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Abstract 

The aim of this study is to compare the predictive strenghtness of different diagnostic areas in 

determining landslide susceptibility using frequency ratio (FR), statistical index (SI), and 

analytic hierarchy process (AHP) models in a catchment from the northeastern part of Romania. 

Scarps (point), landslide areas (polygon), and middle of the landslide (point) have been tested 

and checked in regards to their performance. The three statistical models have been employed to 

assess the landslide susceptibility using eleven conditioning factors (slope angle, elevation, 

curvature, lithology, precipitations, land use, topographic wetness index (TWI), landforms, 

aspect, plan curvature and distance to river). The three models were validated using the receiver 

operating characteristic (ROC) curves and the seed cell area index (SCAI) methods. The 

predictive capability of each model was established from the area under the curve (AUC), for 

FR, SI and AHP; the values are 0.75, 0.81 and 0.78 (using polygon as diagnostic area), 

respectively. Among the three methods used, SI had a better predictability. When it comes to the 

predictability values regarding the diagnostic areas, the landslide area (polygon) proves to have 

the highest values. This results from the entire surface of the landslide being taken into account 

when validating the data. Approximately 70% of the Neolithic sites are located in areas with high 

and very high susceptibility to landslides, meaning that they are in danger of being destroyed in 

the future. The final susceptibility maps are useful in hazard mitigation, risk reduction, a 

sustainable land use planning, evaluation of cultural heritage integrity, and to highlight the most 

endangered sites that are likely to be destroyed in the future. 

 

Keywords: frequency ratio, analytic hierarchy process, GIS, Neolithic 
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1. Introduction 

Landslides represent one of the most devastating geomorphological processes when it 

comes to the natural change and associated material losses. Hilly areas, especially those located 

at the transition between plain and plateau, represent areas with a high probability of developing 

slope processes (e.g. landslides) (Guzzetti et al., 2005). To comprehend the spatial pattern behind 

a landslide, a set of landslide environmental and triggering factors is needed. According to van 

Westen et al. (2008) spatial data include environmental elements (aspect, slope, curvature), soil 

characteristics (parent material, soil classes and types), geology (faults, rock type), 

geomorphology (geomorphological units, terrain mapping units), hydrology (distance to stream), 

and land-use (pastures, wetlands, orchards, non-productive lands) (Zhang et al., 2016). 

Landslide susceptibility represents the likelihood of a landslide occurring in an area, taking 

into account the local environment and triggering factors (Guzzetti et al., 2005). It estimates 

“where” a landslide can happen without implying “when”. In other words, the estimation of 

susceptibility is the evaluation of the level of instability in an area without considering the 

probability of landslide occurrences in absolute and temporal terms (Guzzetti et al., 2016). 

During the last decade, at an international level, an increasing trend exists in applying statistical 

modelling in the field of geosciences to a wide range of natural disasters, such as flooding (Cao 

et al., 2016), rock falls (Shirzadi et al., 2017), fires (Hong et al., 2017), avalanches (Kumar et al., 

2016); others are applied for the assessment of human-induced modifications to the landscape 

(Al-sharif and Pradhan, 2016), cultural heritage (Nicu 2016a), water resources management 

(Mousavi et al., 2017), waste management (Taboada-Gonzáles et al., 2014), and renewable 

energy (Ahmad and Tahar, 2014). 
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This study aims to employ landslide susceptibility in the field of cultural heritage 

(Neolithic archaeological sites from Bahluet river basin, northeastern Romania). The Bahluieț 

river basin was chosen because of the high density of Neolithic settlements. A significant 

number of studies deal with the assessment of landslide susceptibility; to do so, four significant 

steps have been identified: 1) mapping previous landslides from the study area, 2) mapping 

certain geological/geomorphological environmental factors that could be directly related with 

slope failures, 3) assessing the correlation of those factors with landslides, 4) individualise the 

study area into units with different landslide susceptibility and validation of the landslide 

susceptibility maps by using receiver operating curves (ROC curves) and seed cell area index 

(SCAI) (Clerici et al., 2002; Zhang et al., 2016). Another two points could be added towards the 

approach on cultural heritage: 5) identifying which of the cultural heritage sites are located in 

areas with high and very high susceptibility to landslides, 6) analysing the most important sites 

from a geomorphological, geophysical, and archaeological point of view. 

Statistical modelling of natural processes became a necessity and a desideratum because more 

and more studies use statistical modelling to approximate reality and to make predictions from 

this approximation. Frequency ratio (FR), analytic hierarchy process (AHP), and statistical index 

(SI) are among the most common methods used to predict landslide susceptibility (Althuwaynee 

et al., 2014; Nicu, 2018a). The qualitative and quantitative assessment of landslide susceptibility 

made great progress over the last decade because of an increase in computing capacity and 

programming (Guzzetti et al., 1999; Chen et al., 2016; Aburas et al., 2017), as well new 

measurement techniques (Choi et al., 2012; Romanescu et al., 2012). 

Qualitative methods, based on the opinion of an individual or a group of experts, are used on 

landslide inventory and historical materials: experts identify landslides, determine the main 
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conditioning factors, and evaluate sites with similar environmental characteristics. One of the 

most common qualitative methods is AHP (Saaty, 1977; Myronidiset al., 2016; Wu et al., 2016) 

and weighted linear combination (WLC) (Akgün et al., 2008). The limitation of this method, 

however is related to the subjective judgement of the expert(s). To avoid the limitations related 

to this method in mapping landslide susceptibility, they are used together with one or more 

quantitative methods (Pourghasemi et al., 2013; Althuwaynee et al., 2014; Shahabi et al., 2014; 

Chen et al., 2016; Patriche et al., 2016; Zhou et al., 2016; Abedini et al., 2017; Pawluszek and 

Borkowski, 2017; Nicu, 2018a). 

Quantitative methods employ mathematical models to estimate the probability of slope failure in 

a certain area (Guzzetti et al., 1999). The key to a reliable model is a complete inventory of 

present landslides, along with the past landslides (Samia et al., 2017). Quantitative methods 

include logistic regression (LR) (Dailey and Fuhrmann, 2017), binary logistic regression (BLR) 

and stochastic gradient treeboost (SGT) (Lombardo et al., 2015), frequency ratio (FR), statistical 

index (SI) and weights of evidence (WOE) (Razavizadeh et al., 2017), WOE, fuzzy logic and FR 

(Vakhshoori and Zare, 2016), FR and evidential belief function (EBF) (Zhang et al., 2016), FR 

and index of entropy (IOE) (Youssef et al., 2014), FR, LR and artificial neural networks (ANN) 

(Pradhan and Lee, 2010), improved self-organizing linear output (SOLO), support vector 

machine (SVM) and LR (Lin et al., 2017), LR, AHP and combined fuzzy and support vector 

machine (F-SVM) (Meng et al., 2016), etc. 

As described above, multiple studies apply statistical modelling to landslide susceptibility; 

studies are very limited, however, in applying statistical modelling to assess landslide 

susceptibility on cultural heritage sites (Klimeš, 2013; Sdao, 2013; Nicu 2017a; Nicu, 2018a, b). 

Those that exist cover small catchments or punctual case studies. The spread and the high density 
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of cultural heritage sites (as it is in the northeastern part of Romania with Neolithic settlements) 

requires a regional scale landslide susceptibility study (Nicu 2016b). Cultural heritage around the 

world is in danger (Nicu 2017b) from natural hazards and anthropic pressure (Nicu 2017c). Sites 

located in the Moldavian Plateau of northeastern Romania are no exception (Niculiță and 

Mărgărint, 2017). 

Among European states, Romania has one of the highest landslide-prone areas (Bălteanu et al., 

2010); the Moldavian Plateau (Fig. 1a) has been recognised as being most susceptible to 

landslides. Moldavian Plateau, with a total area of 4534.7 km
2
, has a density of 1.02 landslides 

per km
2
, (Niculiță et al., 2016). The studies regarding landslide susceptibility in Romania has 

highlighted a large potential (Mărgărint et al., 2013; Armaș et al., 2014; Mihai et al., 2014; 

Patriche et al., 2016; Roșca et al., 2016). 

This study aims to test and compare the predictive variability of different diagnostic areas (scarps 

– point, landslide areas – polygon, and middle of landslide – point) in determining landslide 

susceptibility using FR, SI, and AHP models in a catchment from northeastern part of Romania. 

The performance of each diagnostic area was tested; the validation results and the predictability 

strenghtness were analysed and discussed. Previous studies regarding the role of diagnostic areas 

in the assessment of landslide susceptibility mapping have shown that using landslide scarp 

offers better results than of using landslide area (Xu et al., 2012; Rotigliano et al., 2011). Both 

qualitative and quantitative methods will be employed. 

The final landslide susceptibility maps will be useful for future cultural heritage preservation and 

protection, risk reduction, hazard mitigation, and sustainable land development policies at the 

regional scale. Three important Neolithic sites have been analysed in detail. For two of them, a 

geophysical survey was employed to determine the precise surface of the settlement (one of them 
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is a newly discovered site). The year 2018 is designated the European Year of Cultural Heritage, 

therefore, our efforts must be redirected towards the present state and evaluation of cultural 

heritage, and future preservation towards natural hazards. The study undertaken by Margottini et 

al., 2015, has shown the importance of modern monitoring techniques in the assessment and 

proposal of ecosystem-based mitigation measures. 

 

2. Study area 

Bahluieț river basin is located in the northeastern part of Romania (Fig. 1b) and has a 

surface of 550 km
2
. Bahluieț River has a length of 50 km, an average slope of 13%, sinuosity 

coefficient of 1.23, and average catchment altitude of 163 m. (Romanescu and Stoleriu, 2017). 

Lithologically, the Bessarabian deposits (clay marls with intrusions of sand) of Sarmatian age 

dominate the basin. The high friability and fine granulation of these deposits have led to the 

occurrence of geomorphological processes, especially landslides. Quaternary deposits of 

Pleistocene age are located within the Valea Oii catchment and at the junction of Bahlueț River 

into Bahlui River; Holocene deposits are located along the Bahlueț River and stretch upstream 

Goești, Sinești, and Hărpășești river basins (Macarovici and Turculeț, 1956) (Fig. 2a). 

The main relief sub-units of Bahlueț basin are highlighted in Fig. 1b. From a climatic point 

of view, the area belongs to the continental temperate with excessive influences, which is 

manifested through periods of drought and heavy rainfall. Precipitation ranges between 500 – 

700 mm/year, with higher values in the western plateau area and Coasta Iașilor, and lower in the 

middle part of the basin; the average annual temperature is between 8.3 – 9.6 °C (Minea, 2012). 

Within the Bahlueț basin, the area occupied by landslides represents 23% of the total surface, 
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being mainly distributed south of Bahlueț River, especially in Dumești Hillocks and Coasta 

Iașilor. Within the area are two towns (Tîrgu Frumos and Podu Iloaiei) and 52 villages (Fig. 1b). 

 

 

Figure 1. a. Location of Moldavian Plateau, b. Geographic location of the study area in Romania, 

Iași County context. Highlighted are the main geographical sub-units and cities 

 

3. Archaeological background 

Neolithic sites from the northeastern part of the country represent important cultural 

heritage assets (Monteiro et al., 2015). Bahluieț basin represents the typical landscape in which 

Neolithic culture could flourish; representative for this part of the country is the Cucuteni 
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culture, one of the most iconic prehistoric cultures of Eastern Europe (Monah, 1985; Lazarovici, 

2009). Cucuteni culture is part of the well-known Cucuteni-Ariușd-Trypillia Cultural Complex 

(covering approximately 350,000 km
2
) on the territory of today Romania, Republic of Moldova 

and Ukraine (Monah, 1985; Lazarovici, 2009; Nicu, 2016b; Asăndulesei, 2017). 

 

 

Figure 2. a. The location of testing and training data used for the LSI. Neolithic sites are marked 

with purple dots. b, c, d. Examples of Neolithic sites affected by landslides: b. The site of 

Giurgești (Dealul Mănăstirii / Chetrosu, no.18), c. The site of Costești (Cier / La Școală, no. 98), 

d. The site of Dealul Mare (Filiași / Dealul Boghiu), no. 24 
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High relief (platforms, hills, terraces) represented the main landform in determining the 

placement of settlements (Monah, 1985; Nicu, 2016b); also they did settle on rivers terraces, 

alluvial fans, landslides located in the river proximity on low to medium altitudes and good 

visibility (Boghian et al. 2016). The total number of Neolithic settlements within Bahlueț river 

basin is 107 (Fig. 2a). A higher density of settlements occurs in the upper half of the basin. In the 

lower half of the basin the settlements did not have a good inter-visibility because the territory 

was highly forested (this means smaller surfaces to be used for agricultural purpose – which was 

the main occupation of prehistoric people) (Asăndulesei, 2017). 

The culture was named after the eponymous settlement from Băiceni village – Cucuteni 

Cetățuia and appeared in western and central Moldavia after the phase III of Precucuteni culture; 

this site is very important because of its framing as a geoheritage site of the national level 

(Niculiță and Mărgărint 2017). The discovery of Cucuteni Cetățuia settlement in 1884 by the 

folklorist Th. Burda from Iași marked the beginning of archaeological research in the 

northeastern part of Romania (Nicu and Romanescu, 2016). As shown in recent studies, the 

prehistoric people were using the landslide depletion areas as a defensive system (Niculiță et al., 

2016), and they might have been aware of the danger that landslides represented for them (Nicu, 

2018a). 

A few examples of Neolithic sites affected by landslides are given in Fig. 2b, c, d (red lines 

represent the limit of the settlement). One of the main difficulties is the incompleteness of the 

archaeological registry; the sites that are registered could be found in the databases of the 

National Archaeological Registry (RAN), the National Heritage Institute (INP), and the Institute 

of Cultural Memory (cIMEC). 
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4. Methods 

4.1. FR method – represents a quantitative and recognised method to generate 

landslide susceptibility maps with a high accuracy (Choi et al., 2012; Shahabi et al., 2014; 

Vakhshoori and Zare, 2016; Zhang et al., 2016). The method is based on the observed 

relationship between the distribution of landslides and individual landslide-induced factors. To 

determine the frequency ratio for each factor class (with the help of Eq. 1), the ratio between 

landslide occurrence and non-occurrence was calculated (Tab. 1, column 6). 

 

FR = (E / F) / (M / L)       (Eq. 1) 

 

Where E is the number of pixels with the landslide for each factor, F is the total number of 

landslides, M is the number of pixels in the class area, and L is the total number of pixels (Lee 

and Pradhan, 2007). The weights of each factor were obtained and by summarising the weights 

the landslide susceptibility index (LSI) was calculated with the following equation (Eq. 2): 

 

LSI = Σ FRi        (Eq. 2) 

 

Table 1. Frequency ratio and statistical index models for all the conditioning factors 

Conditioning 

factor 

Class No. of 

pixels in 

domain  

Pixels 

% 

Landsli

de 

points 

Landslid

e points 

% 

Frequency 

Ratio (FR) 

Statistica

l Index 

(SI) 

Altitude (m) 50.2 – 100  3,363,707 15.32 1,175 7.69 0.17 -0.32 

101 – 200  14,319,872 65.21 12,150 79.54 0.41 0.02 

201 – 300  2,775,150 12.64 1,525 9.98 0.27 0.22 
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301 – 400  1,412,791 6.43 425 2.78 0.15 -0.62 

> 401  89,623 0.41 0 0 0 - 

Slope angle 

(degrees) 

0 – 3 8,873,175 40.40 150 0.98 0 -0.88 

3 – 7 6,894,280 31.39 3,550 23.24 0.15 -0.04 

7 – 14 4,984,204 22.70 9,375 61.37 0.44 0.36 

> 14 1,209,484 5.51 2,200 14.40 0.40 0.41 

Curvature Concave 385,283 1.75 475 3.11 0.39 0.24 

Flat 21,045,116 95.83 14,150 92.64 0.21 -0.01 

Convex 530,744 2.42 650 4.26 0.39 0.23 

Lithology Sandstone 4,484,871 20.42 1,825 11.95 0.17 -0.23 

Limestone 904,658 4.12 125 0.82 0.06 -0.21 

Clay, sand 13,191,520 60.07 9,300 60.88 0.29 0.04 

Clay 3,380,094 15.39 4,025 26.35 0.49 0.07 

Precipitations 

(mm/year) 

500 – 550 8,512,022 38.76 6,375 41.73 0.31 -0.10 

550 – 600 8,869,166 40.39 6,700 43.86 0.31 0.02 

600 – 650 2,375,521 10.82 1,500 9.82 0.26 0.29 

650 – 700 2,204,434 10.04 700 4.58 0.31 -0.24 

Distance to 

rivers (m) 

< 200 5,691,442 25.92 4,425 28.97 0.21 0.01 

200 – 400 4,960,320 22.59 5,325 34.86 0.29 0.14 

400 – 600 3,950,611 17.99 2,525 16.53 0.17 -0.02 

600 – 800 2,719,905 12.39 1,725 11.29 0.17 -0.06 

800 – 

1000 

1,838,415 8.37 625 4.09 0.09 -0.15 

> 1000 2,800,450 12.75 650 4.26 0.06 -0.19 

Landforms 1 13,718 0.06 0 0 0 0.25 

2 195 0 0 0 0 0.25 

4 281,045 1.28 150 0.98 0.19 0.15 

5 11,409,495 51.95 375 2.45 0.01 -0.75 

6 9,985,547 45.47 14,550 95.25 0.52 0.28 
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7 260,802 1.19 200 1.31 0.27 0.19 

9 177 0 0 0 0 0.34 

10 10,164 0.05 0 0 0 0.25 

TWI -7 – -2 568,058 2.59 250 1.64 0.24 0.02 

-1 – -0.1 44,494 0.20 25 0.16 0.31 -0.42 

0 – 30 18,542,604 84.43 14,975 98.04 0.44 0.05 

> 30 2,805,987 12.78 25 0.16 0 -0.86 

Aspect Flat 3,463,117 15.77 875 5.73 0.04 -0.21 

N 3,664,609 16.69 3,100 20.29 0.13 0.18 

NE 3,457,392 15.74 2,500 16.37 0.11 0.04 

E 2,211,100 10.07 850 5.56 0.06 -0.22 

SE 2,237,844 10.19 650 4.26 0.04 -0.42 

S 2,259,101 10.29 1,125 7.36 0.08 -0.26 

SW 2,359,786 10.75 4,175 27.33 0.27 0.20 

W 1,201,188 5.47 1,050 6.87 0.13 0.15 

NW 1,107,006 5.04 950 6.22 0.13 0.13 

Plan 

curvature 

< - 0.56 181,186 0.83 150 0.98 0.34 0.23 

- 0.55 – 

0.19 

20,506,758 93.38 13,900 91 0.27 -0.02 

> 0.20 1,273,199 5.80 1,225 8.02 0.39 0.21 

Land use 1 6,327,670 28.81 4,350 28.48 0.19 0.14 

2 1,992,326 9.07 2,575 16.86 0.36 0.22 

 3 9,577,405 43.61 2,875 18.82 0.08 -0.51 

4 4,063,742 18.5 5,475 35.84 0.37 0.22 

 

4.2. SI method – is a bivariate statistic approach which was introduced by van Westen 

(1997) with the purpose of producing landslide susceptibility models (Pourghasemi et al., 2013; 

Zhang et al., 2016). The method, recognised for its simplicity and robustness, is recommended 
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for large areas and where the spatial data is limited (Poli and Sterlacchini, 2007). The basic 

principle of this method is the distribution of landslides in each factor class and is calculated with 

the help of the following equation 

 

SI = ln (Fij / F) = ln ((Lij / LT) / (Pij / PL))    (Eq. 3) 

 

where SI is the weight of a certain class i of factor j; Fij represents the landslide density within 

class i of the factor j. F represents the total landslide density in the area of interest; Lij is the 

number of landslides in a certain class i of the factor j. LT represents the total number of 

landslides; Pij is the number of pixels in a certain class i of factor j. PL represents the total 

number of pixels in the study area. 

 Each conditioning factor was combined with the landslide map, in this way the weighting 

value (SI) was obtained for each parameter class (Tab. 1, column 7). Positive values show a high 

incidence of landslide occurrence, whereas negative values indicate a very low probability of 

landslide occurrence. 

 

4.3. AHP method, one of the multiple criteria decision making methods, was 

established by Saaty in the 1970s (Saaty, 1970). AHP, a qualitative method, is widely used in 

studies dealing with the evaluation of landslide susceptibility (Myronidis et al., 2016; Wu et al. 

2016; Pawluszek and Borkowski, 2017), or is used along with other quantitative methods 

(Pourghasemi et al., 2013; Althuwaynee et al., 2014; Shahabi et al., 2014; Chen et al., 2016; 

Patriche et al., 2016; Zhang et al., 2016; Abedini et al., 2017). This method is easy to use, 

provides measures of judgement consistency, and simplifies preference ratings among criteria 
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using pairwise comparisons or the reciprocal of these; the factors are converted into quantitative 

methods based on expert opinion (Saaty, 2000). The weights of the factors were obtained based 

on expert analysis, using scoring criteria based on significance. After the normalised weights are 

calculated for each factor (Table 2), the consistency is checked by calculating the consistency 

ratio (CR). To calculate CR, the consistency index (CI) has to be determined in advance with the 

help of Eq. 4. 

 

CI = λ – n / n – 1 = 11.79–11/11-1 = 0.79/10 = 0.079  (Eq. 4) 

 

Where λ represents the average number of the consistency measure obtained in Tab. 1, column 

14, and n is the number of criteria used in the study. 
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Table 2. Derivation of weights for each conditioning factor with the help of AHP 

 

Factor Slo

pe 

Elevati

on 

Curvat

ure 

Litholo

gy 

Precipitati

ons 

Lan

d 

use 

T

WI 

Landfor

ms 

Aspe

ct 

Plan 

curvat

ure 

River 

distan

ce 

Weig

hts 

Consiste

ncy 

measure 

Slope 1 3 3 1 2 1 5 2 2 5 3 18.9 11.2 

Elevation 1/3 1 2 1/3 2 1/5 3 1/2 1/2 1/2 1/2 6.5 11 

Curvature 1/3 1/2 1 1/2 1 1/3 1 1/3 2 2 1/3 5.7 11.5 

Lithology 1 3 2 1 2 1 3 1 3 3 2 13.1 12.8 

Precipitati

ons 

1/2 1/2 1 1/2 1 1/2 2 1/3 2 2 1/2 6.5 11.7 

Land use 1 5 3 1 2 1 3 1/2 3 2 1 13.5 12.1 

TWI 1/5 1/3 1 1/3 1/2 1/3 1 1/4 1/2 1/2 1/4 3.3 11.7 

Landform

s 

1/2 2 3 1 3 2 4 1 2 2 1 13.5 11.8 

Aspect 1/2 2 1/2 1/3 1/2 1/3 2 1/2 1 1 1/3 5.5 11.9 

Plan 

curvature 

1/5 2 1/2 1/3 1/2 1/2 2 1/2 1 1 1/2 5.2 12.3 

River 

distance 

1/3 2 3 1/2 2 1 4 1 3 2 1 12.1 11.1 

Sum 5.9 21.3 20 6.7 16.5 8.2 30 7.9 20 21 10.4 - 11.79 

(average) 

Consistency ratio: 0.05231 
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The CR was obtained by using Eq. 5, namely by dividing CI and RI (random consistency index 

depending on the order of the matrix is given in Tab. 3) 

 

CR = CI / RI = 0.079 / 1.51 = 0.05     (Eq. 5) 

 

Table 3. Random Consistency Index values (RI) 

n 1 2 3 4 5 6 7 8 9 10 11 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 

 

The CR should be < 0.1; a value above this limit indicates that the consistency matrix is not 

reliable and needs to be revised (Shahabi et al., 2014). 

 The performance of the final landslide susceptibility maps will be tested by performing 

the AUC and the seed cell area index (SCAI index). The SCAI index method was proposed by 

Suzen and Doyuran (2004) and is equal to the ratio of the percentage area for each landslide 

susceptibility class to the percentage of an occurred landslide in each class; this method shows 

the precision of the models in a qualitative way (Abedini et al. 2017). It is viable that the very 

high and high susceptibility classes to have very small SCAI values, whereas no susceptibility 

and low susceptibility classes to have higher SCAI values (Sdao et al. 2013; Chen et al. 2016; 

Abedini et al. 2017). 

 

4.4. Monitoring geomorphological processes – using the newest technologies to assess 

the degradation of cultural heritage is an important aspect in determining the rate of erosion 

(Romanescu and Nicu, 2014; Margottini et al., 2015; Agapiou et al., 2016; Tapete and Cigna, 

2017) and management of cultural heritage (Deroin et al., 2017). In this study, modern, high 
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precision equipment was used to survey some of the most important Neolithic sites from the 

northeastern part of Romania. A series of oblique and vertical aerial photographs were taken 

using a light sports aircraft in May 2015 and 2017; LIDAR (Megarry et al., 2016; Rodriguez-

Gonzalvez et al., 2017) was used to prepare the digital model of terrain and to extract the 

landslides. 

To realise precise surveys of the landslides, a Leica ScanStation HDS 5600 3-D laser 

scanner, a Leica GPS 1200 System, and a Leica TCR1201 total station were used. All the 

surveys were made in STEREO 70, the official projection of Romania. They are widely used in 

monitoring soil erosion processes that are affecting cultural heritage sites (Romanescu et al., 

2012; Romanescu and Nicu, 2014; Kincey et al., 2017). Geophysical surveys were made with a 

5-probe-array fluxgate gradiometer, which is part of the Sensys system; field data were 

georeferenced and processed with the help of Geoplot software. The surveys were made to 

determine whether the surface of the site is affected by landslide processes and to establish the 

extent of the impact. All the data were integrated into a GIS (Mihu-Pintilie et al., 2016), as being 

a reliable and precise tool to cope with a high amount of geographical and archaeological data 

(Neubauer, 2004). 

 

5. Integration of spatial and archaeological data 

5.1. Map of landslide inventory 

A complete and precise map of landslide inventory is essential for producing high-quality 

maps of landslide susceptibility, as well as to calibrate and validate the final susceptibility 

models (Schmaltz et al., 2017). Because no landslide inventories are available in Romania, or for 

the study area, a complete inventory was made using LIDAR data (survey from 2012) and field 
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investigations. Digitising the landslide polygons, revealed that 23% of the study area was 

affected by landslide processes; from the total number of 764 landslides, 611 landslides (80%) 

were randomly selected for model training, and the remaining 153 landslides (20%) were used to 

test the performance of the model. 

 

5.2. Altitude 

Represents a widely used conditioning factor in landslide susceptibility analysis (Chen et 

al., 2016; Patriche et al., 2016; Wu et al. 2016). Within the study area, a DEM with a resolution 

of 5x5 m/pixel was used; this parameter was grouped into five classes, as follows 50.2 – 100, 

101 – 200, 201 – 300, 301 – 400, and > 401 m (Fig. 3a). 

 

5.3. Land use 

Land use has a significant role in triggering landslides, depending on the degree of soil 

coverage with vegetation; it represents a factor very often used in studies dealing with landslide 

susceptibility (Roșca et al., 2015; Pham et al., 2017). In the study area the main categories of 

land use (Fig. 3b) were grouped into four classes of susceptibility: class one (forests, built areas, 

water bodies, wine yards, inland wetlands, artificial surface), class two (scrubs), class three 

(arable land), and class four (pastures, agricultural areas). Class four represents the highest 

susceptibility to landslides. 
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Figure 3. Landslide conditioning factors and classification. a. Elevation, b. Land use, c. 

Precipitations, d. Slope angle, e. Curvature, f. Topographic wetness index (TWI), g. Lithology, h. 

Landforms, i. Slope aspect, j Plan curvature, k. Distance to rivers 

 

5.4. Precipitation 

The distribution of precipitation regulates the water content of the soil and is a significant 

factor in calculating landslide susceptibility (Chen et al., 2016; Zhang et al., 2016). In the study 

area, the values of this parameter have been concluded according to Minea, 2012, and distributed 

into four classes (mm/year) (Fig. 3c) 500 – 550, 550 – 600, 600 – 650, and 650 – 700. 

Precipitation ranging between 500 – 600 mm/year are spread on cca. 80% of the total surface of 

the basin. Higher precipitation is specific to the plateau area located in the northwestern part of 

the catchment. 

 

5.5. Slope angle 

Slope angle is considered to be one of the most important factors when it comes to slope 

stability, being frequently used in preparing landslide susceptibility maps (Bălteanu et al., 2010; 

Youssef et al., 2015; Chen et al., 2016; Zhang et al., 2016; Nicu, 2017a; Pawluszek and 

Borkowski, 2017). This parameter is derived from the DEM with the help of ArcGIS Spatial 

Analyst Tools. In the study area the slope was divided into four classes using Natural Breaks 

(Jenks) classification 0-3, 3-7, 7-14, >14 (Fig. 3d). 
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5.6. Curvature 

The curvature is defined as the rate of change of slope gradient in a particular direction; the 

values represent the morphology of the topography (Lee et al. 2004, Wang et al., 2016). Negative 

curvature represents concave, zero curvature represents flat, and positive curvature represents 

convex areas; therefore, the map was classified into three classes (Fig. 3e). 

 

5.7. Topographic wetness index 

The topographic wetness index (TWI) represents the effect of topography on the size and 

location of saturated source areas of runoff triggering; this parameter was developed in a rainfall-

runoff model named TOPMODEL (Beven and Kirkby, 1979). The soil moisture affects the 

material on the slopes, thus, diminishing soil stability. It is a common factor used in landslide 

studies (Wang et al., 2016; Zhang et al., 2016), and can be calculated using the following 

formula 

 

TWI = loge (A / btanβ )       (Eq. 6) 

 

where A is the flow accumulation in square meters, b is the width of the pixel through which the 

water flows in meters, and β is the slope (Beven and Kirkby, 1979). In the study area, the 

topographic wetness index was calculated and classified into four classes using Natural Breaks 

(Jenks) method -7 – -2, -1 – -0.1, 0 – 30, > 30 (Fig. 3f). 
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5.8. Lithology 

The characteristics of lithological units represent the base on which landslides are 

occurring (Feizizadeh and Blaschke, 2014; Patriche et al., 2016; Wang et al. 2017). This 

parameter was extracted from the pedological studies 1:10,000 scale. The basin comprises four 

main lithological classes: sandstone (Holocene and Bessarabian age), limestone (Pleistocene and 

Bessarabian age), clay and sand (Bessarabian age), and clay (Bessarabian age). (Fig. 3g). 

 

5.9. Landforms 

The landforms parameter was derived with the help of ArcGIS – Topography Tools 

(Jenness, 2006) and have a high importance in the triggering of landslides (Roșca et al., 2015; 

Chen et al., 2016). The main landforms are: plains (52%), open slopes (45%), U-shaped valleys 

(1.3%), upper slopes (1.2%), deeply incised streams (0.06%), high ridges (0.04%), and shallow 

valleys and mid-slope ridges (0.001%) (Fig. 3h). The landforms with the highest probability of 

contributing to slope failure are the mid-slope ridges, followed by open slopes, deeply incised 

streams and shallow valleys. 

 

5.10. Slope aspect 

Slope aspect represents another important factor in estimating landslide susceptibility 

(Patriche et al., 2016; Zhang et al., 2016). Aspect impacts the weather (water resulted from snow 

melting, rainfall, exposure to sunlight), and land use (pastures, forest, scrubs, arable land). 

Dominant in the area are north-facing slopes and flat areas (Fig. 3i). 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

24 

 

5.11. Plan curvature 

Plan curvature represents the rate of change of the slope angle, with immediate effects on 

surface runoff and the development of landslides. This parameter is usually used to produce 

landslide susceptibility models (Chen et al., 2016; Wu et al., 2016), and was classified into three 

classes using Natural Breaks (Jenks) method: < - 0.56, - 0.55 – 0.19, > 0.20 (Fig. 3j). 

 

5.12. Distance to rivers 

Distance to rivers parameter is a significant conditioning factor because streams are 

decreasing slope stability by erosion of slopes (Wang et al., 2016; Zhang et al., 2016; Pham et 

al., 2017); in the current study, six different buffer classes were created as follows < 200, 200 – 

400, 400 – 600, 600 – 800, 800 – 1000, > 1000 m (Fig. 3k). 

 

6. Results and discussion 

AHP, FR, and SI were used to calculate the LSI. The surface and distribution (%) of each 

susceptibility class were calculated for each method. The classes of the LSI are: no susceptibility, 

low susceptibility, medium, high and very high susceptibility; the final raster (with a 5x5 m/pixel 

resolution) was reclassified by using the Natural Breaks (Jenks) method. The method with the 

highest predictability rate, which is SI, was used to evaluate the number of Neolithic sites that 

are in danger. 

 

6.1. LSI using FR 

The values of the FR analysis are summarised in Table 1, column 6. This method selected 

landforms, TWI, and lithology as being the most important when it comes to slope failures. In 
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Table 1, column 6, landform classes six and seven, which is open slopes and upper slopes, 

respectively, have higher frequency ratio weight (0.52 and 0.27, respectively). For the TWI, 

high-frequency values (0.44) are associated with a positive value (> 0) of the index. When it 

comes to lithology, clays are the most susceptible to landslides (0.49), followed by the mix of 

clay and sand (0.29). These three factors are followed by altitude, slope angle, land use, aspect, 

distance to rivers, curvature, precipitation, and plan curvature, respectively. This means that the 

final landslide susceptibility map will look more like the map of landforms, TWI and lithology. 

The final LSI is calculated and expressed as Fig. 4a. The statistical results using FR are 

shown in Tab. 4. High and very high classes occupy almost half of the surface of the basin (cca. 

47%), which is alarming because of the high density of cultural heritage sites of the area. 

 

6.2. LSI using SI 

The relation of each landslide conditioning factor and its spatial relationship with landslide 

triggering is shown in Tab. 1, column 8. A positive value indicates a high correlation between 

the class factor and landslide phenomena, whereas negative values highlight a very low 

correlation with landslide phenomena. High values are related with the following conditioning 

factors: landforms (mid-slope ridges – 0.34, open slopes – 0.28, high ridges, deeply incised 

streams, and mid slope drainages – 0.25), slope (> 14 degrees – 0.41, 7-14 degrees – 0.36), 

precipitations (600-650 mm – 0.29), elevation (201-300 m – 0.22). The final landslide 

susceptibility map is shown in Fig. 4b. The statistical results using FR are shown in Tab. 4. High 

and very high classes occupy almost half of the surface of the basin (cca. 49%). 
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Figure 4. LSI maps produced using: a. FR, b. SI, c. AHP 
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Table 4. Statistical results of LSI using the three methods 

Susceptibility Landslide occurrence (FR) Landslide occurrence (SI) Landslide occurrence (AHP) 

Count 

(pixels) 

Ratio 

(%) 

Area 

(km
2
) 

Count 

(pixels) 

Ratio 

(%) 

Area 

(km
2
) 

Count 

(pixels) 

Ratio 

(%) 

Area 

(km
2
) 

No susceptibility 1,570,584 7.15 39.26 3,494,339 15.91 87.35 2,766,753 12.59 69.16 

Low 3,998,541 18.20 99.96 4,392,062 19.99 109.80 4,757,119 21.66 118.92 

Medium 6,094,601 27.75 152.36 3,316,498 15.10 82.91 3,814,702 17.37 95.36 

High 5,624,583 25.61 140.61 4,154,073 18.91 103.85 6,542,825 29.79 163.57 

Very high 4,672,834 21.27 116.82 6,604,171 30 165.10 4,079,744 18.5 101.99 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

28 

 

6.3. LSI using AHP 

The comparison matrix, initially based on the expert evaluation, has prioritised the weights 

of each conditioning factor (Tab. 2). Following the calculation of the weights of each 

conditioning factor, the CR value was 0.05 (< 0.1); this indicates that the weights obtained are 

considered reasonable and the final landslide susceptibility maps will have a high accuracy. 

Among the eleven conditioning factors, the AHP method selected, in decreasing order are: slope 

(18.9), land use and landforms (13.5), lithology (13.1) and distance to the river (12.1). The final 

landslide susceptibility map was obtained (Fig. 4c) by summarising the weights of each 

conditioning factor. The statistical results using FR are shown in Tab. 4. 

 

6.4. Validation and comparison of the LSI maps 

A validation of landslide susceptibility maps is needed, in order to check the viability of 

the final LSI maps (Wang et al., 2017). 

6.4.1. AUC method – for the study area, validation and comparison of the landslide 

susceptibility maps produced with FR, SI and AHP models were checked by using the area under 

curvature (AUC). This method is widely used in studies dealing with the evaluation of landslide 

susceptibility and creates success rate and prediction rate curves. The success rate curves for the 

three methods are shown in Fig. 5; it can be observed that the SI model has a higher area under 

the curve (AUC) value than FR and AHP. 
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Figure 5. Success rate curves with associated AUC values computed for each diagnostic area of 

the three models 

 

Regarding the different diagnostic areas used to calculate the success rate, out of the three 

models, SI model has the highest value (AUC point_scarp = 71.24%, AUC point_middle = 79.19%, 

AUC polygon = 80.17%) than the FR model (AUC point_scarp = 68.52%, AUC point_middle = 77.61%, 

AUC polygon = 73.60%) and AHP model (AUC point_scarp = 70.17%, AUC point_middle = 77.24%, 

AUC polygon = 77.33%). 
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Figure 6. Prediction rate curves with associated AUC values computed for each diagnostic area 

of the three models 

 

The prediction rate curve shows that the highest prediction accuracy for all the three diagnostic 

areas belongs to SI method (Fig. 6) (AUC point_scarp = 67.65%, AUC point_middle = 76.70%, AUC 

polygon = 81.18%), when comparing with FR, AUC point_scarp = 69.52%, AUC point_middle = 78.32%, 

AUC polygon = 75.16%) and AHP models, (AUC point_scarp = 68.33%, AUC point_middle = 76.35%, 

AUC polygon = 78.57%). As it can be observed, the landslide area had a better success and 
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prediction rate; other studies reported landslide areas as having a weak performance (Rotigliano 

et al., 2011). This resulted from the difference in years of the DEM and of the landslide 

inventory used. Regarding the diagnostic areas for predictive strenghtness, landslide area is 

followed by the points located in the middle of the landslide. The area is considered more 

dynamic and the slope is already modified; therefore, better results than the points located on the 

scarp. 

 

Table 5. The densities of landslide occurrence (SCAI) for AHP, FR and SI models 

Validation 

method 

Class Pixel 

number 

Area (%) Number of 

landslides 

Landslides 

(%) 

SCAI 

AHP Very high 4,079,744 18.59 244 31.93 0.58 

 High 6,542,825 29.79 282 36.94 0.80 

 Medium 3,814,702 17.37 123 16.09 1.07 

 Low 4,757,119 21.66 107 14 1.54 

 No 

susceptibility 

2,766,753 12.59 8 1.04 12.10 

FR Very high 4,672,834 21.27 289 37.82 0.56 

 High 5,624,583 25.61 274 35.86 0.71 

 Medium 6,094,601 27.75 135 17.67 1.57 

 Low 3,998,541 18.20 58 7.59 2.39 

 No 

susceptibility 

1,570,582 7.15 8 1.04 6.87 
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SI Very high 6,604,171 30.07 354 46.33 0.64 

 High 4,154,073 18.91 222 29.05 0.65 

 Medium 3,316,498 15.10 111 14.53 1.03 

 Low 4,392,062 19.99 62 8.13 2.45 

 No 

susceptibility 

3,494,339 15.91 15 1.96 8.11 

 

6.4.2. SCAI (seed cell area index method) – another method to assess the reliability of 

the landslide susceptibility models realised with AHP, FR, and SI models is represented by the 

seed cell area index (SCAI) method. Tab. 5 shows that high and very high susceptibility classes 

have very low SCAI values (<1), whereas low susceptibility and no susceptibility classes have 

high, respectively, very high values. This means that the results of the maps are accurate. 

 

6.5. Neolithic sites in danger 

A buffer zone of 100 m was made for each point to obtain an average surface of 3 ha for 

each settlement; this is considered the average surface of a Neolithic settlement (Asăndulesei, 

2017). Cases occur, however, in which the surface is larger (in the case of the hilltop or fortified 

settlements) or smaller (settlements that have only one layer of habitation). Therefore, we 

decided to choose the surface of 3 ha as being pertinent to our study. 

Out of the total number of 107 settlements, 41 sites are found in areas with very high 

susceptibility, 30 sites in areas with high susceptibility, 19 in medium susceptibility areas, 8 in 

low susceptibility areas, and 9 in no susceptibility areas. As it can be observed, approximately 

70% of the Neolithic sites are located in areas with high and very high susceptibility to 
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landslides. This means that the Neolithic sites are in real danger in the future. The location of 

Neolithic settlements in areas with high susceptibility to landslides is because one of the main 

landforms preferred by the prehistoric people were hilltops (usually surrounded by steep slopes 

with a defensive purpose). 

 

6.5.1. Costești settlement (Cier / La Școală), a well-known Neolithic (Fig. 2c) site 

within the archaeological community in Romania, is located on the right side of Bahluieț river, 

on a relict landslide deposit, and is now being eroded by the river. This is one of the most 

researched Cucuteni sites in the northeastern part of the country, because it has a long habitation 

period, starting with Cucuteni A (cca. 4525/4500 – 3950 CAL. BC) (Bem, 2000) until 15
th

-17
th

 

century.  
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Figure 7. Costești settlement (Cier / La Școală) details: 7a. Geological details highlighting the 

alternation of geological layers, 7b. 3D laser scanner detail, part of the monitoring process, 7c. 

Detail of the surveys undertaken to establish the erosion of the site, 7d. Detail showing the 

twisted oolithic limestone, as a proof of the landslide intensity process 

 

Besides the landslide, the western part of the settlement is affected by the erosion of Bahluieț 

River; the erosion is accentuated by rain with a torrential character, which have a higher density 

during the last decades. The landslide affecting the site, dated as a very old one (Niculiță et al., 

2016) was triggered because of the alternation of geological layers (Fig. 7a) (sands, sandstones, 

clay, limestone and sands). In time, the site has gradually degraded because of the continuous 

action of Bahluieț River; a series of historical maps, topographic and 3-D laser scanner surveys 

(Fig. 7b) were used to monitor the dynamics of Bahluieț riverbed, along with a (Fig. 7c). An 

analysis resulted in an annual rate of erosion of the western part of the settlement of – 0.26 

m/year. After the landslide, the river formed a meander that was used by the prehistoric people as 

a defensive system; the landslide had packs of rolling sandstone visible in the section dug by 

Bahluieț River (Fig. 7d). Based on the analysis of the historical maps and modern surveys, the 

site is about 50% destroyed. It can be observed that the river course has more cut-off meanders in 

2005, compared with 1975. Erosion from flowing water spreads from the spill to spring and has 

the natural tendency to reduce the slope and achieve the equilibrium profile. Moreover, the 

archaeological excavations that took place in time, contributed to the degradation of the site. 

 

6.5.2. Dealul Boghiu settlement (Dealul Mare / Filiași) – represents the typical 

characteristics of a Neolithic settlement: plateau placement with good visibility, proximity 
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towards Oii river, and the existence of two springs. 

 

Figure 8. Dealul Boghiu settlement (Dealul Mare / Filiași); 8a. Fluxgate gradiometer survey (– 

10 to + 10, white to black) superimposed on a hillshade derived from LiDAR DEM; 8b. The site 

overlapping the landslide susceptibility model produced with the SI method; 8c. Sheet erosion 

from the northwestern part of the settlement; 8d. Geomorphologic and anthropic details 
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On the plateau the inhabitants were able to practice agriculture. Recent research (Nicu, 2016b; 

Asăndulesei, 2017) has shown that the settlement had a defensive system which was maintained 

on a regular basis and the surface outside the fortified area had houses placed in three rows – 

which is a typical pattern for Cucuteni settlements (Fig. 8a). Settlements with a defensive system 

were very important in a Neolithic community; therefore, the historical value is high and should 

be preserved. The plateau area has a low susceptibility to landslides, whereas north, eastern, 

western, southeastern part of the site has a very high susceptibility to landslides (Fig. 8b). Sheet 

erosion is affecting the entire surface of the landslide (Fig. 8c), being pronounced by the scarps 

(having from – 2 to – 22 m in length) located on the entire landslide body. In this way, a 

considerable amount of flint and ceramic pieces are carried down the slope. Fig. 8d shows all the 

geomorphological processes and anthropic elements associated around the site. 

 

6.5.3. Dealul Ruginii settlement – represents a new settlement discovered after the 

analysis of aerial images from May 2017. The site is not officially registered and no 

archaeological excavations have been completed. This site is affected by landslides and we 

decided to make geophysical surveys to establish whether the settlement is of Neolithic age or 

not. Following the geophysical survey (Fig. 9a), it was established that the settlement is of the 

Neolithic age, with a perimeter of 600 m and a surface of 22415 m
2
 (2.2415 ha). We could not 

establish a precise date for this settlement; further research is needed for this settlement. Our 

preliminary research referred only to the existence of a settlement in this location, and primary 

analysis of aerial images and geophysical survey. The north, west and eastern part of the site is 

located in an area with high susceptibility to landslides, according to our maps (Fig. 9b); the 

northwestern part, where the slope is very steep, sheet erosion is also affecting the settlement. 
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Figure 9. Dealul Ruginii settlement; 9a. Fluxgate gradiometer survey (– 10 to + 10, white to 

black) superimposed on an orthorectified aerial image; 9b. The site overlapping the landslide 

susceptibility model; 9c. Aerial photo of the settlement 

 

The general view of the site (Fig. 9c) shows the landscape, which is typical for the northeastern 

part of Romania (agricultural lands); on the surface of the site are placed a number of two 

sheepfolds. Overgrazing accentuates the erosion of the site in the north and western part. 
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7. Conclusions 

In this study, three statistical methods were used to test the predictive strenghtness of three 

different diagnostic areas (scarp, middle of the landslide, landslide area), using 11 conditioning 

factors. The landslide area had a better success and prediction rate than the scarp and middle of 

the landslide. The validation results by ROC method shows that the area under the curve for FR, 

SI, and AHP models (landslide area) are 0.73 (73.60%), 0.80 (80.17%), 0.77 (77.33%) with a 

prediction accuracy of 0.75 (75.16%), 0.81 (81.18%), and 0.78 (78.57%), respectively. On the 

other hand, SCAI method has shown a good accuracy of the landslide susceptibility maps 

produced. Analysing the landslide susceptibility maps, it can be observed that approximately 

70% of the sites are located in areas with high and very high susceptibility to landslides. This 

means that the Neolithic sites in the study area are in real danger. This is a recommendation to 

the local authorities: analyse the susceptibility maps and propose mitigation measures. Another 

use of the landslide susceptibility maps is to plan the economic activities, minimise damages 

costs, environmental and cultural heritage protection, a better management of water resources, 

hazard mitigation. 
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Highlights: 

 Assessment of landslide susceptibility on Neolithic sites in a catchment from Moldavian 

Plateau, north-eastern Romania 

 Comparing the predictive strenghtness of different diagnostic areas using three statistical 

methods 

 The most important factors for landslide triggering in Bahluieț River basin are slope, land 

use, landforms and lithology 

 Approximately 70% of the sites are located in areas with high and very high landslide 

susceptibility 

 The landslide susceptibility maps can be used in hazard mitigation, disaster preparedness, 

cultural heritage preservation and protection 
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