al., 2017; Liu XY, et 

al., 2017). Therefore, the objective of this study was to explore the metabolic response of 

Nile tilapia to acute and chronic hypoxia stress and mechanism for fish to cope with acute 
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and long-time stress. Particularly, transcriptome was used to grasp a new understanding 

of nutrition metabolism in aquatic animals.  

2. Materials and methods 

2.1 Animals and feeding protocol 

The experiment was carried out in indoor rectangular glass tanks in the Laboratory of 

Aquaculture Nutrition and Environmental Health, East China Normal University, 

Shanghai, China. The male Nile tilapia were obtained from a fish farm in Huadu District, 

Guangzhou. All the fish were stocked in 440 L tanks and fed with a commercial diet for 

21 days to acclimate them to the culture condition before the trial started. During 

acclimation, the temperature of water was controlled at 28 ± 1 °C and pH at 7.3~7.9. 

Dissolved oxygen (DO) was maintained at 7 ± 0.5mg/L. All experiments were conducted 

under standard protocols for the Care and Use of Laboratory Animals at East China 

Normal University (F20140101). 

 

2.2 Acute hypoxia trial 

Thirty-Six fish (6.3±1.2 g) were randomly transferred into two groups of six tanks 

(100L), with 6 fish in each tank. Three tanks were maintained at normoxia and the other 

three were exposed to a hypoxia condition. The DO of hypoxic treatment was controlled 

at 0.7±0.1 mg/L through injection of nitrogen gas into the water. The DO of the control 

group was 7 ± 0.5mg/L and measured using a dissolved oxygen analyzer (Hach hq30d, 

America). The temperature of water was controlled at 28 ± 1 °C and pH at 7.3~7.9. After 

6-hour hypoxia stress without feeding, three fish from each tank were taken to measure 

the oxygen consumption rate and fish behavior. Three fish from each group (one fish 

from each tank) was put in the ZebraCube behavior instrument for 30min one by one to 

detect the behavioral changes. The critical point between inact and smlct was set as 

1mm/sec, while the point between smlct and larct was 5mm/sec. The behavioral changes 

of fish in 30min were recorded and analyzed. The other two fish of each tank were used 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

to measure the oxygen consumption rate, which was measured with a mitochondrial 

respiratory apparatus (Boshitong Co. Ltd., Shanghai) (28 ± 1 °C and DO at 7.0±0.5 

mg/L). Other fish were anesthetized with 0.1 g/L ethyl 3-aminobenzoic acid ethyl ester 

methanesulfonate (MS-222, Sigma Aldrich Chemical Co., St. Louis, MO, USA) 

for weighing, counting and measuring. Three fish from each tank were sampled for liver, 

muscle and blood. The hemoglobinin was detected immediately after sample collection. 

Other blood samples were centrifuged at 3000 rpm for 5 min at 4 °C (Eppendorf, 

Germany), and then serum was removed and stored at −80 °C until use. The liver and 

muscle specimens were stored in liquid nitrogen at −80 °C soon after sampling. The liver 

samples were used for the detections of glycogen, TG, lactic acid (LA), enzyme activity 

of pyruvate kinase (PK), hexokinase (HK), LDH and mRNA expression.  

Total RNA was extracted from the livers using a unizol reagent kit (Invitrogen) 

according to the manufacturer’s protocol, whereas RNA quantity and quality were 

estimated by the absorbance at 260 and 280 nm with NanoDrop (Thermo, Wilmington, 

DE, USA) and agarose gel electrophoresis, respectively. Total RNA was reversely 

transcribed using the PrimeScriptTM RT reagent kit (Takara, Shiga, Japan) for realtime 

quantitative (qRT-PCR) analysis. A pair of gene-specific primers of 

fructose1,6-bisphosphatase (fbp), glucose-6-phosphatase G-6-pase (g6p), 

phosphofructokinase (pfk), and pk was designed (SI Table 1). The amplifications were 

performed in a 96-well plate with a reaction volume of 20μL, containing 10μL SYBR 

Green Premix Ex TaqTM (Takara), 0.4μL 10 mM gene-specific forward and reverse 

primers, 2μL diluted cDNA template (200 ng μL-1) and 7.2μL H2O. The PCR conditions 

were as follows: 95 °C for 30 s; 40 cycles of 94 °C for 15 s, 58 °C for 20 s, 72 °C for 20 s 

and a 0.5 °C per 5s incremental increase from 60 to 95 °C. The data were analyzed using 

the CFX Manager TM software (version 1.0) (Bio-Rad, Hercules, CA, USA). Samples 

were run in triplicate and normalized to the control gene, β-actin. The cycle time (Ct) 

values of different tissues were calculated by the 2-ΔΔCt comparative Ct method. 
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Muscle samples were used for the measurements of glycogen, TG and mRNA 

expression. Blood was used for hemoglobin analysis, and serum was for the detection of 

blood sugar, TG and LA.  

2.3 Chronic hypoxia trial 

After acclimation, another 180 fish (body weight 6.1 ± 1.3 g) were randomly 

transferred into six 440 L experimental tanks with 30 fish each. The temperature of water 

was controlled at 28 ± 1 °C and pH at 7.3~7.9. Three tanks were maintained at normoxia 

(6.5~7.5 DO mg /L) and the other three were exposed to a hypoxia condition (1.0~1.2 

DO mg/L). The DO was detected in an hourly interval from 05:00 h to 23:00 h daily. 

Fish were fed to apparent satiation twice daily (09:00 and 17:00) with a commercial feed 

(5% crude lipid, 25% crude protein). 1h after feeding, the residue of diet was siphoned 

out, dried at 60℃ and weighted. Feed intake was calculated by the weight of diet and the 

residue every day. Fish were taken out the tank, wiped with wet towel gently and 

weighted weekly. The oxygen consumption rate of fish in each tank were also measured 

once a week. After 28 days, fish in each tank was numbered and the survival rate was 

calculated by the formula: Survival rate (SR)= 100 ×(final fish number/ initial fish 

number). Fish were deprived of feed for 12 h and then behavioral changes and oxygen 

consumption rate were measured with the same protocol as in the acute hypoxia trial. 

Then fish were anesthetized with MS-222, and the serum and muscle were extracted and 

immediately stored in liquid nitrogen at −80 °C for further analysis. Part of the liver 

samples were fixed in paraformaldehyde (4%) for paraffin section and the rest of liver 

samples were also stored in liquid nitrogen.  

2.4 Paraffin Section 

The excised liver samples were fixed in paraformaldehyde (4%) for 24 h. Fixed liver 

were then dehydrated in ascending concentrations of alcohol and cleaned in xylol, 

followed by vacuum-embedding in paraffin. The embedded fish liver was sectioned with 

a rotary microtome at 5 μm. The tissue slices were stained with hematoxylin and eosin 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

(HE). The stained sections were analyzed using the BX51 system (OLYMPUS, Tokyo, 

Japan), and digital images were taken using Image-Pro plus 6.0. 

2.5 Sample analysis 

The proximate composition of the whole fish body was determined according to the 

standard methods of by the Association of Official Analytical Chemists. Moisture 

content was estimated by drying the samples to a constant weight at 105°C in a drying 

oven. The crude protein content was measured by the Kjeldahl method (8200, Kjeltec, 

Foss, Sweden). Crude lipid content was determined by the chloroform methanol method 

(Folch J, et al., 1951). Blood glucose, TG, LA, glycogen, hemoglobin and enzyme 

activity of PK, HK, LDH and total lipase were detected with a biochemical indicators kit 

(Nanjing Jiancheng Bioengineering Institute) and the product number of these kits were 

shown in SI Table 2. A liquid scintillation counter was used for -oxidation analysis. Wet 

liver tissues were weighed and homogenized (1:40, w/v) in an ice-cold 0.25 M-sucrose 

medium containing 2 mM-Ethylenebis (oxyethylenenitrilo) tetraacetic acid  (EGTA) and 

10 mM-Tris-Cl at pH 7.4. Then the homogenate samples were used for 

immediate measurements of mitochondrial and peroxisomal [1-14C] palmitate 

-oxidation. The rate of total and peroxisomal palmitate oxidation was calculated from 

the radioactivity of the acid-soluble products. The β-oxidation ability of liver was 

calculated according to the degree of radiation (Pan H, et al., 2017).  

The liver transcriptome was analyzed by RNA-seq to obtain an overall view of the 

metabolic response to long-time hypoxia stress in the fish liver. Total RNA was extracted 

from the liver with three replicates using TRIzol® Reagent according to the 

manufacturer's instructions (Invitrogen), and genomic DNA was removed using DNase I 

(Takara, Japan). The quality and quantity of total RNA were assessed using a Nano Drop 

2000 spectrophotometer (Thermo, Wilmington, DE, USA). The RNA-seq transcriptome 

library was prepared following the TruSeq™ RNA sample preparation kit from Illumina 

(San Diego, CA) using 1 μg of total RNA from the liver. Messenger RNA was isolated 
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according to the poly A selection method using Oligo (dT) beads and then was 

fragmented using fragmentation buffer. Double-stranded cDNA of the two tissues was 

synthesized using a SuperScript double-stranded cDNA synthesis kit (Invitrogen, CA) 

with random hexamer primers (Illumina). T4 DNA ligase buffer was used to end-repair 

the double-stranded cDNA. A single (A) was added using Klenow buffer. 

Adaptor-modified fragments were selected by gel-purification, and PCR amplification 

was performed for 15 cycles. After being quantified by TBS380, the paired-end RNA-seq 

sequencing library was sequenced using Illumina HiSeq 4000.  

 

2.6 Calculations and statistical analysis 

Each variable was analyzed using independent sample T test after being tested the 

normality by one-sample Kolmogorov-Smirnov test. The levels of statistical difference 

were set at P < 0.01 as extreme difference and P < 0.05 as significant difference. All 

analyses were performed using IBM SPSS Statistics 19 software (SPSS, Michigan 

Avenue, Chicago, IL, USA). 

3. Results 

3.1 Effect of acute hypoxia on behavior, oxygen consumption rate and metabolism  

Figure 1 shows the behavioral, physiological and biochemical responses of Nile tilapia 

after 6-h exposure to acute hypoxia stress. Fish under hypoxia stress swam on the water 

surface, showed slower movement (P < 0.01) and higher oxygen consumption (P < 0.05). 

Though the hemoglobin content of fish under hypoxia stress was higher than normoxia 

group, there was no significant difference (Fig. 1A, B, C). The mRNA expressions of fbp 

and pk were both up-regulated (P < 0.05) (Fig. 1D). Enzyme activity of LDH in the 

serum of tilapia after acute hypoxia challenge was higher than in the control group (P < 

0.05) (Fig. 1E). Besides, acute hypoxia reduced serum glucose and tissue glycogen 

contents in tilapia (P < 0.01) (Fig. 1F, G), but increased serum LA (P < 0.05) (Fig. 1H). 

No significant difference was found in the TG content between the two groups (P < 0.05) 
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(Fig. 1I). 

3.2 Effects of chronic hypoxia stress  

3.2.1 Effects of chronic hypoxia stress on behavior, growth and oxygen consumption  

Under chronic hypoxia, tilapia swam on the water surface, and showed slower 

movement than the control fish in the normoxia condition (P < 0.05, Fig. 2A). Chronic 

hypoxia also reduced feeding rate and weight gain of the fish, but not affected fish 

survival (P < 0.05, Fig. 2B, C, E). At the physiological level, oxygen consumption rate (P 

< 0.01) and hemoglobin content (P < 0.05, Fig. 2D, F) significantly decreased.  

3.2.2 Effects of chronic hypoxia stress on metabolism 

The mRNA expression of genes related to gluconeogenesis (fbp) and lipolysis (adipose 

triglyceride lipase, atgl; carnitine palmitoyltransferase 1, cpt1) were upregulated (P < 

0.05), while the expression of genes related to glycolysis (glucokinase, gk) decreased (P 

< 0.05) in the liver under chronic hypoxia stress (Fig. 3A). Similar to the mRNA 

expression, the enzyme activities of HK and PK as the key enzymes of glycolysis also 

decreased, but the activity of total lipase increased in the liver (P < 0.05) (Fig. 3B). The 

hepatosomatic index (HSI) were not affected by hypoxia (Fig. 3C). The activity of key 

enzyme related to anaerobic glycolysis (LDH) also increased. Accordingly, the serum 

glucose, serum LA, liver glycogen and muscle glycogen were all increased by chronic 

hypoxia stress, but the TG content in serum and liver all decreased (P < 0.05, Fig. 3C, D, 

E, F). The whole body fat also decreased after long term stress (P < 0.05, Fig. 3G), but 

the β-oxidation of the liver increased (P < 0.05, Fig. 3H). The beta oxidation in 

peroxysome were not changed, while the reaction in mitochondria were increased by 

hypoxia stress.  

3.2.3 Effects of chronic hypoxia stress on histological parameters 

Visually, the total amount of the empty space where lipid droplets occurred in the liver 

of the hypoxia group was much lower than that in the control group  (Fig. 4A, B). For Fig. 

4A and B, we randomly chose three rectangles with the areas of 6174μm2
, and calculated 
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the area of the total empty space inside each rectangle. The total lipid area in the hypoxia 

groups was much less than that in nomoxia group by scientific statistics (Fig. 4C). 

3.2.4 Transcriptomic analysis 

In the whole liver transcriptomic analysis, over 14 000 different transcripts were 

analyzed and the expression of 451 genes was significantly different, of which 281 

genes showed high expression, and the expression of other 170 genes were decreased. 

Thirty four percent of these 451 genes were related to nutrition and energy metabolism 

(Fig. 5 and Supplementary 1). Among all the changed pathways, there were 14 

significantly changed pathways. Most of these 14 pathways were about metabolism, 

including tyrosine, glycine, serine, threonine, sulfur, fatty acid, linoleic acid, glyceride 

and vitamin metabolic pathways. The rest were mainly about Adenosine Monophosphate 

Activated Protein Kinase Pathway, Peroxisome Proliferator-activated Receptor signaling 

pathway, circadian rhythm and inflammatory factors. According to the analysis and 

classification of these 451 genes, a metabolic map was summarized, containing the key 

substrates, products and enzymes of nutrient metabolism (Fig. 6). Red boxes represent 

the genes of upregulated expression while the green boxes represent the genes with 

down-regulated expression. The expression of genes related to lipolysis: atgl, ppar 

( Peroxisome proliferator-activated receptor), cpt1, cyp7a1 (Cholesterol 7-alpha 

hydroxylase) and glyconeogenesis: gs (glycogen synthase), pepck  

(Phosphoenolpyruvate carboxykinase), aldocb (aldolase C, fructose-bisphosphate, b) 

pathways increased, but those related to lipid synthesis: fasn (fatty acid synthase), acaca 

(acetyl-Coenzyme A carboxylase alpha) and glycolytic: gck (glucokinase hexokinase), 

pdhb (pyruvate dehydrogenase beta), aclya (ATP citrate lyase a) pathways reduced.  

 

4. Discussion 

Either acute or chronic hypoxia stress may disturb physiological homeostasis, and 

adversely affect fish growth and health (Aboagye D L, et al., 2017). In a hypoxia 

C 
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environment, various behavioral responses could occur in fish to better adapt to the 

environment. Swimming to water surface is a typical adaptation in most fish species to a 

hypoxia habitat (Lewis W M, 1970). In the present study, tilapia swam to the water 

surface to gulp air when they were under acute and chronic hypoxia stress. The gulping 

behavior is a clear indication that fish are suffocated and need more oxygen for 

respiration (Kramer D L, et al., 1982). We also found that the swim of tilapia slowed 

down under hypoxia stress, which is similar to the reports in Antarctic clam Laternula 

elliptica (Morley S A, et al., 2007) and Atlantic cod Gadus morhua (Herbert N A, et al., 

2005). It is an adaptive behavior of fish to reduce energy and oxygen consumption under 

hypoxia stress. 

Under acute hypoxia stress, fish usually reduce oxygen consumption by slowing down 

movement and improving oxygen-carrying capacity through the increase of red blood 

cells and hemoglobin concentration (Cossins AR, et al., 2005; Roesner et al., 2006; Xia 

et al., 2016). In the present study, fish frequently swam to the water surface and also 

increased hemoglobin concentration during acute stress. However, we found that the 

oxygen consumption rate increased after fish were moved from a hypoxia water to a 

normoxia water, which is possibly an oxygen compensatory effect when a plenty of 

oxygen is available during the period of recovery.   

In both vertebrates and invertebrates, glycogen metabolism is the main pathway of 

energy acquisition, especially in an unstable environment (Bacca H, et al., 2005; 

Karlsson J, et al., 1979; Oliveira G T, et al., 2004). In the present study, the glycogen 

content decreased and the activity of glycolysis increased, suggesting that carbohydrate 

metabolism also plays an important role of energy supply when fish cope with acute 

hypoxia stress. When dissolved oxygen in water cannot satisfy the oxygen requirement 

for aerobic glycolysis, the normal physiological function and metabolic rate cannot be 

maintained (Richards J G, et al., 2011). It has long been known that hypoxia is associated 

with the activation of anaerobic metabolism, and anaerobic glycolysis would meet the 
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high energy requirement of animals during hypoxia stress (Bie M, et al., 1998; 

Speers-Roesch B, et al., 2010; Bartrons R, et al., 2007). Due to the low ATP yield of 

anaerobic glycolysis, the substrates such as glycogen and glucose will be substantially 

consumed, leading to accumulation of lactate (Richards J G, et al., 2011; Genz J, et al., 

2013). In the present study, we found a reduction of both glucose and glycogen but an 

increase of LA in the serum of tilapia.  

Long-term hypoxia decreased the feeding rate and weight gain of tilapia. Appetite 

suppression is an early response among all other responses under hypoxia stress in fish 

(Pichavant et al., 2001; Bernier N J, et al., 2005; Bernier N J, et al., 2012.). Growth is 

usually related to the amount of feed intake in fish, which is reflected by weight gain 

reduction due to low feed intake caused by hypoxia in post-smolt Atlantic salmon  

(Mette R, 2012), big sea bass Micropterus salmoides, common carp Cyprinus carpio, 

turbot Scophthalmus maximus and the silver salmon Oncorhynchus kisutch (Pichavant, K, 

et al., 2001; Ruyet, et al., 2003; Brett J R, et al., 1981). However, the survival rate was 

not affected by dissolved oxygen in this study. This might be because of the high 

tolerance of low oxygen in tilapia. The hypothetical explanation is that the hypoxic 

responses including morphological, respiratory and metabolic adaptations in tilapia 

might result in unaffected survival in this study. In contrast to acute hypoxia, both 

hemoglobin concentration and oxygen consumption decreased in tilapia after chronic 

stress in this study, maybe the Nile tilapia has adapted to the chronic hypoxia stress. The 

reduction of oxygen consumption may be related to low hemoglobin concentration and 

slow movement of fish under chronic hypoxia stress.  

In aquatic animals, metabolic reprogramming occurs to adapt to available energy 

reserve during environmental hypoxia (Gracey A Y, et al., 2011). Glycolysis, especially 

anaerobic glycolysis may be the main energy source under acute hypoxia stress 

according to the results in this study. However, the metabolic reprogramming in chronic 

hypoxia stress showed an opposite pattern in this study. The decrease of gk mRNA 
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expression and low activities of HK and PK indicate the overall reduction of glycolysis 

under chronic hypoxia, while the activation of anaerobic metabolism is associated with 

chronic stress as detected in acute stress. Many animals exposed to a prolonged hypoxia 

would inhibit glycolytic activation to prevent from metabolic acidity (Sidell B D, 1983; 

Van Waarde A, et al., 1983; Affonso E G, et al., 2002). In this study, the high glycogen 

content in the liver and muscle indicated the enhancement of gluconeogenesis, which 

was similar with the finding in a goby Gillichthys mirabilis (Gracey A Y, et al., 2011). 

The enhancement of gluconeogenesis in chronic hypoxia is probably due to lactate 

oxidation through the change of metabolic fuel preference to the use of lactate as a 

gluconeogenic substrate (Omlin T, et al., 2010). Another possible reason is the 

replenishment of glucose or glycogen that was over-consumed by anaerobic glycolysis to 

maintain energy balance in tilapia. With the reduction of glycolysis, the prolonged 

hypoxia increased atgl and cpt1 expression, indicating the enhancement of lipolysis. 

Because the ATGL catalyzes the initial step in triglyceride hydrolysis and plays a central 

role in the degradation of lipid droplets known as adiposomes (Zimmermann R, et al., 

2004; Smirnova E, et al., 2006). The CPT1 is the rate-limiting enzyme for β-oxidation of 

long-chain fatty acids (Harpaz S, 2005).  

The total lipase activity and TG content in the serum and liver are indicators of lipid 

catabolism (Zhao W M, et al., 2007). Similar to the results of this study, the pathway 

analysis generated by transcriptome reveals that the pathways related to triglyceride 

hydrolysis are upregulated while the pathways related to triglyceride synthesis are 

downregulated in the hypoxia-tolerant burrow-dwelling goby Gillichthys mirabilis under 

hypoxia stress (Gracey A Y, et al., 2011). Similar to this study, lipid metabolism also 

plays an important role in the adaptation to severe chronic hypoxia in Drosophila, and 

the expression of Brummer lipase and the fly ortholog of atgl are elevated (Azad P, et al., 

2009). This is in contrast to the hypoxia effects in mammals where a rise in free fatty 

acids and glycerol occurs due to the adrenergic stimulation of phospholipid and lipolysis, 
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and the inhibition of β-oxidation by the absence of oxygen ( Moore K H, 1985; Yin J, et 

al., 2009; Gimm T, et al., 2010). However, the available results of fish response to 

hypoxia in the current literature are controversial. Some indicate a decrease of lipolytic 

activity responding to hypoxia, while others show the opposite (Raaij M T M V, et al., 

1994; Raaij M T M V, et al., 1996; Haman F, et al., 1997). The conflicting results may be 

related to species difference, ability of hypoxia tolerance and exposure time to hypoxia. 

The glycolysis was suppressed and lipolysis was elevated in tilapia exposed to a 

prolonged hypoxia in this study, indicating that the energy demand during long-time 

stress is mainly derived from lipid catabolism.  

These findings led us to search for further evidence on the changes in lipid metabolism, 

in the hypoxia-challenged fish. The β-oxidation, especially the mitochondria was 

stimulated in the liver of tilapia. Moreover, the crude fat of whole fish reduced after 

4-week hypoxia stress. Histological sections of the liver tissue from the normoxic control 

and fish exposed to the prolonged hypoxia reveal morphological differences in structure. 

The liver from the control contained larger vacuoles, but the size vacuoles in the hypoxia 

fish was shrunk, an evidence of lipid degradation. These histological data support the 

enzyme and metabolic evidence and indicate that the lipolysis has replaced glycolysis to 

supply energy under a chronic hypoxia challenge in tilapia.  

Transcriptome analysis was carried out to further confirm the results of metabolic 

responses to long-time hypoxia stress. The transcriptomic analysis shows that 

carbohydrate synthesis and lipolysis were enhanced, while carbohydrate catabolism and 

lipid synthesis were reduced. There is no obvious difference in amino acid metabolism, 

demonstrating the importance of lipid catabolism under hypoxia stress. These results are 

also supported by the biochemical data. In conclusions, lipid was the main source of 

energy during long-time hypoxia stress.  

In conclusion, hypoxia stress would induce the fish to swim to the water surface, and 

slow down fish swimming, reduce feed intake and growth, and change the pattern of 
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metabolism after a prolonged hypoxia challenge. The energy metabolism was also 

affected by the dissolved oxygen concentration and stress duration. Carbohydrate 

metabolism, especially anaerobic metabolism, plays an important role of energy supply 

when fish cope with acute hypoxia stress. But lipolysis would replace glycolysis to 

supply energy under a chronic hypoxia challenge in tilapia.   
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Figure legends 

 

Figure1. Tilapia responses to acute hypoxia stress. A. Behavioral change to acute 

hypoxia stress (Inact: inactive, Smlct: moderately active, Larct: hyperactive). B. Oxygen 

consumption. C. Hemoglobin content. D. Relative mRNA expression of fbp and pk. E. 

The activity of LDH (lactic dehydrogenase) in serum. F. The content of glucose in serum. 

G. The glycogen content in liver and muscle. H. The LA content in serum. I. TG 

(triglyceride) content in serum, liver and muscle. Note:“*”means significant difference 

(P < 0.05), “**”means extremely significant difference (P < 0.01), MEAN±SE, N=3 for 

Panel A and N=6 for Panel B-I. 

 

Figure 2. Growth performance of tilapia under chronic hypoxia. A. Behavioral change 

(Inact: inactive, Smlct: moderately active, Larct: hyperactive). B. The survival rate of 

Nile tilapia. C. Feeding rate over time. D. Oxygen consumption rate. E. Weight gain. F. 

Hemoglobin content. Note:“*”means significant difference (P < 0.05), “**”means 

extremely significant difference (P < 0.01), MEAN±SE, N=3 for Panel A and N=6 for 

Panel B-F. 

  

Figure 3. Metabolic responses of tilapia to long-term hypoxia stress. A. The mRNA 

relative expression for glycometabolism of glucokinase (gk) and 

fructose1,6-bisphosphatase (fbp) and lipid metabolism of atgl (adipose trigtyceride lipase) 

and cpt1 (carnitine palmitoyltransferase 1). B. PK, HK, LDH and total lipase activity in 

liver. C. Hepatosomatic index of fish. Hepatosomatic index (HSI)= 100 ×(liver weight / 

body weight). D. The content of glucose in serum. E. The glycogen content in liver and 

muscle. F. The LA content in serum. G. TG content in serum, liver and muscle. H. The 

crude fat of whole fish (dry sample). I. The β-oxidation in liver. Note: “*”means 

significant difference (P < 0.05), “**”means extremely significant difference (P < 0.01), 
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MEAN±SE, N=6. 

 

Figure 4. The paraffin section of liver in the control and hypoxia (Arrows refer to fat).  

 

Figure 5. The classification of the 451 significantly down-regulated and up-regulated 

genes detected by transcriptome.  

 

Figure 6. The changes of metabolic pathways after chronic hypoxia stress. Red boxes are 

genes with increased expression and green ones are genes with decreased expression. 

 

Supplementary 1. The heat map of the genes related with nutrition and energy 

metabolism. Different columns mean different groups (C1, C2, C3: The three parallel of 

normoxia group. T1, T2, T3: The three parallel of hypoxia group.), and different rows 

mean different genes. Red color represents up-regulated genes, and green represents 

down-regulated genes.  
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Figure 2. 
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Figure 5. 
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Figure 6.  
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SI Table.1. The primers used for Q-PCR analysis 

Accession No. Item Gene name Sequence(5’-3’) 

KJ123689 Forward primer EF1a ATCAAGAAGATCGGCTACAACCCT 

 Reverse primer  ATCCCTTGAACCAGCTCATCTTGT 

XM_003449650.2 Forward primer FBPase ACCGGACAATAGCGGAAAATACA 

 Reverse primer  TGGCGAATATTGTTCCTATGGAGA 

XM_003448671.2 Forward primer G6Pase AGACCTTATTGGTGGGTTCACGA 

 Reverse primer  CTGAAGGACTTCCTGGTCCAGTTT 

XM_003441476.2 Forward primer PFK AACCTGTGTGTGATTGGAGGTGAT 

 Reverse primer  CGTGATCTTACCGGCTTTAACAAG 

XM_005472623.1 Forward primer PK CAGCATAATCTGCACCATCGGT 

 Reverse primer  ATGAGAGAAGTTAAGACGGGCGA 

FJ601660 Forward primer HSL AACCTGGATGTCCATTTCTGGAAG 

 Reverse primer  TCGGTTTACCTTGACTTGAGTGGA 

XM_003440346 Forward primer ATGL AAAACGTCCTGGTGACCCAGT 

 Reverse primer  TAGGAGGAATGATGCCACAGTACA 

XM_005478351.1 Forward primer MGL ACATCGTCAACGCAGACGGATT 

 Reverse primer  CACAATGTTCCCCAGCTCCAT 

KF871430 Forward primer PPARα CTGATAAAGCTTCGGGCTTCCA 

 Reverse primer  CGCTCACACTTATCATACTCCAGCT 

XM_003451020.2 Forward primer 

Reverse primer 

GK            GACATGAGGACATTGACAAGGGAA 

CTTGATGGCGTCTCTGAGTAAACC 

XM_003440552 Forward primer    CPT1 TTTCCAGGCCTCCTTACCCA 

 Reverse primer  TTGTACTGCTCATTGTCCAGCAGA 
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SI Table.2. The biochemical indicators kit of the experiment 

The kit The number 

The indicators kit of LDH A020-2 

The indicators kit of LA A019-2 

The indicators kit of glycogen A043 

The indicators kit of TG A110-1 

The indicators kit of Glu F006 

The indicators kit of GPT C009-2 

The indicators kit of G0T C010-2 

The indicators kit of Total lipase A067 

The indicators kit of HB C021 

The indicators kit of PK A076-1 

The indicators kit of HK A077-1 
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Highlights 

 The investigation of the metabolism under hypoxia stress in this manuscript 

would provide some new ideas for hypoxia stress mitigation in aquaculture. 

 The lipid was the main energy source during long-time hypoxia stress, which 

indicated that an appropriate increase of fat content in the diet may benefit fish 

growth in a hypoxia environment, e.g., in high-density aquaculture ponds. 

 We found that carbohydrate metabolism is the main energy source in tilapia 

during acute hypoxia stress, which gave us an enlightenment that high dietary 

carbohydrate might help reduce negative effects of acute stress in aquaculture. 
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