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Abstract

This paper presents the design and development of a smartphone-based urinalysis device that has the ability for chronic
kidney disease (CKD) patients themselves to conduct rapid and reliable quantitative urinalysis of human serum albumin
(HSA) using an aggregation-induced emission (AIE) nanomaterial bioprobe with their own smartphones. The focus of
this paper is a novel solution to the device agnosticism issue as a wide diversity of smartphones co-exist in the market. The
solution comprises: a) custom-design and fabrication of an imaging housing that provides a consistent imaging condition
regardless of the physical dimensions and the camera position of the smartphone used, b) orchestration of an image
processing and analysis process that produces consistent image colour intensity values regardless of the camera sensor
and imaging software used by the smartphone, and c) special design and development of an intuitive cross-platform
mobile application that is scalable to growth, adaptable to changes, resilient to loss of data, and has an extremely
low requirement for smartphone hardware. Preliminary evaluation of the device has confirmed the effectiveness of the
proposed solution and the viability of such a smartphone-based device for people who have already developed or are
prone to CKD to regularly perform point-of-care (POC) urine testing in order to self monitor their own health conditions
without the burden of frequent visits to their doctors.

Keywords: chronic kidney disease, urinalysis, microalbuminuria, smartphone, device agnosticism, point-of-care

1. Introduction
The kidney is one of the most vital organs in the hu-

man body, with its primary function of filtering the blood
to remove wastes and toxins. In addition, the kidney is
responsible for regulating blood pressure, water balance
in the body and vitamin D activation. Chronic kidney
disease (CKD) is a major health issue worldwide. More
than 500 million people - 7% of the world’s population -
have some form of CKD, causing millions of deaths every
year [1]. In Australia alone, over 1/3 of the population
aged over 65 is at risk of CKD and yet many of them are
unaware of that [2]. Early and regular testing of high-risk
groups - such as people with diabetes, hypertension, car-
diovascular disease, and family history of kidney failure -
can prevent from progressing to end-stage kidney disease
(ESKD) that may result in dialysis, transplantation, and
renal replacement therapy outcomes [3, 4]. In Australia,
age-standardised incidence of ESKD is significantly higher
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in Aboriginal and Torres Strait Islander people compared
with other Australians mainly due to limited access to
early detection facilities [5], which if available, treatment
with medication, dietary and appropriate changes to their
lifestyle would be more effective [6].

Urinalysis - urine diagnosis - is a standard method for
the identification of people at earlier time points in the
trajectory of CKD when it does not necessarily produce
signs or symptoms. One urinalysis method is to mea-
sure the amount of Human Serum Albumin (HSA) [7],
a serum protein that would normally be present at high
concentration levels in blood and should not appear in
urine more than a clinically normal threshold value of 30
mg/dL. Early stage of kidney damage would allow a small
amount of albumin to leak into urine, leading to the con-
dition of microalbuminuria that exhibits albumin levels of
more than 30 mg/dL in urine [8, 9]. Microalbuminuria
urinalysis measures albumin concentration levels in var-
ious urine specimens, every few hours within a 24-hour
window in order to produce a reliable result [10]. It relies
on bulky and costly bench-top urine analysers and trained
skills only available in laboratory settings, thereby requir-
ing successive patient visits to clinics or hospitals and long
turnaround times [11].

Point-of-care (POC) testing is preferred to laboratory
urinalysis as it can provide rapid results on the site, partic-
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ularly suitable for screen for prevention, treatment mon-
itoring, and patient self-testing [12, 13, 14]. A common
urine testing method is colorimetric investigation utilising
dipstick - a narrow plastic strip equipped with different
sensitive chemical components. This method relies on the
colour change of the chemical components, after their in-
teraction with urine. There are many types of devices
based on this method in the market, such as those from
Dirui, Cormay, Spinreact, Roche, Siemens, Rayto, Pock-
etChem and Arkray. Common to these devices is that they
are limited by the time sensitivity of the chemical compo-
nents and can only provide qualitative results due to their
low sensitivity to albumin at 150 mg/dL [15, 16, 17]. More
recently launched reagent strip devices such as Siemens
DCA Vantage Analyzer [18] are capable of producing semi-
quantitative results, however they are designed for doctors
to use in clinics as they are still costly and not portable
enough to be a viable solution for POC self-urinalysis.

While smartphones are widespread and becoming in-
creasingly sophisticated, they have promoted remote di-
agnosis and telemedicine by building smartphone acces-
sories and applications [19, 20]. For instance, mobile im-
ages can be used in pathology [21, 22, 23] to assist mon-
itoring changes over time for some diseases, such as car-
diology [24], blood cholesterol [25], glucose [26], pH [27],
dermatology [28], neurosurgery [29, 30], microscopy [31],
and ophthalmology [32]. These devices generally have a
stringent requirement on the image quality especially in-
tensity of colours as a slight drift would lead to inaccurate
quantification [31]. However smartphones are notorious
for their wide diversity of which a multiplicity of camera
sensors and image software present a major hurdle to these
applications as different phones would produce images of
different quality even under exactly the same imaging con-
dition. Therefore, device agnosticism is a paramount issue
in these types of medical devices.

Smartphone-based urinalysis applications are also on
the rise and the vast majority use smartphones as an al-
ternative colorimetric analyser of urine dipsticks [33, 34,
35, 36, 37, 38] as they can provide spectrometric functions
comparable to those offered by specialised urine dipstick
readers at a much lower cost. However, these applica-
tions also share the same shortcomings inherited from the
dipstick method: (a) the diagnosis is largely qualitative
or at most semi-quantitative, depending on the types of
reagent strips used, and (b) the diagnosis has a limited
low range of albumin detection higher than the thresh-
old of CKD due to the low sensitivity of the chemical
components in the reagent strip. In addition, most of
these applications do not use an imaging blackbox, mak-
ing a test highly subject to the ambient light condition as
well as the distance/alignment between the dipstick and
the camera. Moreover, none of these applications has at-
tempted to address the device agnosticism issue probably
because the impact of image quality on a qualitative or
semi-quantitative test result is not significant.

An alternative solution to smartphone-based urinal-

ysis is to image and automatically analyse assays con-
fined within disposable test tubes for full-quantitive detec-
tion of albumin in urine, which is only available through
laboratory pathology. Our proposed urinalysis device -
uTester - falls into this category, while the only other work
that is publicly known is Albumin Tester [11], which uses
a custom-built imaging housing for guaranteeing stable
imaging conditions, a fluorescence-based detection kit for
achieving full-quantitative urinalysis, and a specially de-
signed smartphone application for visualising testing pro-
cess and result.

The major differences between uTester and Albumin
Tester are as follows. First, uTester explores a new test
reagent BSPOTPE that is based on aggregation-induced
emission (AIE) nanomaterial bioprobes [39], whereas Al-
bumin Tester uses a commercial reagent - Albumin blue
580 - from Active Motif [40]. While Albumin Tester re-
quires two test tubes filled with different reagents for the
purpose of calibration, uTester only requires one test tube
filled with the AIE reagent. Second, Albumin Tester mea-
sures the fluorescent signals of both tubes and models
a linear relationship between the Relative Fluorescence
Unit (RFU) value and the albumin concentration, whereas
uTester uses image processing and analysis to model a lin-
ear relationship between the luminance of the imaged tube
and the albumin concentration. Last but not least, Albu-
min Tester requires a special external lens and an opti-
cal filter in order to accurately detect fluorescent signals,
whereas uTester only requires an optical filter to work with
the smartphone’s built-in lens. All in all, the most signif-
icant improvement in our work is a novel solution to the
device agnosticism issue, which was not addressed in Al-
bumin Tester.

In this paper, we present the design and development
of the uTester urinalysis device that has the ability for
CKD patients themselves to conduct rapid and reliable
quantitative diagnosis of albumin in urine using their own
smartphones. While our prior work bas proved the fea-
sibility of such a device [41], this paper is focussed on a
solution to device agnosticism. The solution comprises: a)
custom-design and fabrication of an imaging housing that
provides a consistent imaging condition regardless of the
physical dimensions and the camera position of the smart-
phone used, b) orchestration of an image processing and
analysis process that produces consistent image colour in-
tensity values regardless of the camera sensor and image
software used by the smartphone, and c) special design
and development of an intuitive cross-platform mobile ap-
plication that is scalable to growth, adaptable to changes,
resilient to loss of data, and has an extremely low require-
ment for smartphone hardware.

The device consists of five key components: the smart-
phone, the albumin test reagent BSPOTPE, the imaging
housing, the image processing and analysis techniques un-
derpinning the mobile application, and mobile application
itself. The rest of the paper is organised in that order.
Section 2 introduces BSPOTPE, followed by the design of
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the imaging housing in Section 3. After that, Section 4
presents the image processing and analysis process tech-
niques, followed by the architecture of the mobile applica-
tion in Section 5. Finally Section 6 concludes the paper
with a summary of major contributions and future work.

2. BSPOTPE: A Novel Bioprobe for Albumin De-
tection and Quantification
Researchers are in enthusiastic pursuit of fluorescent

bioprobes as they allow direct visualisation of bioanalytes
on site and in time, and offer useful insights into complex
biological structures and processes. Light emissions from
conventional fluorophores are often quenched at high con-
centrations or in aggregate state, known as aggregation
caused quenching (ACQ). Aggregation induced emission
(AIE) refers to the observed phenomenon that a group of
fluorogenic molecules that are non-emissive when molecu-
larly dissolved but highly emissive when aggregated. The
restriction of intramolecular rotations (RIR) is proposed
as its main cause [42].

BSPOTPE is an environmentally stable and synthet-
ically readily accessible FL (Fluorescent Light) probe for
albumin detection and quantification [39]. It is unper-
turbed by the miscellaneous bioelectrolytes in the artifi-
cial urine. The non-luminescent BSPOTPE becomes emis-
sive in the present of albumin. A set of experiments were
conducted to understand how BSPOTPE responds to (in
terms of FL intensity) albumin concentration in Artifi-
cial Urine (AU), which was prepared following Chutipong-
tanate’s AU-Siriraj protocol [43], with pH of 6.8 and grav-
ity of 1.010 g/ml. PBS (Phosphate-buffered saline) was
made according to the cold spring harbor laboratory pro-
tocol [44]. All experiments were performed at room tem-
perature. Steady-state fluorescence spectra were recorded
on a Varian Cary Eclipse Fluorimeter, with excitation
wavelength 340 nm and emission spectrum of 400-600 nm.
Stock solution of BSPOTPE of a concentration of 5.0mM
was prepared by dissolving an appropriate amount of dye
in Milli-Q lab water. The solution was stored in dark room
before use. Stock solutions of BSA (Bovine Serum Albu-
min) and HSA with a concentration of 8.0 mM were pre-
pared by dissolving appropriate amounts of the protein in
the PBS buffer. The solution was stored in aliquots at
−20◦C.

The final concentration of BSA and HSA in PBS was
double checked by measuring its absorbance at 279 nm.
Before preforming each experiment, the BSA concentra-
tion in AU was monitored according to protein dipstick
grading. Three different concentrations of BSA, 1+ of 30
mg/dL, 2+ of 100 mg/dL and 3+ of 300 mg/dL [45], were
incubated with different concentrations of BSPOTPE (0-
50 µM) for 2 minutes, and the FL values were subsequently
measured on the fluorimeter, as shown in Figure 1(a), (b)
and (c) respectively. It is clear from Figure 1 that the
FL threshold value for this type of fluorimeter is 1000 a.u.
Higher than that, the equipment is unable to measure it.
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Figure 1: FL intensity of different BSPOTPE concentrations
in AU with different BSA concentrations

According to Figure 2, the best working concentra-
tion of BSPOTPE monitoring BSA was optimised to be
30 µM. Higher concentration of BSPOTPE will cause the
FL intensity value to exceed the threshold of 1000 a.u.
as previously stated. Different concentrations of HSA in
the range of 0-3000 ng/mL (0-300 mg/dL) were incubated
with 30 µM BSPOTPE for 2 minutes, and the FL values
were subsequently measured by the fluorimeter, as shown
in Figure 3. Figure 4 shows the result from the experi-
ments that the FL intensity measured by the fluorimeter
responds linearly to the HSA concentration in the range
of 0-400 ng/mL (0-40 mg/dL) in the AU specimen with 30
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µM BSPOTPE, which confirms earlier findings [46, 47].
This result indicates that the fluorimeter-based solution
can be used for urinalysis of up to 1+ microalbuminuria.
However, albumin quantification based on FL intensity is
not a practical solution to POC urinalysis as FL inten-
sity has to be measured by a fluorimeter, such as a Varian
Cary Eclipse Fluorimeter used in the experiments, which
is expensive and not portable at all.
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Figure 2: The best working concentration of BSPOTPE
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Figure 3: FL intensity of different HSA concentrations
(ng/mL) in AU with 30µM BSPOTPE
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Figure 4: Linear correlation between FL intensity and HSA
concentration in the range of 0-400 ng/mL

3. Imaging Housing and Camera Calibration
To use BSPOTPE in a smartphone-based urinalysis de-

vice, we propose an alternative solution to measuring FL
intensity by first capturing the image of the fluorescent
emission emerging from the test tube using the smart-
phone camera, then processing the image and analysing
its properties, and finally representing the FL intensity
with the image’s colour luminance property that defines
the amount of emitted light [48].

In order to create a consistent imaging condition, we
have custom-designed and fabricated an imaging housing
using Direct Digital Manufacture technique. It is able to
support a wide range of smartphones with different dimen-
sions and camera positions. Design of the housing was
guided by the following requirements.
• Using affordable and accessible manufacturing tech-
nologies: the device must be usable and marketable
to people with diverse abilities, and can be manufac-
tured locally using technologically appropriate fab-
rication such as Laser Cutting and/or 3D Printing.

• User-friendly: the device should be easy to use by
elderly users without prior experience or training.
Age-related cognitive decline is related to slower and
less intuitive performance with contemporary devices
and interfaces, resulting from a lack of familiarity
and capability. Intuitive interaction therefore in-
volves the use of knowledge gained from other prod-
ucts and/or experiences [49, 50]. Therefore, devices
that people use intuitively are those with features,
functions and/or processes that they have encoun-
tered before.

• Effective, efficient, and satisfactory: a user-centric
self-diagnostic device has little value, unless it can
be easily accessed and used by the product’s tar-
get user. To this end, the device must be effective
(the extent to which a certain goal is achieved), effi-
cient (where the amount of effort and cost required,
is commensurate to the value of the goal achieved)
and provide satisfaction (within a specified context
and user type).

• Adaptable to camera postion: the device caters for
smartphones with different camera positions, such
as in the top-middle or top-left corner.

• Blocking external light: a blackbox design to prevent
external light contamination.

As shown in Figure 5(a), the external housing is a
proof-of-concept optomechanical blackbox installed on the
existing camera unit of the smartphone for holding the
test tubes and for blocking external light. Further il-
lustrated by Figure 5(b), the imaging housing contains
two tube holders and two battery-operated LED lighting
sources with specific optical filters: one tube filled with the
BSPOTPE reagent triggered by a UV lighting source for
testing albumin concentration and the other tube holder
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and lighting source reserved for testing creatinine in the fu-
ture in order to measure albumin-to-creatinine ratio (ACR),
the clinical standard. Controls are provided to align one
of two tube holders together with its lighting source and
optical filter right with the smartphone’s camera in order
to provide a stable and consistent condition for capturing
images from reagent assays.

Battery	Pack
Smart	Phone

(a) Exterior design

Test	Tubes

UV	LED UV	LED

UV	Filter UV	Filter

(b) Interior design

Figure 5: Imaging housing attached to a smartphone

Y	Axis	Control	

Phone	Clamp	
Control	

View	Ports	to	Suit	
Common	Smart	Phones

X	Axis	Control	

Figure 6: Adjustable viewports and clamp controls

To support a variety of smartphones in the market,
the imaging housing is lightweight and adjustable to work
with existing smartphones that have different dimensions
and camera positions through adjustable viewports and
clamp controls, as shown by Figure 6.

To further ensure a consistent imaging condition across
different smartphones, we calibrate their cameras by set-
ting the same configuration as follows:

• Setting the image size of 3264x2448 (4:3) (8M).
• Choosing a low ISO of 200/100 to avoid noise in or-

der to capture a high quality image under low light
conditions [51]. ISO controls the sensitivity of a cam-
era’s sensor.

• Set Auto White Balance (AWB) into Daylight to
preserve the colour response as a constant [52, 53].
AWB algorithms try to account for changes in human
visual sensitivity under different ambient illuminant
conditions [54].

• Turning off High Dynamic Range (HDR). HDR is
used to increase the span between shadows and high-
lights in an image [55].

4. Image Processing and Analysis
After obtaining the images from a smartphone equipped

with the housing, we need to decide which method should
be used to transform the visible electromagnetic spectrum
(colour) into a digital signal. In other words, we need to
choose the best model to represent the colour intensity that
well responds to the FL intensity. The human visual sys-
tem often perceives colours by brightness attributes while
a computer can describe a colour by using the RGB (Red,
Green, Blue) model [56]. However RGB is not the best
way to represent images in the real world as it is psycho-
logically non-intuitive and perceptually non-uniform [57].
We therefore choose the HSL (Hue, Saturation, Lightness)
model as it is cognitive and intuitive for humans. It is bro-
ken down according to physiological criteria: hue refers to
the pure spectrum colour and corresponds to the prevailing
colour as perceived by a human, saturation refers to the
proportional purity, and luminance refers to the amount
of light in a colour [58]. We are especially interested in
the luminance (i.e. intensity) of a particular colour in the
captured image as it corresponds to the FL intensity we
need to measure. The process of transforming an image to
retrieve a colour luminance value is described as follows.

1. Identify a region of 32× 32 with uniform and homo-
geneous colour within the centre of the image.

2. Transform the RGB colour space of the selected re-
gion into the HSL colour space.

3. Calculate the mean values of the intensity band of
the HSL colour space from the selected region.

4. Retrieve the mean lightness value from the HSL colour
space to represent the luminance colour band of the
region.

However, before we can retrieve the luminance values
of images taken by different phones, it is worth noting
that image colours captured by one camera are likely dif-
ferent from those by another camera for the same scene.
This problem even occurs for the same type of smart-
phones [59]. Therefore, cameras of both different and same
models cannot exhibit substantially consistent colour re-
sponses and the differences can lead to considerable er-
rors in scene interpretation [60]. This issue is essentially
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related to the diversity of camera sensors used by dif-
ferent phones to capture images as well as to the differ-
ent gamma values used by smartphone software to com-
pensate and correct the errors caused by the non-linear
response of modern CMOS (complementary metal-oxide-
semiconductor) image sensors [61].

Image Processing and Analysis

Image 
Transformation

Image Blind Inverse 
Gamma Correction

Colour 
Calibration

Modelling Correlation

K-fold Cross Validation

end

start

Data Collection
Conduct urine tests
Calibrate camera hardware
Capture urinanalysis images 

Principle Component Analysis

Figure 7: The imaging processing and analysis process

To address this issue, we propose an imaging process-
ing and analysis process as illustrated in Figure 7, which
starts with data collection by first calibrating camera hard-
ware and then capturing urinalysis images from the urine
tests. After capturing a sequence of urinalysis images cor-
responding to different albumin concentration levels, the
process proceeds to image processing and analysis consist-
ing of a series of sub-processes in the order of colour cali-
bration, image blind inverse gamma correction, and image
transformation. The final stage of the process is to model
a relationship between image luminance values and HSA
concentration levels through a modelling technique such
as Principle Component Analysis (PCA) or K-fold cross-
validation.

4.1. Colour Calibration
A more accurate improvement must be applied to im-

ages captured by the already calibrated cameras. How-
ever, the effect of software improvement must be kept to
a minimum in order to avoid amplifying noise, clamping
and colour space distortion errors. Three different post-
processing methods are found useful to improve the re-
sults, including linear least squares matching, 3x3 RGB
to RGB linear transform, and general polynomial trans-
form. A 3x3 RGB to RGB linear transform is one of the
common post-processing methods used to account for the
inter-channel effects [60]. It transforms the 24 colour sam-
ples of a camera image into the parallel colour samples of
a target image. The following matrix is the key solution

to the over-constrained matrix system:
−→
I1−→
I2
· · ·
−→
I24


24×3

×

trr trg trb
tgr tgg tgb
tbr tbg tbb


3×3

'


−→
T1−→
T2
· · ·
−→
T24


24×3

,

which can be rewritten as a linear system below:

−→
I1

−→
O3

−→
O3−→

O3
−→
I1

−→
O3−→

O3
−→
O3

−→
I1−→

I2
−→
O3

−→
O3−→

O3
−→
I2

−→
O3−→

O3
−→
O3

−→
I2

· · · · · · · · ·
−→
I24

−→
O3

−→
O3−→

O3
−→
I24

−→
O3−→

O3
−→
O3

−→
I24


72×9

×



trr
trg
trb
tgr
tgg
tgb
tbr
tbg
tbb


9

'


−→
TT1−→
TT2
· · ·
−→
TT24


72

⇔ A×−→t '
−→
T ⇔' Pinv(A)×

−→
T . (1)

The matrix elements are grouped into vectors as fol-
lows:

1. The first vector denotes the colour of camera image
samples in the format of

−→
I = [Ir, Ig, Ib],

2. The second vector denotes the colour for target im-
age sample in the format of

−→
Ts = [Trs, Tgs, Tbs], and

3. The third vector denotes the 3-component null vec-
tor in the format of

−→
O = [0, 0, 0].

In addition, txy is the idiom that specifies how much
the input from colour channel x contributes to the out-
put of colour channel y. Singular value decomposition is
used to compute the pseudo-inverse of matrix A and back
substitution is used to compute the solution −→t [60].

Despite the fact that the RGB to RGB matrix trans-
form calculates for inter-channel effects, it does not have a
translation component and does not compensate for non-
linearities in the response functions. To account for these
remaining shortcomings, we devise a general polynomial
transform, where the 3×3 RGB to RGB transform is gen-
eralised to a non-linear transform by introducing higher
degree terms to recompense for the nonlinearities in the re-
sponse functions and a bias term to allow for translations.
The general formula for colour c ∈ {r, g, b} of sample s is:

D∑
k=1

(trckIr
k
s + tgckIg

k
s + tbckIb

k
s) + tc0 ' TCs

,

where D is the degree of the polynomial approximation;
Irks , Igks , and Ibks are the red, green and blue values for
camera image sample s, raised to power k respectively; TCs

is the value for colour channel c of target image sample s;
txck is the polynomial coefficient of the kth order term
that designates how much the input from colour channel
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x ∈ {r, g, b} subscribes to the output of colour channel c;
and tc0 is an additional term that allows translating the
output of channel c.

Our experiments have shown that D = 2 is sufficient to
fulfil the level of accuracy required by our application. For
D = 2, we can re-write Equation 1 for all the 24 samples
of the colour chart in an equivalent matrix form as follows:

Ir1 Ir21 Ig1 Ig21 Ib1 Ib21 1
Ir2 Ir22 Ig2 Ig22 Ib2 Ib22 1
· · · · · · · · · · · · · · · · · · 1
Ir24 Ir224 Ig24 Ig224 Ib24 Ib224 1


24×7

×
[
trc1 trc2 tgc1 tgc2 tbc1 tbc2 tr0

]T
7
'


TC1

TC2

· · ·
TC24


24

⇔ B ×−→tc '
−→
Tc ⇔

−→
tc ' Pinv(B)×

−→
Tc, c ∈ {r, g, b}.

Each matrix equation is solved by using singular value
decomposition in order to compute the pseudo-inverse of
matrix B and back substitution to compute the 3 solutions−→
tr ,
−→
tg , and −→tb . It is worth mentioning that matrix B

remains the same for all three-colour channels; therefore,
there is a need to perform the inversion of matrix only
once [60].

Algorithm 1 describes the image calibration process for
one smartphone. Images captured by each smartphone
needs to be individually calibrated.

Algorithm 1: ImgCal(img_rgb, img_src) :
img_cal
Require: img_rgb: vector of standard RGB colour

images captured by the smartphone
Require: img_src: vector of urinalysis images captured

by the smartphone
Ensure: img_cal: vector of calibrated urinalysis images

for the smartphone
1: cal_mat← img_rgb× std_rgb {std_rgb: vector of

standard RGB colours}
2: for (∀Ii ∈ img_src) do
3: img_cal[i]← Ii × cal_mat
4: end for
5:
6: return img_cal

4.2. Blind Inverse Gamma Correction
The value of γ is typically determined experimentally

in the absence of any calibration information or knowledge
of the imaging device, for example, downloading an image
from the web. Moreover, most commercial digital cameras
dynamically vary the amount of gamma. The blind in-
verse gamma correction technique is used to estimate the
amount of gamma correction. The basic tactic exploits the
fact that gamma correction introduces specific higher-order
correlations in the frequency domain. These correlations
can be detected using tools from polyspectral analysis. The

amount of gamma correction is then determined by min-
imising these correlations [62]. The method assumes that
gamma correction can be modeled with the one-parameter
family of functions: where g(u) = uγ indicates the image
pixel colour intensity. It is worth mentioning that rescaling
intensity into a new range of [0, 1] does not affect the bico-
herence. As only the gamma corrected images are available
in our application, the main task is to determine the value
of γ. To this end, we apply a range of inverse gamma val-
ues to each image and select the value that minimises the
third-order correlations as in Equation 2.

π∑
w1=−π

π∑
w2=−π

|b̂(w1, w2)|, (2)

where b̂(w1, w2) is the bicoherence, which is defined in
Equation 3:

b̂(w1, w2) =
| 1N

∑
k Yk(w1)Yk(w2)Yk(w1+w2)|√

1
N

∑
k|Yk(w1)Yk(w2)|2 1

N

∑
k|Yk(w1+w2)|2

. (3)

To avoid excessive demand of memory when computing
an image’s full four-dimensional bicoherence, our analysis
is bounded to the one-dimensional horizontal scan lines of
an image. One example to get the bicoherence for each
1-D image slice y(n) is computed by dividing the signal,
which has one dimension, into overlapping segments each
of which has a length of 64 with an overlap of 32 pix-
els. A 128-point windowed DFT (Discrete Fourier trans-
form) YK(w) is estimated for each segment from which
the bicoherence is estimated, that is b̂(w1, w2) as in Equa-
tion 3. Also, there should be a balance between the seg-
ment length and the number of segments. Empirically, the
parameters have presented good compromise [62].

Algorithm 2 describes the blind inverse gamma correc-
tion process.

4.3. Modelling the Correlation
We first performed experiments using BSPOTPE bio-

probe for urine specimens with albumin concentration lev-
els in the range of 0-700 ng/mL (0-70 mg/dL) and captured
the urinalysis images using three different smartphones:
iPhone 6s (iP), Galaxy Note 4 (N4), and Galaxy S3 (S3).
Figure 8 shows the urinalysis images captured by the 3
smartphones.

… iPhone 6s (iP)

… Galaxy Note 4 (N4)

… Galaxy S3 (S3)

Figure 8: Images of different albumin concentration levels
taken by 3 smartphones

Figure 9(a) shows the relationships between albumin
concentration levels and the intensity values of the original
images, while Figure 9(b) shows the relationships between
albumin concentration levels and the intensity values of
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Algorithm 2: BInGamma(img_cal) : img_big
Require: img_cal: vector of calibrated urinalysis

images
Ensure: img_big: vector of images after blind inverse

gamma correction
1: range← [0.5 : 0.1 : 2.2]
2: for (∀Ii ∈ img_cal) do
3: IHSLi ← RGBtoHSL(IRGBi )
4: ILi ← Normalise(ILi ) {rescale L band to [0,1]}
5: for (∀Sj ∈ Ii) do
6: for (∀γ ∈ range) do
7: bic← bispec(S

1/γ
j ) {Calculate bicoherence}

8: end for
9: B(γ)← mean(bic)

10: end for
11: for (∀k ∈ vector(B)) do
12: ind← min(B(k))
13: γest ← range(ind) {Calculate estimated gamma

based on the rank of min(B)}
14: end for
15: γest ← mean(γest)
16: ILi ← (ILi )

1/γest {Apply γest as an inverse gamma
to ILi }

17: IRGBi ← HSLtoRGB(IHSLi )
18: img_big[i]← IRGBi

19: end for
20:
21: return img_big

the colour-calibrated images. All the curve fittings in Fig-
ure 9 reveal a power correlation. While the curves for the
original images show considerable discrepancy, those for
the colour-calibrated images display reasonably consistent
results as listed in Table 1, where N4’s curve is slightly
better than the other two and subsequently chosen to pro-
ceed with blind inverse gamma correction. The results
have confirmed that the colour calibration process is able
to tackle the diversity of smartphone cameras.

Table 1: Curve fittings for the 3 smartphones

Phone MSE Variance St. Dev. R2(y = axb)
iPhone 6s 0.0006 0.0180 0.1252 0.9877
Galaxy N4 0.0009 0.0161 0.1133 0.9914
Galaxy S3 0.0000 0.0212 0.1233 0.9821

After performing blind inverse gamma correction on
the calibrated images from N4, Figure 10(a) shows how
image intensity responds to albumin concentration, while
Figure 10(b) further depicts a linear relationship between
the albumin concentration levels and the intensity values
of blind inverse gamma corrected images after performing
Principle Component Analysis (PCA). To verify this lin-
ear relationship, we use K-fold cross validation to model
the correlation, which again exhibits a linear relationship
as shown in Figure 10(c). Figure 10(d) reveals that the
regression models derived independently with the two dif-

(a) Concentration vs. intensity of original images

(b) Concentration vs. intensity of colour-calibrated
images

Figure 9: Relationships between albumin concentration levels
and the intensity values

ferent techniques are almost identical.

No Concentration
(PCA)

Intensity
(PCA)

Concentration
(K-fold)

Intensity
(K-fold)

1 1.953e+01 0.000627268 19.531 0.0006
2 2.34e+01 0.001134885 23.438 0.0011
3 3.13e+012 0.002149857 31.25 0.0022
4 3.91e+01 0.003164959 39.063 0.0032
5 9.38e+01 0.010270156 93.75 0.0103
6 156.25 0.018390455 156.25 0.0184
7 250 0.030570903 250 0.0306
8 375 0.046811501 375 0.0468
9 625 0.079292696 625 0.0793

Table 2: Random data predicted by PCA and K-fold models

Table 2 further lists some random data predicted by
the two regression models. The results have confirmed
that the blind inverse gamma correction process is able to
tackle the non-linear correspondence between the image
intensity values and the albumin concentration levels.
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(a) Concentration vs. intensity of blind in-
verse gamma corrected images of N4
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(b) Principle component analysis (PCA)
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(c) K-fold cross-validation

0 100 200 300 400 500 600 700
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PCA

K-fold
--

(d) PCA vs. K-fold

Figure 10: Relationship between albumin concentration levels
and intensity values after blind inverse gamma correction

5. Urinalysis Mobile Application
A urinalysis mobile application is specially designed to

complete the uTester device. Three design considerations
were taken to address the device-agonistic issue: a) the
application needs to be cross-platform including both An-
droid and iOS, b) the application has a low requirement
for smartphone hardware including CPU, GPU, RAM, and
storage, and c) the application adopts a minimal user in-
terface design so that it does not require too much screen
real estate and is easy to use by elderly users.

uTester Doctor App

uTester Patient App

Flask

OpenCV

uTester Web Service

(1)

(2)

(3)

(4)

⟺
(4)

Telemedicine

Te
le

m
ed

ic
in

e

Urinalysis Engine

(5)

(5)

Figure 11: Architecture of the uTester mobile application

The final design is a hybrid thin mobile client - uTester
Patient App - that is connected to a uTester Web Service
provisioned by a cloud through Infrastructure as a Service
(IaaS). The Patient App has two main functions of urinaly-
sis and telemedicine. Figure 11 illustrates the architecture
and workflow of the mobile application.

1. The uTester Patient App captures the test images
and sends them to the Web Service.

2. The uTester Web Service receives the images, checks
their validity, stores them into the database, and in-
vokes OpenCV (Open Source Computer Vision Li-
brary) [63] to process and analyse the images (as dis-
cussed in Section 4) before passing on the retrieved
image intensity values to the Urinalysis Engine. The
Web Serice is provided by Flask [64], a micro web
framework built in Python for fast development of
scalable web applications. OpenCV is a library of
programming functions aimed at real-time computer
vision.

3. The Urinalysis Engine uses the prediction model to
derive the albumin level in urine and passes the re-
sult on to Flask. Figure 12 shows a linear predic-
tion model (R2 = 0.9856, SSE = 0.0001578, and
RMSE = 0.002809) with internals:

x = y−a
b ,
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where y is the image intensity value, x is the pre-
dicted albumin level in urine, and a = 0.0001299 ∈
[0.0001226, 0.0001372] and b = −0.00191 ∈ [-0.003502,
-0.000319] are the co-efficients (with 95% confidence
bounds) derived from the training data.

0 100 200 300 400 500 600 700
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0.01

0.02
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0.07
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0.09
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Data
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Figure 12: Linear prediction model with internals

4. Flask sends the test result in JSON (JavaScript Ob-
ject Notation) format back to the Patient App, which
displays (as shown in Figure 13(a)) it to the patient
conducting the test. The result is also sent to the
patient’s doctor.

5. The doctor uses the uTester Doctor App to perform
various telemedicine activities [65], for instance, elec-
tronic consultation [66] where the Doctor App in-
teracts with the Patient App via the uTester Web
Service.

This design has a number of advantages. First, the na-
tive mobile client is simple, easy to develop, and does not
require much hardware resource. Second, the urinalysis
application is adaptable to changes as new image process-
ing and analysis techniques and more accurate urinalysis
prediction models can be adopted without the need to up-
date the native mobile client. Third, the urinalysis appli-
cation is scalable with the growing number of images and
test results. Last, the urinalysis application is resilient
to the loss or replacement of smartphone as all the test
images and results are securely stored in the cloud. An
alternative design would be a fat native mobile applica-
tion into which all the processing is built and all the data
is stored, making it extremely heavyweight, inflexible and
vulnerable to device agnosticism.

Alternative to a thin native mobile client is a pure web
client, which is naturally cross-platform, however this is
not a viable approach as a web client cannot access a
smartphone’s camera. Therefore, the mobile client is im-
plemented separately for Android and iOS devices; never-
theless, Xamarin platform [67] has been used to develop
the native mobile clients in order to allow for maximum
code sharing. The Doctor App can be implemented as a
pure web client if it does not need to access the smart-
phone’s built-in sensors or peripheral devices. In contrast,

if electronic consultation requires audiovisual communica-
tion between the doctor and the patient, it would have to
be implemented as a native mobile client. However, the
Doctor App is beyond the scope of this paper.

(a) Displaying the result (b) Viewing the trend

Figure 13: The minimal user interface of the uTester native
mobile client

Figure 13(a) shows the minimal user interface of the
mobile client displaying the current urinalysis result. It
uses the traffic light metaphor to visualise the result: red
denotes 2+ microalbuminuria (>100 mg/dL), yellow de-
notes 1+ microalbuminuria (30-100 mg/dL), green denotes
trace (<30 mg/dL), and grey denotes no trace, followed by
the explanation notes elaborating the current test result.
All test images and results are timestamped and stored
in the cloud so that the patient can view their urinaly-
sis trend as shown in Figure 13(b). Table 3 (referring to
Figure 12) shows 3 examples of smartphone-based urinal-
ysis. In particular, for the image intensity of 0.049021, its
alumin concentration is 39.20± 5.07 mg/dL, which corre-
sponds to 1+ microalbuminuria, as shown in Figure 13(a).

Table 3: Examples of smartphone-based urinalysis

Image
Intensity

Albumin Level
(mg/dL)

Lower
Bound

Upper
Bound

Microalbuminuria
Grading

0.010303 9.3998 4.6206 14.1511 Trace
0.026154 21.5999 16.8449 26.4094 Trace
0.049021 39.2001 34.2989 44.2745 1+

6. Conclusions and Future Work
This paper has presented the design and development

of a smartphone-based urinalysis device that has the abil-
ity for CKD patients themselves to conduct rapid and reli-
able quantitative diagnosis of albumin in urine, focusing on
addressing the device agnosticism issue. The proposed so-
lution comprises a custom-designed imaging housing that
can be attached to smartphones of varying dimensions and
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camera positions, an imaging processing and analysis pro-
cess that can retrieve accurate properties (comparable to
those used by the training dataset) of images captured
by different smartphones, and a specially designed cross-
platform urinalysis mobile application. Preliminary eval-
uation of the device has confirmed the effectiveness of the
proposed solution to device agnosticism and the viability
of a smartphone-based device for POC quantitative uri-
nalysis.

We are conscious of the limitations of the current uTester
prototype and the underpinning techniques. There is still
a long way to go before the device is ready to be used
by patients. First is regarding the BSPOTPE bioprobe,
which can be used to test up to 1+ microalbuminuria.
Work is ongoing to synthesise an optimal BSPOTPE that
can measure up to 4+ microalbuminuria. Furthermore, as
the albumin concentration in a urine sample is affected by
hydration, it has become customary to measure albumin-
to-creatinine ratio (ACR) as creatinine excretion is consid-
ered to be fairly constant throughout the day [16]. There-
fore, we are also in the process of synthesising AIE-based
creatinine bioprobe.

Second is regarding the imaging housing. More work
is required to make it more affordable, portable, and us-
able to older people, the main source of CKD patients.
Prior cognitive psychology research into user centred de-
sign, investigating product and interface usability, have all
found that prior experience is the leading contributor to
intuitive use. Therefore device fabrication and usability
should be designed in such a way that its use is familiar
and where the learning of new and unfamiliar tasks can
be minimised [68, 50]. The last is regarding a system-
atic evaluation of the device, including testing with more
brands of smartphones, verifying the device’s test accu-
racy first through controlled artificial urine samples and
then through real urine samples by comparing its test re-
sults against laboratory test results [38]. The evaluation
also includes usability study of the device such as the er-
gonomics of the device, the usability of the mobile appli-
cation interface, and the human factors involved in using
the device, including physical, physiological, psychological,
emotional, and cognitive factors.
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