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Highlights: 

 Subsea fresh groundwater analytical solution revised to include aquitard salinity 

 Comparison to numerical modelling demonstrates aquitard salinity effects 

 Solution produces improved discharge to the sea and interface tip location 

 Further work is required to assess dispersion effects on interface distribution 
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Abstract 

 

Existing analytical solutions for the distribution of fresh groundwater in subsea aquifers 

presume that the overlying offshore aquitard, represented implicitly, contains seawater. 

Here, we consider the case where offshore fresh groundwater is the result of freshwater 

discharge from onshore aquifers, and neglect paleo-freshwater sources. A recent 

numerical modelling investigation, involving explicit simulation of the offshore aquitard, 

demonstrates that offshore aquitards more likely contain freshwater in areas of upward 

freshwater leakage to the sea. We integrate this finding into the existing analytical 

solutions by providing an alternative formulation for steady interface flow in subsea 

aquifers, whereby the salinity in the offshore aquitard can be chosen. The new solution, 

taking the aquitard salinity as that of freshwater, provides a closer match to numerical 

modelling results in which the aquitard is represented explicitly.  

 

1. Introduction 

 

Freshwater is known to occur in a multitude of offshore aquifers around the globe (Post et 

al., 2013). Fresh groundwater in offshore aquifers may derive from the continental 

discharge that occurs under present-day conditions, and/or may have been emplaced 

during the low sea levels of glacial maxima during the Pleistocene epoch (Cohen et al., 

2010). Methods for the rapid estimation of offshore freshwater extent attributable to 

continental discharge include the analytical solutions of Edelman (1972), Kooi and Groen 

(2001), and Bakker (2006). Bakker et al. (2017) provide an extension to Bakker‟s (2006) 

solution by modifying the landward boundary condition and correcting an error in the 

graphical representation of the methodology. These methods have proven to be beneficial 
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for the initial investigation of offshore freshwater in subsea aquifers, including their 

potential to supplement onshore groundwater pumping. For example, Bakker (2006) 

found that the hydrogeological conditions near the Georgia-Florida border (USA) are 

sufficient to have created an extensive offshore freshwater body in continental shelf 

aquifers. 

 

The cross-sectional conceptual model for offshore freshwater adopted by Bakker (2006) 

and others is illustrated in Figure 1, showing an onshore confined aquifer connected to an 

offshore leaky aquifer. The dual aquifer system in the onshore setting is simplified to an 

onshore confined aquifer to avoid the mathematical challenge of resolving connected 

upper and lower aquifers. 

 

 

Figure 1. Conceptual model of offshore fresh groundwater (light blue) created by an 

onshore confined aquifer discharging to a semi-confined offshore aquifer. Dark blue 

regions are seawater. 
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The analytical solutions provided by Bakker (2006) and Bakker et al. (2017) (referred to 

collectively as Bakker‟s solutions in the remainder) require an assumption for the salinity 

in offshore aquitards, which overly offshore aquifers and inhibit the freshwater-seawater 

mixing that would otherwise degrade the subsea freshwater. They presume that offshore 

aquitards contain seawater, even where they host upward freshwater leakage to the sea 

from underling aquifers. In a concurrent numerical modelling investigation, Solórzano-

Rivas and Werner (2017) show that offshore aquitards are more likely to contain 

freshwater where upward freshwater leakage occurs. They also provide a methodology 

for correctly simulating offshore aquitards using the implicit approach of the popular 

SEAWAT code (Langevin et al., 2008). Solórzano-Rivas and Werner (2017) conclude 

that Bakker‟s solutions over-predict the offshore extent of freshwater by a factor of 

approximately two due to the assumption that offshore aquitards contain seawater. They 

recommend that a revision to Bakker‟s solutions is required, whereby offshore aquitards 

are presumed to contain freshwater in areas of upward leakage to the sea. 

 

The aim of this research is to provide a sharp-interface mathematical model under Dupuit 

assumptions for the offshore aquitard containing water with salinity ranging from that of 

freshwater to seawater, thereby incorporating Bakker‟s solutions as a special case. We 

anticipate that this will overcome the discrepancies between analytically derived interface 

locations and those obtained from numerical simulation, such as those of Solórzano-

Rivas and Werner (2017). The quality of the revised analytical model is demonstrated by 

comparing with results from SEAWAT. 

 

2. Mathematical model of semi-confined interface flow 
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The aim of the following mathematical development is to determine and calculate a head-

distance relationship given a confined aquifer onshore and its finite-length extension 

below the sea surface as a semi-confined aquifer, i.e., overlain by a leaking aquitard. The 

notation used by Bakker (2006) is largely followed. The offshore part of the problem is 

shown schematically in Fig. 2. 

 

 

Figure 2. Conceptual model of the semi-confined offshore aquifer (modified from 

Bakker, 2006). 

 

The freshwater head, h1, of the sea at the top of the aquitard, is given by 

 sss Hvzh 1  (1) 

where, as shown in Fig. 2, Hs is the height of the sea surface above the aquitard, and zs is 

the elevation of the sea. The datum for zs is arbitrary but commonly taken as the 

impermeable base of the aquifer or sea level. The dimensionless density difference 

between seawater and freshwater, vs, is given by 

   ffssv    (2) 

with f and s the respective densities for freshwater and seawater. 
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The use of Darcy‟s Law to calculate flow across the offshore aquitard to the ocean in 

regions where the aquifer contains freshwater requires presumption of the aquitard 

salinity. That is 

 
 













 


f

fa

t
v

z hh
H

K
q





1

 (3) 

h is the head in the freshwater region of the aquifer, Kv is the hydraulic conductivity of 

the leaking aquitard, and a is the density of the aquitard fluid. Bakker‟s (2006) 

assumption of seawater in the aquitard leads to sa   , whereas if the aquitard contains 

freshwater, fa    and the buoyancy term of Eq. (3) disappears. We introduce the 

factor , whereby  = 0 represents the seawater assumption of Bakker (2006) and Bakker 

et al. (2017),  = 1 is the freshwater assumption, and 0 <  < 1 is mixed seawater and 

freshwater. Rewriting Eq. (3) in terms of vs and  

 
 

  










 svz v

H

hh
Kq 1

1

1  (4) 

where H1 is the aquitard thickness, as shown in Figure 2. Note that we assume that the 

aquitard overlying the fresh part of the offshore aquifer contains only one salinity type, 

i.e., there is no salinity spatial variability. 

 

Bakker (2006) writes Eq. (4) in terms of the freshwater head, hs, of a column of static 

seawater at the level of the horizontal top of the aquifer 

  1HHvzh ssss   (5) 

 

hs is also equal to the head at the top of the aquifer (h1) plus the buoyancy force caused by 

seawater in the aquitard, and is convenient to adopt because freshwater occurs in the 
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aquifer only where h > hs (Werner, 2017). Combining Eqs. (5) and (3), and letting 

sa    (i.e., presuming the aquitard contains seawater) produces (Bakker, 2006) 

  s
v

z hh
H

K
q 

1

 (6) 

 

The thickness, , of the freshwater zone (see Figure 2) is approximated by the Ghyben-

Herzberg formula (e.g. Bear, 1979) 

   ss vhh   (7) 

 

Assuming Darcy‟s law and the Dupuit approximation, the vertically integrated freshwater 

discharge, Qx, at distance x (of arbitrary origin; see Fig. 2) is defined by 

 
dx

dh
KQx   (8) 

with K the constant hydraulic conductivity of the aquifer. Flow continuity requires 

 z
x q

dx

dh
K

dx

d

dx

dQ









   (9) 

 

Eq. (4) becomes, on using Eqs. (1) and (5) and introducing vKHc 1 , 

 
   

c

vHhh
vK

H

vHhhK
q ss

sv
sv

z
1

1

11  



  (10) 

 

Now, using Eq. (7) for  and Eq. (10) for qz, the continuity Eq. (9) becomes 

 
   

c

vHhh

dx

dh

v

hhK

dx

d ss

s

s 1








 
 (11) 

 

Non-dimensional variables ,  and  are now defined by 
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 

Hv

hh

s

s
 ,  1 , 

fl

x
   (12) 

 

Here,  is the vertical dimensionless distance from aquifer base to interface, H is the 

depth of the base below the aquitard (as in Fig. 2), and the leakage factor is defined by 

kHcl f  . 

 

Eq. (11) now becomes 

 *

1H
d

d

d

d

















 (13) 

with HHH 1

*

1  . The quantity 
*

1H  is to be considered as a single quantity, because 

neither  nor H appear separately in the analysis. The introduction of the quantity *

1H  

and its ramifications in the ensuing analysis is the generalisation of Bakker‟s original 

model. 

 

Following the procedure used by Bakker (2006) and Sikkema and van Dam (1982), Eq. 

(13) is solved by first multiplying throughout by : 

 























 *

1

2

2

2

1
H

d

d

d

d

d

d

d

d

d

d

d

d

d

d



























 (14) 

 

Now integrate to obtain 

 















 32*

1

3

2

2

3

3

2
aH

d

d





  (15) 
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with a a constant to be determined by boundary conditions. At this stage, it is convenient 

to introduce a dimensionless discharge, u, by 

 





d

d

vKH

lQ

s

fx

u 
2

 (16) 

 

The particular value of u at the shoreline where 0QQx   (and 0  ) is denoted by 0: 

 
s

f

vKH

lQ
2

0

0    (17) 

where  is one of the three key parameters, the others being 
*

1H  and fss lL . The 

length of the aquitard from the shoreline is denoted by Ls. 

 

Taking the square root of both sides of Eq. (15) and using the negative root of the right 

side to give a positive u: 

 32*

1

3 23
3

2
aHu    (18) 

 

From Eq. (15), a further integration gives 

  


 bd
H







32*

1

3 232

3
 (19) 

where b is another constant to be determined by boundary conditions. 

 

Bakker (2006) defines four cases of interface problems arising from the above theory. 

These are defined based on whether the toe (where the interface meets the impermeable 

aquifer base) is onshore (Cases I and III) or offshore (Cases II and IV), and whether the 
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tip (where the interface meets the base of the offshore aquitard) is landward of the most 

seaward boundary (Cases I and II) or the tip reaches the offshore limit (Cases III and IV). 

 

From this point, the analysis divides into two sections depending on whether a = 0, 

defining Cases I and II, or 0a , defining Cases III and IV. Another division, introduced 

for simplicity of analysis, is to consider different origins for variable  depending on the 

location of the toe. For Cases I and III, with the toe onshore, set 1   for Case I and 

3   for Case III, with 31    and both variables originating at the shoreline. Although 

the introduction of the two coordinates having the same origins is mathematically 

redundant, it is useful to have them when focussing on the particular cases. Similarly with 

the toe offshore (Cases II and IV) and the corresponding origin at the toe, 2   for Case 

II, 4   for Case IV, and 42   . Figs. 3a, 3b, 3c, 3d show typical curves of the head 

and interface for some selected parameter combinations, each falling into one of the four 

cases. The numerical values used for constructing these curves are given in Table 1. 
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Figure 3. Typical case diagrams for non-dimensional lengths, heads and interface: (a) 

Case I, (b) Case II, (c) Case III, and (d) Case IV. The axes are dimensionless, as defined 

(a) 

(b) 

(c) 

(d) 
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by Eqs. (12). The solid horizontal lines represent no-flow boundaries, while the dashed 

horizontal line represents the base of the leaking aquitard. 

 

Table 1. Parameter values used in Figures 3a, 3b, 3c, 3d. Parameters are defined in the 

text that follows. 

Figure 

(Case) 
  s  0 a  

3a (I) 0.2669 0.9159   1.5729 0.4294 0 - 

3b (II) 1.2290 1.6781 >  +  0.2849 1.2978 0 - 

3c (III) 0.8 0.2 0.2 0.4383 0.5465 0.9094 1.0581 

3d (IV) 1.5 1.0522 1.5 0.4478 1.5283 0.3973 1.1430 

 

The quantities 0 and  represent, respectively, the head at the shoreline and the distance 

of the toe from its origin.  is defined in the same way as s, namely flL , where L 

is the length from origin to tip. In Case I, s  ; in Case II, s  ; in Case III, 

s  ; and in Case IV, s  . 

 

Fig. 4 illustrates the division of the cases into four zones on the basis of  and s. The 

boundaries of the zones are designated: 12, between Cases I and II; 13, between Cases I 

and III; 24, between Cases II and IV; and 34, between Cases III and IV. A number of 

individual points are shown on the diagram, labelled M1 to M6, F3, F4 and P4. These 

points are used in various parts of the analysis that follows. M4, M6, F3 and F4 coincide 

with the parameter sets (see Table 1) used to create Figures 3a, 3b, 3c and 3d, 

respectively. Point P4 is a quadruple point where all four boundaries meet with 

coincidence of offshore tips and shoreline toes. This diagram is essentially one defining 

zones for Cases III and IV with the horizontal axis as s. Classes I and II are defined 

solely by the value of , because their tip values are less than the given non-dimensional 
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s. The areas designated as I and II in the figure have all parameter values constant within 

them. The points M1 to M6 are located on the joined boundaries 13 – 24 to indicate their 

shore to tip values, less than those at the aquitard seaward end. 

 

 

Figure 4. Zones for Cases 1 to IV. 
*

1H  = 0.1. 

 

Summary of head equations from toe to tip 

 

Details of the derivations of the following equations are given in the Appendix, including 

explicit expressions for 0 and fld  occurring below, with d the distance from toe to 

shoreline. For all four cases,  = 1 ( = 0) at the toe and  = 0 ( = 1) at the tip. The final 

expressions are: 

Case I: 

From shore to toe: 2

01

2 2   ,    01    (20) 
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From shore to tip:    *

111 6
6

1
H  ,      10  (21) 

 

Case II: 

Beyond the toe, Eq. (21) is also applicable in this case, but with 1 replaced by 2: 

    *

122 6
6

1
H  ,       20  (22) 

Between toe and shoreline: 

     *

1

*

10

*

10
22 1

2

1
1

2

1
HeHeH    

,  02    (23) 

with *

10 32 H  . 

 

Case III: 

The expression from shoreline to tip for  is implicit, involving cubic equations and 

elliptic integrals: 

      safaf 


  ,,0,,
2

3
3 ,    s  30  (24) 

and ap  where (–p) is the dominant and real zero of 
32*

1

3 23 ayHy   , and 

      





cos1

sin1sin
2,2,

1
,,

22



















 gEgFg

g
f  (25) 

F(, ) and E(, ) are incomplete elliptic integrals of the first and second kinds (e.g. 

Byrd and Friedman, 1971), respectively, and 

 
321 g ,      gg 2211 3   ,  

 
 










 






1

1
cos 1

g

g
 (26) 
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The constant a is determined from boundary conditions at the shoreline where  = 0 

From shoreline to tip, the same expression as Case I (i.e., Eq. (20)) holds and 31   : 

 2

03

2 2   ,    03    (27) 

 

Case IV: 

From toe to tip, the same form of equation as in Eq. (24) holds, but with coordinate 4: 

      safaf 


  ,,0,,
2

3
4 ,   s  40  (28) 

with constant a now determined from conditions at the tip, where  = 1 and 

  s4 . 

From toe to shoreline: 

     *

1
44*

1
cosh

sinh

cosh

cosh
1 HH 









 


 ,   04    (29) 

 

Inland head equations 

 

The equation for inland head in the confined aquifer beyond the toe in Cases I and III, 

depicted in Figs. 3a and 3b is 

   13,1    (30) 

whereas inland from the shoreline in Cases II and IV, shown in Figs. 3c and 3d, it is 

   04,2    (31) 

 

Eqs. (30) and (31) are linear in  and are used when one or two of the parameters , s 

and 
*

1H  are not known. For one unknown, values of head and distance at a single point 
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are required, the most likely case being to find  given s and *

1H . For two parameters 

unknown, values at two inland points are required. A third point will not produce any 

new information for finding three unknowns because of the linear equations for . 

 

Mathematical details of zone boundaries 

 

The specific expressions defining the borders between the regions for the different cases 

with parameters subscripted by t (for transition) are defined by: 

Border between Cases 1 and 2 (12): 

 *

132 Ht   ,   with fstst lL  (32) 

 

Border between Cases 1 and 3 (13): 

 *

1

*

10 396 HHst    (33) 

where 0 in terms of  is the real solution of  the cubic equation 

 02323 22

0

*

1

3

0  tH   (34) 

 

Border between Cases 2 and 4 (24): 

 
  
  



















*

10

*

10

*

10

2

*

1

*

1
1

11
log396

H

HH
HHst




  (35) 

with *

10 32 H  . 

 

Border between Cases 3 and 4 (34): 

      0,,0,,1
2

3
 sttt afaf

a



,  with     31*

1

2 123  Ha tt   (36) 
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The coordinates of the quadruple point P4 are 

     *

1

*

1

*

144 32,396, HHHs    (37) 

 

3. Numerical details 

 

Iterative procedures are required in calculating 0a  involved in expressions containing 

elliptic integrals. Bakker (2006) chose the robust, but slowly converging method of 

bisection. This works well because the behaviour of a is monotonic in both  and s, and 

a > 0. We adopt the more rapid Muller-Frank method (Muller, 1956; Frank, 1958; 

Matthews and Fink, 2004). Neither method requires function derivatives as opposed to 

Newton‟s method. However, computational speed is not an issue here with either method. 

For example, a grid of 400 x 400 point values for 0,  and a used in constructing the 

contours of Figs. 5a, 5b and 5c (with *

1H  = 0.1) needed a few seconds on a personal 

computer for the bisection method and approximately a sixth of that for the Muller-Frank 

method. All programming was done in FORTRAN using available software for 

computing incomplete elliptic integrals (Carlson and Notis, 1981). 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 19 

 

Figure 5. Contour plots (with 
*

1H  = 0.1) of the following parameters: (a) a (0 to 2.6 in 

steps of 0.1); (b)  (-2 to 0 in steps of 0.25, and then 0 to 1.5 in steps of 0.1); (c) 0 (0.2 to 

4 in steps of 0.2). 
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The contour plots of Fig. 5 are provided to show the behaviours of the quantities 0 and , 

necessary for describing the head-distance relationships as exemplified in Figs. 3a, 3b, 

3c, and 3d; and a, the mathematical constant underpinning the calculations of these two 

quantities. Superimposed on each of these contour maps are the zonal boundaries of Fig. 

4. In Fig. 5a, the boundary 13 joined with 24 defines the line a = 0. In Fig. 5b, when the 

toe coincides with the shoreline, the boundary 12 joined with 34 defines a line where  

= 0. The negative values of  correspond to the shoreline to inland toe distances for Cases 

I and III. The same joining of boundaries also defines where   10    as shown in the 

contours for 0 of Fig. 5c. All three contour maps show the expected continuity of values 

across zonal boundaries and the constancy of values for constant  outside the joined 

boundaries 13 – 24 (as shown on Fig. 4). 

 

A contour map of  produces similar contour shapes to those of Fig. 5a. However, it is 

more instructive to consider variations in s at constant  and plot values of a,  and a. 

This is done for  = 4 and shown in Fig. 6 with s covering the complete ranges of Cases 

III and IV. The interesting results are that as 24s , 0a ,   but 

*

123 Ha    for all 
*

1H , which in this case is 0.15. Other cross sections show the 

same form of curves and the same limiting values. The infinite value of  does not cause 

numerical problems because it only occurs separately from a as 1  in Eq. (26). 
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Figure 6. Values of a, β, βa with variable λs at constant μ = 4 and with 
*

1H  = 0.1. 

 

Additional iterations done by the Muller-Frank method are required in the next section 

for determining μ values given onshore head and distance values, as defined by Eqs. (30) 

and (31). 

 

Fig. 7 is included to show the effects of zone changes as 
*

1H  is increased. Contour plots 

analogous to Figs. 5a, 5b and 5c show the same general patterns, but compressed in 

accordance with the increasing compression of zones as shown in Fig. 7. 
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Figure 7. Zonal variations for 
*

1H  = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 

 

4. Comparison with results from SEAWAT 

 

An important requirement is to compare the sharp-interface analytical solutions with 

results from a more realistic model, such as SEAWAT. A limited comparison is made by 

taking the SEAWAT parameters and results from six models examined by Solórzano-

Rivas and Werner (2017). The parameter values are Hs = 20 m, H1 = 1 m, H = 10 m 

( 1.0*

1 H ), K = 10 m/d, Ls(1) = 20 m, Ls(2) = 3,000 m, Kv = {5, 1, 0.5, 0.01, 0.001, 

0.0001} m/d corresponding to the six models designated {M1, M2, M3, M4, M5, M6}, and 

vs = 0.025.  and Q0 are determined from inland head Eqs. (30) or (31), with h = 1 m 

relative to sea level, and inland distances |x(1)| = 100 m and |x(2)| = 490 m. Table 2 

shows comparisons between SEAWAT, aquitard with freshwater,  = 1, 
*

1H  = 0.1, 

designated „fresh‟, and Bakker‟s results for  = 0, 
*

1H  = 0. The meaning of Table 2 

designations, such as 3(1), is model M3 with Ls(1), x(1) and Kv value of 0.5 m/d. 
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Similarly, 6(2) is model M6 with Ls(2), x(2) and Kv value of 0.0001 m/d. The (s, ) 

coordinates shown in Fig. 4 of the six models, in sequence M1 to M6 , are: (0.373, 0.062); 

(0.622, 0.137); (0.756, 0.190); (0.916, 0.267); (1.484, 0.678); (1.963, 1.229). Figure 8 

compares interface distributions from the three approaches for the model 4(2) (i.e., model 

M4 with Ls(2), x(2) and Kv value of 1 m/d). 

 

Table 2. Comparison of results from SEAWAT and analytical solutions for aquitards 

containing freshwater (“Fresh”) or seawater (“Bakker”). 

Model Method Case Q0 (m
2
/d) Toe (m) Tip (m) 

 

1(1) 

SEAWAT 

Fresh 

Bakker 

 

1 

1 

0.3480 

0.3475 

0.3460 

-33.1 

-35.3 

-35.0 

1.8 

1.7 

4.6 

 

2(1) 

SEAWAT 

Fresh 

Bakker 

 

1 

1 

0.3417 

0.3413 

0.3384 

-31.9 

-34.1 

-33.6 

6.4 

6.2 

13.5 

 

3(1) 

SEAWAT 

Fresh 

Bakker 

 

1 

3 

0.3361 

0.3359 

0.3322 

-30.9 

-33.0 

-32.3 

10.9 

10.7 

20.0 

 

4(2) 

SEAWAT 

Fresh 

Bakker 

 

1 

1 

0.0675 

0.0667 

0.0658 

-129 

-153 

-148 

95.0 

91.6 

168 

 

5(2) 

SEAWAT 

Fresh 

Bakker 

 

1 

1 

0.0540 

0.0536 

0.0522 

-43.9 

-70.2 

-59.0 

472 

469 

722 

 

6(2) 

SEAWAT 

Fresh 

Bakker 

 

2 

2 

0.0308 

0.0307 

0.0296 

317 

285 

321 

1958 

1963 

2771 
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Figure 8. Interface between freshwater and seawater from SEAWAT (50% isochlor) and 

sharp-interface models (either freshwater (“Fresh”) or saltwater (“Bakker”) in the 

aquitard). The results correspond to model 4(2). 

 

The results in Table 2 show that for all six models the assumption of freshwater in the 

aquitard outperforms the assumption of seawater, by comparison to SEAWAT‟s 

estimates, for the seaward discharge (Q0) and the location of the tip. The average Q0 

discrepancy (analytical versus SEAWAT estimates) improves from 2% to 0.4% when the 

aquitard is presumed to contain freshwater instead of seawater. The higher Q0 obtained 

when freshwater is used for the aquitard salinity is the intuitive outcome of the lower 

head (and therefore reduced resistance) of the subsea boundary when the water density in 

the aquitard is lower. 

 

A marked improvement is obtained in the tip location, for which the average discrepancy 

reduces from 87% to 2% when freshwater rather than seawater is presumed for the 
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aquitard salinity. In the case of the seawater assumption, the more seaward tip location 

obtained using Bakker‟s (2006) seawater assumption is again caused by the higher head 

of the subsea boundary relative to the freshwater case, which requires a smaller outflow 

face. 

 

The average discrepancy in the analytically derived toe location increases from 11% to 

14% when the aquitard is presumed to contain freshwater instead of seawater, in 

contradiction to the tip and Q0 findings. Both the „Fresh‟ and „Bakker‟ analytical toe 

locations are landward of the SEAWAT toe location, with the freshwater model landward 

of the Bakker model. The latter trend is caused by the lower head in the aquitard in the 

fresh model, which leads to higher flow rates for a given inland boundary head, and 

therefore greater head losses (by Darcy‟s Law) and more landward toe positions. Added 

to this effect, dispersion is known to produce toe locations that are seaward of estimates 

obtained from sharp-interface methods (e.g., Mehdizadeh et al., 2014). Werner (2017) 

applied SEAWAT to seawater intrusion problems with dispersion parameters set to zero, 

in a similar manner to the current methodology, and found analytical-numerical 

discrepancies consistent with those encountered here, and that could be explained by 

minor levels of artificial dispersion in SEAWAT. We expect, similarly, that artificial 

numerical dispersion in the SEAWAT predictions have produced toe locations that are 

seaward of sharp-interface values. Further investigation is needed to determine the impact 

of artificial dispersion on toe values produced by SEAWAT to ascertain whether the 

freshwater or seawater (in the aquitard) assumption best reproduces the correct toe 

locations. Regardless, on balance of the results, the improvements in both Q0 and the tip 

location, from presuming that aquitard contains freshwater, more than offset the reduced 

accuracy in the toe location. 
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5. Concluding remarks 

 

Previous analytical models of the extent of freshwater in offshore coastal aquifers have 

presumed that the overlying aquitard contains entirely seawater. However, this 

assumption has been challenged in a recent numerical modelling analysis, which 

concludes that revised analytical solutions are needed that accommodate alternative 

salinities in the offshore aquitard. In response, the current study presents a revised 

analytical formulation for the extent of offshore fresh groundwater by including the 

offshore aquitard salinity as an input variable, potentially ranging from freshwater to 

seawater. Otherwise, the same assumptions as previous formulations apply; namely the 

Dupuit approximation, steady-state conditions, homogeneity, and geometric uniformity. 

 

Comparison of the new solution against numerical modelling confirms that the 

assumption of freshwater in the offshore aquitard outperforms the earlier seawater 

assumption, as suggested by Solórzano-Rivas and Werner (2017). In particular, the 

interface tip is well matched to the numerical results, compared to tip location errors of 

>100% when the aquitard is presumed to contain seawater. The freshwater assumption 

also produces slightly better estimates of freshwater discharge to the sea. Analytical 

values for the interface toe are landward of numerically derived estimates regardless of 

the presumed salinity in the aquitard. The fresh aquitard conditions produces slightly 

worse matches to numerical modelling relative to the assumption of seawater in the 

aquitard, although the effects of artificial dispersion in numerical estimates is expected to 

play a role in this comparison. Further work is needed to account for artificial dispersion 

in assessing the accuracy of analytically derived toe values. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 27 

 

Application of the proposed methodology requires consideration of coastline 

geomorphology, because in many cases, paleo-freshwater may occur in offshore aquifers, 

emplaced during historic glacial maxima. Offshore freshwater extents obtained with the 

current method neglect these sources of freshwater. An extension to the current method 

might include the evaluation of sea-floor sediment stability, whereby tidal fluctuations 

combined with vertical groundwater fluxes impact accretion/erosion rates. 
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Appendix A. Mathematical Analysis 

 

Cases I and II 

 

At the tip, 1,2 = , boundary conditions are 

  = 0 and u = 0   (A1) 

 

From Eq. (18), u = 0 requires  

  a = 0    (A2) 

 

Return to Eq. (19), and evaluate the indefinite integral with a = 0 as 

                              


*

1
2*

1

3
232

23
Hd

H





  (A3) 

 

Then 

 bH  *

12,1 96    (A4) 

 

From Eq. (19), 

 *

13 Hb      (A5) 

so that 

                                          *

1

*

12,1 396 HH   (A6) 

and from this 

              *

12,12,1 6
6

1
H   ,       2,10             (A7) 
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For all 0 , Eq. (18) gives 

 2*

1

332  Hu     (A8) 

 

In the transition between Cases I and II, with the toe at the shoreline, 

 1,2 = 0,  = 1, u = t  (A9) 

 

Eq. (A8) then provides 

          *

132 Ht      (A10) 

 

Case I 

At the shoreline, 1 = 0,  = 0 and u = , then Eq. (A8) gives 

                                                02323 22

0

*

1

3

0   H   (A11) 

a cubic equation in 0, given 
*

1H  and , and providing one real root and two complex 

conjugate roots. Eq. (A6) then gives an expression for : 

                                      
*

1

*

10 396 HH      (A12) 

 

For onshore confined flow, with qz = 0, Eqs. (9) and (13) reduce to 

 0
2,12,1





















 d

d

d

d
    (A13) 

which integrates to 

                              2

02,1

2 2    ,      02,1      (A14) 
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Distance  from interface to toe where  = 1 and 1,2 = – is determined from Eq. (A14) 

as 

 





2

1 2

0
      (A15) 

 

Case II 

 

At the toe, 2 = 0 and  = 1, then Eq. (A6) is also an expression for  as 

                                   *

1

*

1 396 HH           (A16) 

 

To find an expression for , the required differential equation is  

                                      
   

c

vHhh

dx

KHhd ss

*

1

2

2 
   (A17) 

or in dimensionless variables 

 *

12

2

2

H
d

d





    (A18) 

 

The general solution of this equation is 

                                            
*

1
22 HBeAe    

   (A19) 

 

Boundary conditions are (i)  = 0,  = 1 and (ii) 2 = 0, *

102 32 Hdd   . 

These determine A and B so that 

    *

1

*

10

*

10
22 1

2

1
1

2

1
HeHeH    

,  02       (A20)  
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With  2dd  at  2 , an expression for determining  then follows, as 

                  01
2

1
1

2

1 *

10

2*

10  HeeH     (A21) 

which solves as 

            
  
  



















*

10

*

10

*

10

2

1

11
log

H

HH




           (A22) 

 

With 2 = –, Eq. (A20) gives 

              *

1

*

10

*

100 1
2

1
1

2

1
HeHeH    

    (A23) 

 

Cases III and IV 

 

These cases have 0 . At the seaward end of the aquitard 

 s 4,3 ,   =     (A24) 

 

Returning to Eq. (19), the integration is now made explicit in the form 

                         









0

32*

1

3
4,3

232

3

y

constdy
yHy

y
  (A25) 

 

The lower limit, y0, can be changed at will, different values being absorbed into const. 

However, the square root of the cubic in the denominator suggests the use of standard 

expressions for elliptic integrals. This is achieved by first noting that the cubic can be 

factored as 

                 paypaypyayHy 323232*

1

3 23     (A26) 
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where p is real and the zeros of the quadratic in y are complex conjugates. If y0 is 

replaced by (–p), there is change of variable, y = –pt and introduction of parameter 

ap , then  

                    
    








1

324,3

112

3

a

bdt
ttt

ta

 


   (A27) 

 

b is a constant to be determined by boundary conditions. The integral is now in standard 

form for evaluation in terms of elliptic integrals. Using Eqns. (243.07) and (341.53) of 

Byrd and Friedman (1971), 

    
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where F(, ) and E(, ) are incomplete elliptic integrals of the first and second kinds, 

respectively, with normal ranges 20    and 10   . In this particular 

mathematical model,  may lie in the range  2  for which the elliptic integrals 

are expressed as       ,2,  FKF  and       ,2,  EEE , where 

K() and E() are respective complete elliptic integrals of the first and second kinds (e.g., 

Byrd and Friedman, 1971). The other quantities in Eq. (A28) are defined by 

321 g ,      gg 2211 3   ,  
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
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1
cos 1

  (A29) 

 

3,4 is now expressed in the compact form, for s  4,30 , 

   baf
a

 


 ,,
2

3
4,3        (A30) 
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and b is obtained from Eq. (A30) as 

  


 ,,0
2

3
af

a
b s     (A31) 

 

When  = 0 then  = 1 and all of the expressions above for 3,4 and f(, a, ) reduce to 

those of Bakker (2006). 

 

An important requirement is to determine the transition between Cases III and IV when 

the toe for each case coincides where 3,4 = 0,  = 1, and a,  and s are designated at, t 

and st, respectively. The non-linear equation for determining at follows from Eqs. (A30) 

and (A31) as 

                                      0,,0,,1
2

3
 sttt afaf

a



 (A32) 

 

Using the relationship between at and t given by Eq. (A8), with u = t as Eq. (A10): 

  *

1

3132 Hatt       i.e.     31*

1

2 123  Ha tt     (A33) 

which means that given st then t is found followed by at or vice versa. 

 

Case III 

 

Constant a is determined from the shoreline condition where 0 = ,  = 0 and from Eq. 

(18), 0 is determined from the real root of the cubic equation 

 02323 232

0

*

1

3

0   aH    (A34) 

together with 
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                                        0,,0,,
2

3
0  safaf

a



 (A35) 

 

Having found a, 0 is then calculated from Eq. (A34). The remaining quantity  is then 

found from Eq. (34) of Case I, but with this new 0: 

  





2

1 2

0
     (A36) 

 

For shoreline to toe, Eq. (A7) also holds: 

                                      2

03

2 2   ,       03     (A36) 

 

Case IV 

 

The differential equation defining  is the same as Eq. (A18) of Case II: 

  *

12

4

2

H
d

d





    (A37) 

with boundary conditions,  

         4 = 0,  = 1 

   d4 ,   4dd   (A38) 

providing the solution 

        *

1
44*

1
cosh

sinh

cosh

cosh
1 HH 









 


 ,   04    (A39) 

 

It is now required to find . This is achieved by first determining an equation for a using 

two expressions for 4 dd  from Eqs. (16) and (18), and the derivative of  Eq. 

(A39), at  = 1:  
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                        





cosh
tanh1132 *

1

*

1

3  HHa  (A40) 

 

Solving for „a‟ and noting that  = s – , then substituting in  

                          0,,0,,1
2

3
 


safaf

a
  (A41) 

provides a non-linear equation for . 

 

An expression for 0 now follows from Eq. (A39) with 4 = –: 

 
  *

1

*

1
0 tanh

cosh

1
H

H





 


   (A42) 

 

Notation (respective equation numbers given in brackets) 

 Presumed salinity of the offshore aquitard (0 is seawater, 1 is freshwater) 

 Cubic equation factor (24), (A27) 

 Dimensionless distance from the shoreline to the interface toe 

 Dimensionless freshwater head above sea level (12) 

0 Shoreline value of  

 Modulus of elliptic integrals (26) 

 Dimensionless horizontal length to the interface tip 

s Dimensionless horizontal length of the offshore aquitard (17) 

0 Shoreline value of u (17) 

u Dimensionless discharge (16) 

 Vertical thickness of freshwater in the offshore aquifer (7) 

 Dimensionless discharge (17) 
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 Modular angle of elliptic integrals (26) 

f Freshwater density 

s Seawater density 

 Dimensionless horizontal distance (12) 

1, …, 4  for Cases I, II, III and IV – see Figure 3 for respective origins. 

 Dimensionless vertical distance from the aquifer base to the interface (12) 

12, …, 34 Boundary values of  versus s, distinguishing Cases I to IV 

a Integration constant (15) 

A Coefficient of differential equation solution (A19) 

b Integration constant (19) 

B Coefficient of differential equation solution (A19) 

c H1/kv (10) 

d Distance from toe to shoreline 

E() Complete elliptic integral of the second kind 

E(,) Incomplete elliptic integral of the second kind (25) 

f(,a,) A function (25) 

F(,) Incomplete elliptic integral of the first kind (25) 

F3, F4 Two reference points (Cases III and IV) of coordinates (, s) 

g An intermediate variable (26)  

h Head of the freshwater region within the offshore aquifer (3) 

hl Freshwater head of a column of seawater above the top of the aquitard (1) 

hs Freshwater head of a column of seawater above the top of the aquifer (5) 

H Thickness of the offshore aquifer (12) 

H1 Thickness of the offshore aquitard (3) 

Hs Depth of seawater above the offshore aquitard (1) 
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H
*
1 Dimensionless aquitard thickness (13) 

K Aquifer hydraulic conductivity 

Kv Vertical hydraulic conductivity of the offshore aquitard 

K() Complete elliptic integral of the first kind 

lf Leakage factor (12) 

L Horizontal distance from the origin to the interface tip 

Ls Offshore aquitard horizontal length 

M1, …, M6 Six reference points of coordinates (, s), along boundaries 

p Root of cubic equation (24) 

P4 Reference point of coordinates (, s), at the intersection of Cases I to IV 

qz Vertical component of specific discharge through the offshore aquitard (3) 

Q0 Shoreline value of Qx (17) 

Qx Vertically integrated fresh groundwater discharge (8) 

t Integration variable (25) 

t (subscript) Subscript to indicate a parameter at the transition between Cases 

vs Dimensionless seawater-freshwater density difference (2) 

x Horizontal spatial coordinate 

y Variable in a cubic form (24) 

y0 Lower integration limit (A25) 

z Vertical spatial coordinate 

zs Elevation of the sea 

 




