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Highlights 

 

 Dissociative electron attachment to the group IV tetrachlorides; XY4 (X = C, Si, Ge). 

 Literature review of electron scattering from the group IV tetrachlorides; XY4 (X = C, Si, Ge). 

 Last of three papers on dissociative electron attachment to the group IV tetrahalides; XY4 (X = C, 
Si, Ge and Y = F, Cl, Br). 

 

Abstract: The current contribution constitutes the third and final part of our trilogy of papers on 

electron attachment reactions of the group IV tetrahalides; XY4 (X = C, Si, Ge and Y = F, Cl, 

Br). In this context we extend our previous studies on XF4 and XBr4 and report results for 

electron attachment to the tetrachlorides: CCl4, SiCl4 and GeCl4 in the incident electron energy 

range from about 0 to 10 eV. At the same time we give a summary of the currently available 

literature on electron interactions with those latter compounds. Upon electron attachment the 

formation of Cl−, XCl3
−, XCl2

− and Cl2
− is observed from all the tetrachlorides, and additionally 

the molecular anion SiCl4
− is observed from SiCl4. The main DEA contributions are observed 

through narrow, threshold peaks (at 0 eV) and we attribute these features to single particle 

resonances associated with the a1 symmetry LUMOs of those compounds. Contributions from 

another low-lying resonance, which we assign as a 2T2 shape resonance associated with the t2 

symmetry LUMO+1, is also observed in the ion yield curves for all the tetrachlorides. The 

energy of the peak position of those contributions varies in the range from about 1-2 eV, 

depending on the compound and the fragment formed. In addition to these low energy 

contributions, higher energy, fairly broad, features are observed for all the tetrachlorides. These 

contributions exhibit a peak in the energy range between 5 and 8 eV, again depending on the 

compound and the fragment formed. Further to the experimental data, we report DFT and 

coupled cluster calculations on the thermochemical thresholds for the individual fragments as 

well as the respective bond dissociation energies and electron affinities. These calculated values 

are compared with the experimental appearance energies and literature values, where they are 

available, with a quite fair level of correspondence being found. 
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1. Introduction 

 The current contribution is the third and last in our series of publications seeking to 

characterize negative ion formation from the group IV tetrahalides upon electron attachment. At 

the same time, we offer an overview of the literature on low energy electron interactions with 

those compounds. Note that our first contribution dealt with electron attachment to the 

tetrafluorides; CF4, SiF4 and GeF4 [1], while the second study dealt with the tetrabromides; CBr4, 

SiBr4 and GeBr4 [2]. In the current investigation, we report on our results for electron attachment 

to the tetrachlorides; CCl4, SiCl4 and GeCl4 and we compare these results to those from earlier 

measurements, where possible.  

Of the group IV tetrachlorides, CCl4 is indisputably the most widely studied in the past. Its 

synthesis dates back to 1839 [3], and already by 1910 a patent was filed for its use as a fire 

extinguishing agent [4]. Its main utility has, however, been as a solvent, most noticeably in dry 

cleaning and also as a degreasing agent. Furthermore, it has been used extensively in the 

synthesis of refrigerants and propellants, and as a processing agent in numerous large-scale 

industrial processes [5]. In addition, CCl4 has been used as a chlorine source in dry etching 

plasma processes [6]. Due to its ozone depletion potential, carbon tetrachloride was included in 

the Montreal Protocol in 1987 [7], and a prohibition on its use was agreed upon for developed 

countries by 1996 and by 2010 for article 5 countries (excluding an exemption for use as a 

processing agent). This was clearly an important step, as by 2008 CCl4 amounted to about 11% 

of all tropospheric chlorine [8]. In the context of its atmospheric degradation and its use in 

plasma processing, a number of studies have examined how electrons interact with this species 

and the nature of its electronic structure. With respect to silicon tetrachloride, it is most 

noticeably used in the electronics industry for semiconductor manufacturing and plasma 

processes, as well as in the production of optical fibres and photovoltaic devices [9-13]. 

However, SiCl4 is also an important intermediate in the production of polymeric silicone and 

other silicon based materials [14], [15]. Especially important is the use of SiCl4 for the 

production of high purity silicon materials, where a high vapour pressure makes it suitable for 

silicon purification through fractional distillation [16]. Finally, we note that germanium 

tetrachloride is predominantly used in the production of GeO2 containing glass in the core of 

fibre optics, where a high refractive index and low optical dispersion is essential [17]. It is also 

ACCEPTED M
ANUSCRIP

T



 4 

employed in the production of other high purity germanium and germanium based materials [18], 

[19]. 

For the interpretation of dissociative electron attachment (DEA) and assignment of the 

underlying resonances, total cross sections (TCS) for electron scattering and electron 

transmission spectra, along with quantum mechanical calculations are an important aid. The 

TCSs are the sum of the integral cross sections for all energetically accessible processes, and 

enable the upper limit of scattering cross sections for the respective molecules to be established. 

In general, they exhibit a rather broad minimum with a rise at lower energies and one or more 

maxima below about 20 eV. The former is referred to as a “Ramsauer minimum” [20] and the 

latter are predominantly attributed to short-lived shape resonances, i.e. the formation of 

temporary negative-ions (TNIs). Further information on the TNIs is usually obtained through 

their decay processes, one of which is reemission of the electron via either elastic scattering or 

inelastic scattering involving vibrational and/or electronic excitation. Another is dissociation, 

i.e., DEA. For further insight into the formation and decay of negative ion resonances the reader 

is referred to the following review articles [21-24] and references therein. For polyatomic 

molecules, these resonances are often barely visible in the cross sections for elastic scattering 

and even for vibrational excitation due to overlapping of the resonant and non-resonant direct 

scattering contributions. However, where such resonances are antibonding -in the current cases 

for these with X-Cl σ* character- their formation leads to the excitation of the X-Cl symmetric 

stretching vibrations. Thus dissociation of the parent negative ion may occur on a comparable 

timescale as autodetachment, leading to the observation of a stable negative ion fragment.   

For carbon tetrachloride the first TCS measurements for electron scattering were conducted by 

Holst and Holtsmark in 1931 [25]. In the 1980's and 1990's, further TCS measurements were 

reported by Szmytkowski et al. [26], covering the energy range from 0.5 to 200 eV, by Hamada 

and Sueoka [27] (0.7 to 400 eV), Jones et al. [28] (0.6 to 50 eV), Wan et al. [29] (0.2-12 eV) and 

Zecca et al. [30] (75 to 4000 eV). A review of all these data was given by Karwasz et al [31] in 

2003, which also included the experimental determination of backward scattering from CCl4 by 

Randell et al. [32] and theoretical work from Natalense et al. [33], [34] using the Schwinger 

Multichannel (SMC) method. Other theoretical work using the SMC method includes 

calculations of the elastic and rotationally inelastic cross sections by Varella et al. [35], and 

calculations of the integral and differential elastic cross sections by Azevedo et al. [36] and by 
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Moreira et al. [37]. Using a complex optical model potential formalism, Heng et al. [38], Shi et 

al. [39] and Gupta et al. [40] have also calculated the TCSs in the range from few tens of eV to 

5000 eV. The first experimental measurements of the elastic differential cross section for CCl4 

were reported by Daimon et al. [41] in 1983, along with independent atom model calculations, 

for the energy range from 70 to 400 eV. More recently, Jiang et al. [42] have used combined ab 

initio pseudo-potential calculations to obtain elastic and inelastic cross sections and Curik et al. 

[43] have calculated the elastic integral and differential cross sections, up to about 20 eV, using 

close-coupled equations and a parameter-free model of the electron-CCl4 interactions. However 

the only recent experimental electron scattering study we are aware of is the determination of the 

differential elastic scattering cross sections for CCl4, in the range from 1.5 to 100 eV, conducted 

by Limão-Vieira et al. [44] in 2011. Further, these authors derived elastic integral and 

momentum transfer cross sections from their differential measurements.  

Several studies of negative ion formation upon electron attachment to CCl4 have been reported. 

The earliest of these dates back to 1938, where Baker and Tate [45] reported negative ion 

formation from the interaction of 75 eV electrons with CCl4 vapour. In that study Cl− formation 

was found to be the most efficient dissociation channel, followed by Cl2
− formation whose 

intensity was about three orders of magnitude less. In addition the formation of C− and CCl− was 

also observed in that study [45], but with very low intensity. The Cl− formation was attributed to 

dipolar dissociation (DD), however, it is not clear if those experiments were conducted under 

single collision conditions. Thus DEA due to low energy secondary electrons, or primary 

electrons that have lost the bulk of their energy through inelastic scattering processes, may have 

also contributed.  In a later study by Reese et al. [46], DEA was found to lead to the formation of 

Cl−, Cl2
− and CCl3

− with the Cl2
− and CCl3

−
 production being about two and three orders of 

magnitude less efficient than the Cl− production, respectively. A further early study, 

concentrating on low energy Cl− formation from CCl4, was undertaken by Craggs et al. [47], 

where the author reported on Cl− formation through DEA and DD covering the range from close 

to 0 eV up to about 70 eV.  

In the meantime, the energy dependence of the Cl− ion yield at low incident electron energies 

was studied in detail by a number of groups and a consistent picture for the formation of Cl− 

from threshold (0 eV) up to about 2 eV emerged. Fox and Curran [48] reported the energy 

dependence of Cl− formation from about 0-4 eV, Chu and Burrow [49] from about 0 to 2 eV, 
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Olthoff et al. [50] from about 0 to 3 eV and Hickam and Berg [51] reported the temperature 

dependency of Cl− formation through DEA at incident energies below 4 eV. In this energy range 

the Cl− ion yield is found to be characterized by two overlapping low energy peaks. The first, 

dominant, contribution is at threshold (0 eV) while the second is close to 0.8 eV. In the 

temperature dependence study by Hickam and Berg [51], the lower energy peak showed a 

distinct reduction in intensity when the gas temperature was increased from about 353 K to about 

523 K. On the other hand, the higher energy peak was practically unaffected by the gas 

temperature. In another temperature dependence study by Spence and Schulz [52], however, a 

slight increase in the yield of the second peak was observed at higher temperature (1060 K). In 

two more recent low-energy studies by Matejcik et al. [53], [54], covering the temperature range 

from 300-550 K, the formation of Cl− from CCl4, at 0 eV and in the incident energy range around 

0.8 eV, was not found to depend on the temperature. This is in agreement with swarm studies, 

which exhibited no temperature dependency of the rate constant for Cl− formation from CCl4 and 

thus confirmed the absence of an activation barrier for this reaction [55-58]. Matejcik et al. [53] 

point out that the previous observations may be influenced by thermal decomposition of CCl4, 

leading to HCl formation and thus increased Cl−  formation at 0.8 eV [59]. The decrease in the 0 

eV intensity with increasing temperature, on the other hand, is ascribed to the T-0.5 temperature 

dependency of the number density of the molecular beam. In their studies, Matejcik et al. [53] 

also determined the relative cross section for Cl− formation below 1 eV, with an electron energy 

resolution of 11 meV, and found that the energy dependence of the cross section for Cl− from 

CCl4 approaches the 2πλ limit at few 10s of meV incident electron energy (λ is the de Broglie 

wavelength of the electron), showing the E-1 dependence predicted for the s-wave de Broglie 

cross-section [60]. These results are in good agreement with an earlier higher resolution (6 meV) 

study by Chutjian and Alajajian [61], using the threshold photoionization technique, and 

covering the electron energy range from about 0 eV to 140 meV. More recently the threshold 

behaviour of Cl− formation was further confirmed by Klar et al. [62], in an extensive laser 

photoelectron attachment experiment covering the electron energy range from about 0.8 meV, up 

to 173 meV with an electron energy resolution better than 1 meV. For a non-polar molecule, i.e., 

without permanent dipole, the polarizability governs the long-range interaction. In this case, 

which applies to CCl4, the Vogt-Wannier model predicts the s-wave attachment cross section at 

very low energies, (E → 0) to be proportional to E-1/2 [63]. This describes the low energy limit of 
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the semi-empirical formula later proposed by Klots [64]. In their high-resolution study, 

extending down to below 1 meV, Klar et al. [62] use a variation of the Klots formula, to fit the 

experimentally determined cross section. With this approach an excellent description of the 

energy dependence of the attachment cross section is attained for the whole energy range from 

about 0.8 to about 50 meV, i.e., up to the threshold for the first vibrational excitation at about 57 

meV. The cross section in this energy range varies from about 5.5 × 10−17 m2 to about 10−18 m2. 

The low energy limit described by the E-1/2 proportionality, however, is only approached below 

0.3 meV [62], which is outside the experimentally determined range in this study. For the exact 

functional forms used to reproduce the threshold behaviour of electron attachment to CCl4, the 

reader is referred to the original literature cited here above and Klar et al. [62]. For a critical 

account on available experimental data on electron attachment to CCl4 in the low 

energy/threshold region the reader is also referred to Klar et al. [62], which offers a 

comprehensive discussion on the threshold behaviour in electron attachment, models used to 

describe this and their agreement with experimental data.  

Furthermore, by using an extended laser photoelectron attachment approach, with post 

acceleration of the photoelectrons, Hotop and co-workers [65] determined the absolute cross 

sections for Cl− formation in the low energy range and for Cl2
− up to an incident electron energy 

of 2 eV. That work was conducted with an electron energy resolution of about 20 meV.  

In addition to these crossed-beam and photoelectron experiments, the low energy (thermal) 

electron attachment rate constants, for electron attachment to CCl4, have been measured in a 

number of swarm studies using different techniques [55-58, 66-71]. These include the flowing 

afterglow/Langmuir probe (FALP) technique [69], the use of a discharge flow system coupled to 

an electron paramagnetic resonance (EPR) spectrometer and a quadrupole mass spectrometer 

[70], a pulse sampling technique [71] and a pulse-radiolysis microwave-cavity technique [56]. 

For the low energy region the electron attachment studies agree well, revealing a fast and barrier-

less formation of Cl− and with rate constants/cross-sections close to the s-wave attachment limit 

at very low electron energies.  

From electron transmission spectroscopy (ETS) and Xα calculations ([49, 50, 72-74]) the first 

contribution, i.e., the threshold contribution, may be assigned to the formation of the 2A1 ground 

state anion, which lies just below the neutral ground state. The 0.8 eV contribution, on the other 

hand, is attributed to the triply degenerate 2T2 first excited state (LUMO+1) appearing at 0.94 eV 
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in the ETS [74] work. Further, it is worth noting from the very recent study by Li et al. [75] that 

they used the high intensity 0 eV Cl− channel to demonstrate the feasibility of studying neutral 

radical formation in DEA, i.e., CCl3 in this case. 

Dissociative electron attachment studies on the energy dependence and the branching ratios for 

the formation of fragments other than Cl−, at higher incident electron energies, are less abundant. 

To the best of our knowledge, these are confined to an investigation by Dorman et al. [76], 

conducted in the mid 1960's, and three investigations reported by the Illenberger group in Berlin 

in the 1980´s [77-79]. Those studies agree well with one another and report, in addition to Cl−, 

the formation of Cl2
−, CCl2

− and CCl3
−. From these anions, Cl2

− and CCl3
− are predominantly 

formed slightly above 1 eV, while CCl2
− is predominantly formed close to 6 eV. Here the 

contributions close to 1 eV largely coincide with the 2T2 resonance observed in the ETS at 0.94 

eV, however, a resonance coinciding with the 6 eV DEA contributions is not observed in the 

ETS. Nevertheless, the TCS measurements for CCl4 show a clear structure at about 7.5 eV, 

emerging from a broad contribution stretching to higher energies [27, 28, 80]. That structure is 

assigned to an E-symmetry shape resonance which is found to be located close to 9 eV in the 

partial cross section calculations by Curik et al. [43], and at about 8 eV in the Schwinger 

multichannel calculations by Moreira et al. [32] (at the static exchange approximation level). 

Due to competition with autodetachment, DEA ion yields are commonly shifted to lower 

energies, with regards to the respective resonance energies. This is especially true for high-

energy open channel resonances where the autodetachment rate may be very significant. The 6 

eV contributions in the DEA spectra for CCl4 may thus correlate with the TCS structure at about 

7.5 eV. We however note, that a shift of the ion yield towards lower energies with respect to the 

Franc-Condon overlap, is not general. Where the thermochemical threshold for the formation of 

the observed negative ion fragments is at higher energy or close to that of the onset of the 

respective resonance, a shift towards higher energies may be observed in the ion yield curves. 

This in turn, may explain the slight shift of the Cl2
− and CCl3

− low energy ion yield maxima as 

compared to the transition energy of the 2T2 resonance as observed in ETS. 

For silicon tetrachloride, we are only aware of two studies reporting the TCSs. The first was 

conducted in 1990 by Wan et al. [80], in the energy range from 0.2–12 eV, and the second in 

1999 by Mozejko et al. [81], reporting results from two different apparatus configurations in the 

energy range from 0.3 to 4000 eV. In addition to these mainly experimental studies, Tossell and 
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Davenport [73] and Modelli et al. [74] used the continuum MS-Xα method to calculate elastic 

and total electron scattering cross sections, respectively. Both these investigations covered the 

incident electron energy range up to about 6 eV.  Furthermore, Natalense et al. [33] employed a 

combined pseudo-potential, ab-initio technique to compute the integral elastic cross sections in 

the energy range from 0-40 eV, and Varella et al. [35] calculated the integral and differential 

elastic cross sections, as well as the rotationally inelastic cross-section, using the SMC method in 

the energy range between 0 to 30 eV. Elastic integral and differential scattering cross sections in 

the energy range from 20 to 2000 eV have also been calculated by Mozejko et al. [82], using the 

independent atom method (IAM) with a static-polarization model potential. More recently, 

Bettega et al. [83] extended their SMC calculations to compute elastic integral, differential and 

momentum transfer cross sections that cover the energy range from about 0 to 10 eV and the full 

180° scattered electron angular range. Finally, Verma et al. [84] calculated total inelastic and 

ionization cross sections for silicon tetrachloride in the energy range from the ionization 

threshold up to 5000 eV, using a spherical complex optical potential formalism for the total 

inelastic cross sections.  

Dissociative electron attachment studies on SiCl4 are more numerous than these just described 

above for the experimental scattering investigations, but most of them are incomplete with 

regards to the energy dependence of the branching ratios for the individual fragments formed. 

The first DEA study on SiCl4 was reported in 1947 by Vought et al. [85]. In that study the ion 

yield for Cl− and SiCl2
− was reported over the energy range from about 0 to 10 eV (but note their 

energy scale was not calibrated). Both fragments were observed at low energies, with Cl− 

apparently formed through two distinct resonances in the low energy region. Additionally, Cl− 

was observed at a higher energy, i.e., at about 10 eV, in the uncalibrated spectra.  Dorman et al. 

[76], on the other hand, reported the formation of both Cl− and Cl2
− in this energy range, with the 

Cl− contribution rising exponentially towards 0 eV without any apparent second contribution at 

these low energies. However, those authors found that both Cl− and Cl2
− exhibited a high-energy 

contribution peaking at around 7 eV, which for Cl− agrees at least qualitatively with the data 

from Vought et al. [85]. In addition to these fragments, Wilkerson and Dillard [86] observed the 

formation of the molecular anion SiCl4
− and the fragments SiCl3

−, SiCl2
−, SiCl−, Si− and Cl−, 

using an ionization source from a mass spectrometer tuned to low acceleration energies (not 

specified) and at an incident electron impact energy of 50 eV. These experiments were carried 
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out at fairly high pressures, so that low-energy secondary electrons and electrons that have lost 

considerable energy through inelastic scattering processes are also likely to play a significant 

role. At low pressures (< 10−5 Torr), Wang  et al. [87] observed the formation of the molecular 

anion SiCl4
− with a peak maximum at 0.5 eV, and Cl− with peak maxima at 1.8 and 7.8 eV. The 

fragment SiCl2
− was also observed in this experiment, but only at elevated pressure. In a later 

study by the same group, Papst et al. [88] observed the formation of Cl−, Cl2
−, SiCl2

− and SiCl3
−, 

through broad contributions with maxima in the range from about 7 to 9 eV, and an additional 

Cl− contribution between 0 and 3 eV. Except for the Cl− formation, however, this study only 

covered the energy range from about 4 to 12 eV, and thus does not shed any light on the low 

energy processes of the other anionic fragment formations. In a low pressure study by Moylan et 

al. [89], Cl− was again found to be the dominant fragment. In that study, it was produced through 

a fairly narrow contribution at about 2 eV and a broader contribution peaking close to 10 eV. In 

addition, the fragments Cl2
−, SiCl2

− and SiCl3
−, as well as the molecular anion SiCl4

− and the 

secondary product SiCl5
−, were observed. Importantly, however, those authors [89] stated: "Like 

earlier workers, we observed dramatically different product distributions under different 

conditions, with no clear trend as to which parameters affected which products.". The only other 

fairly complete study on DEA to SiCl4 is that of Jäger and Henglein [90]. They reported the 

observation of Cl−, Cl2
−, SiCl2

− and SiCl3
−, as well as the molecular anion SiCl4

−. The molecular 

anion is by far the dominant anion formed in that work, but all other fragments are also observed 

at 0 eV incident electron energy and through a contribution peaking between about 6 to 7 eV. 

Additionally, a peak in the Cl− contribution is observed at about 1.4 eV and in the SiCl3
− ion 

yield close to 1.7 eV. These experiments were, however, conducted at an elevated pressure of 10 

Torr, and are thus not representative for DEA to SiCl4 under single collision conditions. It is thus 

fair to say that the current data on negative ion formation from SiCl4 upon electron attachment is 

incomplete, contradictory, and does not allow for a consistent interpretation of the relevant 

processes.  

For germanium tetrachloride the only experimental electron scattering work known to us is the 

TCS measurement reported by Szmytkowski et al. in 1997 [91], for the energy range from 0.6 to 

250 eV. Theoretical calculations on electron scattering from GeCl4 are also limited in number. 

To our knowledge they are confined to the Xα TCS calculations by Guillot et al. [92] and 

Modelli et al [74], in the energy range from 0-6 eV, and calculations of the elastic integral and 
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differential scattering cross sections by Azevedo et al. [36] (0 to 30 eV), Joucoski and Bettega 

[93] (5-40 eV) and by Mozejko et al. [82]  (20 to 2000 eV) as well as the total inelastic and 

ionization cross sections recently reported by Verma et al. [84] for the range from the ionization 

threshold to 5000 eV. The first two studies of the elastic cross sections employ the Schwinger 

Multichannel method, the third uses the independent atom model with a static-polarization model 

potential, while as noted previously the total inelastic cross sections reported by Verma et al. 

[84] are computed using a spherical complex optical potential formalism. In addition to the 

elastic integral and differential scattering cross sections, Azevedo et al. [36] also reported elastic 

momentum transfer cross sections in the energy range from about 4-30 eV.  

Dissociative electron attachment studies on GeCl4 are also limited in number. The first studies 

were reported by Pabst et al. [88] and by Mathur et al. [94] in 1977 and 1979, respectively. The 

former [88] reports the formation of Cl−, GeCl2
− GeCl3

− and Cl2
− anions. All these fragments 

were observed through a broad contribution peaking at around 6 eV, while GeCl3
− is also 

observed through a narrower contribution peaking at about 2 eV. The later of these studies [94] 

reports on the formation of GeCl3
− in the collisions of GeCl4 with Cs,, with the energetics for 

GeCl3
− formation and the electron affinity of GeCl3 being discussed briefly. In addition to those 

original investigations we are also aware of two combined DEA/ETS studies. Guillot et al. [92] 

carried out a detailed electron transmission and dissociative electron attachment study, along 

with X-ray absorption spectroscopy (XAS), inner shell electron energy loss spectroscopy 

(ISEELS) and ab initio calculations. The ETS of GeCl4 shows two resonances, the first is found 

to be of t2-symmetry and is located at 1.72 eV while the second, weaker, one is of e-symmetry 

and is located at 5.6 eV. In their DEA study, Guillot et al. [92] detected three fragment anions: 

Cl−, GeCl2
− and GeCl3

−, each with a single peak at 0.0, 5.5 and 5.7 eV, respectively.  A later 

study by the same group (Modelli et al. [74]) confirmed those results. Although the energy 

dependence of the DEA fragment formation from GeCl4, reported by Guillot et al. [92] and 

Modelli et al. [74], is well substantiated, the lack of any ion contribution through the 1.72 eV t2-

symmetry resonance observed in their ETS is surprising. This is especially true when taken in 

context with CCl4 and SiCl4, where the corresponding t2-symmetry resonance apparently 

contributes markedly to the ion yield. Furthermore, the low intensity of their GeCl2
− signal and 

the lack of any Cl2
− ion yield is not in agreement with the earlier observations by Pabst et al. 

[88], where both these fragments were observed with appreciable intensity. 
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In the current contribution we report on measurements of electron attachment to the three group 

IV tetrahalides, in the energy range from 0 to about 10 eV. Appearance energies for each of the 

fragments formed are reported and compared with calculations of the respective thermochemical 

thresholds. Calculated electron affinities (EAs) for Cl, Cl2, XCl, XCl2 XCl3 and XCl4 and the 

bond dissociation energies (BDEs) for the sequential loss of the halogens are also presented. 

These values are compared with experimental values from the literature, where they are 

available. For CCl4 our data agrees well with previous measurements, and further substantiates 

the current understanding of DEA to this compound as was outlined above. For SiCl4 where, 

despite the number of available DEA studies, no consistent picture of those processes has 

emerged, we are able to provide reliable data and a consistent interpretation of the energy 

dependence of the anion formation upon electron attachment to this compound. Furthermore, we 

can also, at least partly, offer an explanation for the inconsistency of the previous data. Finally, 

for GeCl4 our data offers a complete picture of the anion formation upon electron attachment to 

this compound and clarifies the discrepancies between the earlier studies. 

The structure of the remainder of this paper is as follows. In Section 2 we provide details of our 

experiments and calculations, and any analysis tools we implement in order to assist us in the 

interpretation of the data. Thereafter, in Section 3, we provide our results and a discussion of 

those results for each individual compound. Finally, some conclusions are drawn in section 4. 

 

2. Methods 

2.1. Experimental 

All the present measurements were conducted using a crossed electron-molecule beam apparatus 

under single collision conditions. The instrumental configuration has been described in detail 

previously [95] and we thus only give a brief description here. A quasi-monochromatic electron 

beam is generated using a trochoidal electron monochromator (TEM) and crossed with an 

effusive beam of the molecules under investigation. For GeCl4 and SiCl4 the electron energy 

scale was calibrated based on the measurement of SF6
– formation from SF6, and O– formation 

from CO2. The peak position for SF6
–/SF6 is at 0 eV and the peak positions for O– from CO2 are 

at 4.4 and 8.2 eV, respectively [96]. For CCl4 both the Cl– formation from CCl4 at 0 eV, and O– 

formation from CO2, were used to calibrate the electron energy scale. The energy resolution of 

the electron beam was estimated from the full width at half maximum (FWHM) of the 0 eV SF6
– 
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signal from SF6 and of the Cl– signal from CCl4. The so measured resolution was in the range 

from 110 to 130 meV during the current measurements.  

Negative ions produced in the reaction chamber were extracted with a weak electric field (< 1 

V/cm) and analysed and detected with a quadrupole mass spectrometer (Hiden EPIC1000). Ion 

yields were recorded with the quadrupole mass filter set to allow only transmission of one mass 

and by scanning the electron energy. The background pressure prior to the experiments was 

~6x10-8 mbar and the experiments were conducted in the working pressure range from 5x10-7 to 

2x10-6 mbar. The only exception to that is for the Cl¯/CCl4 measurement, where we used a 

working pressure of ~8x10-8 mbar. All experimental measurements were carried out with the gas 

inlet system at room temperature, however, to avoid condensation of residual molecules on the 

electron lens components the monochromator was maintained at ~393 K. The compound GeCl4 

was purchased from Sigma Aldrich with a stated purity of 99.99%, SiCl4 was purchased from 

Strem Chemicals with a stated purity of 99.9999% and the compound CCl4 was purchased from 

Merck with a stated purity of >99%. SiCl4 and GeCl4 were used without further purification, 

while CCl4 was distilled over P2O5 prior to use. While CCl4 is stable at ambient conditions, SiCl4 

and GeCl4 readily hydrolyse in contact with air. To avoid any hydrolysis, as far as this is 

possible, these samples were pre-loaded into a sample vessel terminated with a ball valve in a 

nitrogen filled glove box. The valve was then attached to the inlet system, below a second ball 

valve, and the void between both valves was pumped out through the vacuum chamber, before 

opening the valve sealing the sample vessel. The molecular flow into the reaction chamber was 

controlled using a precision leak valve (MDC vacuum products). Finally, note that special care 

was taken to bake out the inlet system prior to attaching the sample holder. 
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2.2. Appearance energies  

The appearance energies of the negative ion fragments observed in DEA are not directly related 

to the corresponding threshold energies for the respective fragment formation. Rather, they 

describe the low energy region of the respective resonances, where the transition probability 

within the Frank-Condon region becomes non-zero and the lifetime of the temporary negative 

ion formed is sufficient for dissociation to occur [97]. A direct relation to the respective 

threshold energies is thus only to be expected when these are higher than the onset of the 

respective resonances. Furthermore, the current experiments were conducted at room 

temperature and thereby constitute a Maxwell-Boltzmann distribution of internal energies with a 

most probable value of about 180 meV. This internal energy, along with the finite energy 

resolution of the electron beam (110 - 130 meV), may cause the measured AEs to be below the 

actual threshold energy values, even if they are above the energy threshold of the respective 

resonances. 

In our previous contributions on the group IV tetrafluorides and tetrabromides [1, 2], the 

appearance energies for the anions observed were determined by fitting the onset of the ion yield 

curves with a Wannier type function [98] of the form:  

 𝑓(𝐸) = 𝑏 + 𝑐(𝐸 − 𝐴𝐸)𝑝.    (1) 

Here 𝐸 is the incident electron energy, 𝑏 is a constant to account for any background signal, 𝑐 is 

a scaling factor, 𝐴𝐸 is the appearance energy of interest and 𝑝 is the Wannier exponent. To 

account for the energy resolution of the incident electron beam, this threshold function was 

convoluted with a Gaussian function with the same FWHM as the energy resolution of the 

electron beam during the respective measurements. The internal energy distribution was not 

explicitly taken into account here.  

For the sake of self consistency, we adhere to this approach for the determination of the AEs of 

the negative ion fragments from the group IV tetrachlorides reported in this study. This is, 

however, as stated previously [1, 2], a functional form that does not bear physical meaning to the 

DEA process. In fact, this functional form was derived to describe the electron impact ionization 

of atomic targets [99], but has since become commonly used to determine ionization energies 

and AEs in dissociative ionization of molecular targets [100-102].  

For comparison we have also determined the appearance energies through linear fits to the 

respective ion yield curves, as we did in our contribution on the group IV tetrabromides [2]. 
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Here, however, we take the baseline-interception of a linear fit to the ion yield onset region as 

the AE lower limit, and a linear fit to the rising edge of the peak as the AE upper limit, with the 

stated AEs being the average of these two values (see S1). This approach is bound to be 

somewhat subjective and for transparency, representative examples of such linear fits, and of the 

fits using equation 1, are shown for all fragments as supporting material (Figure SI 1). Note that 

results from the two approximations are largely consistent within their combined uncertainties. 

Only linear fits were used to determine the AEs for overlapping peaks and where the signal 

intensity and/or signal to noise ratio was very low. This is indicated in the respective tables. Only 

one data set is behind the AEs determined for GeCl3
− and CCl3

−. For Cl2
− from GeCl4 and for 

SiCl2
− and the high-energy contribution from SiCl3

− two data sets are behind the reported AEs. 

All other fits were performed on three independent data sets. The error margins are estimated 

from the standard deviation of the mean of the AEs derived from these data sets. For GeCl3
− and 

the high energy CCl3
− contribution the reported error margins are those from the uncertainty 

determined from the fitting of the respective ion yield curves. In some cases, the uncertainty 

determined is < 0.1 eV. Where this is the case, we report a lower limit uncertainty of 0.1 eV in 

the derived AEs. Please note that a low signal to noise ratio contributes significantly to the 

determined uncertainty, and therefore the quoted error margins are higher when the ion yield 

signal is low. Finally, where impurity signals overlap with the onset of the ion signals the AEs 

are simply estimated from a linear fit to the rising edge of the respective signals.  

2.3. Calculations 

All threshold energy calculations were performed using the ORCA computational chemistry 

software [103]. The total energy of the parent molecules and relevant neutral and charged 

fragments were calculated using both DFT (B2PLYP) [104] and coupled cluster (CCSD(T)) 

[105] methods. The functional B2PLYP was originally selected for our previous study on the 

group IV tetrabromides based on the performance of B2PLYP in a thorough benchmarking study 

with number of functionals for the calculation of thermochemical properties of compounds 

composed of main group elements [106]. We found that this functional performed well in 

predicting the thermochemical thresholds for negative ion formation through DEA to GeBr4, 

SiBr4 and CBr4 except for the very low intense contribution of CBr2¯/CBr4 and SiBr3¯/SiBr4. For 

consistency, we used the same functional here, however, as we found that this functional 

apparently overestimated some of the threshold values we additionally used a coupled cluster 
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(CCSD(T)) approach for comparison (see discussion in the results and discussion section). The 

6-31G basis set [107] was used for B2PLYP calculation, while an extrapolation of aug-cc-pVTZ 

and aug-cc-pVQZ [108] was used for the CCSD(T) calculation. The zero-point energy (ZPE) 

contributions were calculated for all multi-atom fragments and included in the total energy. 

Thermochemical thresholds for all the negative ion fragments were calculated by subtracting the 

ground state minimum energy of the negative ion and neutral fragments from the minimum 

energy of the ground state parent molecule. The electron affinities (EAs) of the fragments were 

calculated by subtracting the total energy of the ground state neutral fragment from that of the 

respective anionic fragments. Bond dissociation energies were then derived by subtracting the 

electron affinity of the fragment formed from the threshold energy for the relevant process.      
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3. Results and discussions 

The group IV tetrachlorides, XCl4 (X = C, Si and Ge) all have tetrahedral symmetry with X as 

the central atom and thus belong to the td symmetry group. Optimized bond angles between 

adjacent X−Cl bonds are that of a tetrahedron; namely 109.47°. The optimized bond lengths 

between the central atom and the Cl atoms in CCl4 is 1.762 Å; in SiCl4 it is 2.018 Å and in GeCl4 

it is 2.117 Å [109]. In order of increasing energy the occupied valence orbitals of XCl4 are 

expected to be; ...a1
2, t2

6, a1
2, t2

6, e4, t2
6, t1

6 [110]. From these the two lowest-lying orbitals; a1 and 

t2 are bonding X−Cl σ orbitals, while the remaining are non-bonding orbitals with mainly 

halogen lone-pair character [110]. The first two unoccupied virtual molecular orbitals of XCl4 

are both anti-bonding X−Cl σ* orbitals. The first of these, the LUMO, is of a1 symmetry while 

the LUMO+1 is a triply degenerate molecular orbital of t2 symmetry. Correspondingly, 2A1 and 

2T2 single particle negative ion resonances associated with the low-lying a1 and t2 molecular 

orbitals may be expected. Similarly two-particle-one-hole resonances of T1 and T2 symmetry, 

formed through electron excitation from the bonding t1 HOMO and t2 HOMO−1 to either the a1 

LUMO or the t2 LUMO+1 might also be anticipated.  

3.1 Carbon tetrachloride 

Figure 1 shows the energy dependence of the negative ion yield for all ion fragments observed 

upon electron attachment to CCl4 in the energy range from about 0 to 10 eV. The vertical arrows 

indicate the appearance energy of each anion, determined from the Wannier type fits as outlined 

in section 2.2. In addition, dotted-line arrows show the thermochemical thresholds of each anion 

as calculated at the CCSD(T) level of theory.  

From Figure 1 it is apparent that electron attachment to CCl4, in the energy range from 0 to 10 

eV, leads to the formation of Cl−, Cl2
−, CCl2

− and CCl3
−. The molecular anion CCl4

− is not 

detected, which is in accordance with the short life-time of the TNI formed upon electron 

attachment. Kalamarides et al. [111] determined the lifetime of the CCl4
− TNI formed, through 

electron transfer in collisions of CCl4 with K(nd) Rydberg atoms, and found it to be about 30 ps. 

In our experiment, the extraction field in the ionization region does not exceed 1 V/cm, resulting 

in an extraction time of about 10 μs and the flight time through the quadrupole mass filter is on 

the order of 50 μs. Hence, the lifetime of the CCl4
− TNI is considerably shorter than our window 

of observation.  
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Figure 1. Dissociative electron attachment ion yield curves for CCl4 in the energy range from ∼0 to 10 eV. The 

solid-line arrows indicate the appearance energy (eV) determined from the fitting to the rising part of the ion yield 

curves using a Wannier type function except for the Cl− negative ion yield curve where the appearance energy is 

determined from the linear fits (see Section 2.2). Dotted-line arrows show the threshold energy (eV); Eth, calculated 

at the CCSD(T) level of theory. Intensity shown on the y axis is normalized with respect to the pressure.  

In good agreement with previous experiments we find that the most efficient channel is the 

formation of Cl− at threshold. This channel is characterized by a narrow-width peak at 0 eV 
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incident electron energy.  A second contribution is also observed in the Cl− ion yield peaking at 

about 0.8 eV with an intensity that is in the current experiment about 1/20th of that observed for 

the 0 eV peak. The positions of these low-energy features in the ion yield for Cl− agree well with 

previous studies [48, 50, 51, 53, 77, 79]. Their relative intensities are also in qualitative accord 

with what has been reported previously, in experiments with similar energy resolution and 

detection systems. However in general these intensities cannot be compared directly between 

different experiments, especially when the electron energy resolutions and extraction optics 

differ. The absolute cross section for the Cl− formation in the low energy region has, however, 

been determined in previous studies [53, 65], and is found to be about 5×10−20 m2 for the second 

contribution at 0.8 eV. At about 10 meV impact energy the cross section is about 1×10−17 m2 

[62], and it approaches the 𝜋𝜆2 ∝  𝐸−1 limit for s-wave attachment [112] at very low incident 

energy. An excellent fit to this data was achieved by Klar et al. [62] with a modified form of the 

Klots formula [64] converging towards the E−1/2 dependence at very low energies (below 0.3 

meV), as is discussed in the introduction here above. For a comprehensive discussion on the 

energy dependence and absolute cross sections for Cl− formation from CCl4, at energies below 

about 1 eV, the reader is referred to reference [62] and references therein.  

From Xα calculations, the 2A1 anionic ground state of CCl4
− is expected to lie about 0.5 eV 

below threshold, and the triply degenerate 2T2 resonance is expected to be at about 0.94 eV [74]. 

This is in good agreement with ETS studies [49, 50, 72], where only one clear transition is 

observed for CCl4 at 0.94 eV and is assigned to that 2T2 shape resonance. The 2A1 resonance, on 

the other hand, is not observable in ETS as it is energetically below threshold. Both swarm [55, 

66, 68], and high-resolution photoelectron and beam studies [62, 65], however, show very high 

rate coefficients/cross sections for the Cl− formation at threshold. Correspondingly, the 0 eV 

contribution in the Cl− negative ion yield is attributed to the 2A1 resonance while the contribution 

at around 0.8 eV is assigned to the 2T2 resonance associated with a single electron occupation of 

the t2 symmetry LUMO+1. 

Further contributions to the Cl− yield are observed at higher energies, through a peak maximum 

at around 6 eV, followed by a continuous contribution above that energy. This contribution 

gradually increases with an increasing incident electron energy before levelling off. In this 

energy range the total scattering cross sections exhibit a broad peak with a maximum at around 

7.5 eV, and a significant shoulder towards higher energies [26-28]. Furthermore, calculations by 
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Tossell and Davenport [73] and more recently by Curik et al. [43], locate a broad E-symmetry 

resonance at about 9 eV. Note that this feature is found at about 8 eV in the Schwinger 

multichannel calculations performed at the static-exchange approximation level by Moreira et al. 

[32].  

Generally, high-energy shape resonances may appear in the DEA ion yield with a significant 

shift towards lower energy due to the competition between autodetachment and dissociation 

mechanisms [97]. Therefore, from the electron scattering TCS result of CCl4, it may be 

appropriate to assign the high-energy resonance feature centred at about 6 eV in the Cl− yield to 

an E symmetry shape resonance apparent at about 7.5 eV in the total scattering cross sections. 

However, we note that core excited resonances cannot be excluded at this impact energy. Finally, 

the non-resonant high-energy contribution, above 6 eV in the Cl− ion yield, is attributed to 

dipolar dissociation.  

In addition to Cl¯, we observe the formation of Cl2¯, CCl3¯ and CCl2¯ through DEA in the 

energy range from 0 to about 10 eV (see Figure 1). In Table 1 the appearance energies and the 

peak maxima for the individual negative ion contributions are listed, along with the results from 

the current CCSD(T) and B2PLYP DFT calculations of the thermochemical thresholds for the 

formation of the respective ions. For comparison, appearance energies and peak intensity energy 

values reported in the earlier, energy calibrated, study by Scheunemann et al. [77] are also listed 

along with the peak values we estimated from the ion yield curves reported by Oster et al. [78].  

The ion yield curves for the fragments Cl2¯, CCl3¯ and CCl2¯ (shown in Figure 1.) are all 

similar, with a low energy contribution peaking at 1.2, 1.3 and 1.8 eV, respectively. We attribute 

these contributions to the triply degenerate 2T2 resonance observed at about 0.94 eV in the ETS 

[74]. The shift towards higher energy, as compared to the Cl¯ formation at 0.8 eV, and along the 

lines AE(Cl2¯) < AE(CCl3¯) < AE(CCl2¯), is attributed to the progressively higher 

thermochemical thresholds for the respective processes. We have calculated the threshold 

energies for these processes at the B2PLYP and CCSD(T) level of theory, assuming that the 

neutral counterpart to Cl2¯, i.e., CCl2, stays intact. For CCl2¯ the threshold is calculated both 

under the assumption that this fragment is formed through the loss of Cl2 and through the loss of 

two Cl atoms (see Table 1). Compared to the experimental AEs determined using a Wannier fit 

to the ion onset region, the thermochemical thresholds calculated at the CCSD(T) level of theory 
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are in all three cases about 0.5 - 0.6 eV above the experimental appearance energies. The 

thermochemical thresholds calculated at the B2PLYP DFT level of theory are somewhat lower in 

value than those calculated at the CCSD(T) level of theory, but are in all three cases still about 

0.4 eV above the experimental appearance energies. Despite the fact that the available thermal 

energy at room temperature (about 180 meV) is not accounted for in the 0 K thermochemical 

threshold values reported, and that allowance should be made for the accuracy of our AEs, the 

calculations still clearly overestimate the respective thermochemical threshold values. This is 

apparent in Figure 1, where the CCSD(T) thresholds are indicated by arrows with dashed lines. 

In all three cases, the CCSD(T) thresholds occur in  the rising edge of the respective peaks and 

are already about 0.4 - 0.6 eV above the onset. This overestimate is less at the B2PLYP DFT 

level of theory, which one would a priori expect to be the less accurate approach. We note, 

however, that the values reported here are the reaction enthalpies and as the entropy term is 

positive in these dissociation reactions, the −TΔS contribution to the free energy values, ΔG, 

shifts these to lower energies as compared to the ΔH values reported here. Nonetheless, the 

threshold energies calculated here can provide a reliable basis for the interpretation of the low 

energy contributions. In this context, the low intensity CCl2¯ contribution, peaking at about 1.8 

eV, must be attributed to dissociation to CCl2¯ and Cl2. The higher energy peak at about 6.1 eV, 

on the other hand, is well above the threshold for dissociation to CCl2¯ and two chlorine atoms, 

which we consider to be the more likely process at these energies. Likewise the formation of 

Cl2¯, peaking at around 1.3 eV, is below the threshold for any further dissociation of the neutral 

CCl2 counterpart, although further dissociation through the higher energy contribution peaking at 

about 6.1 eV cannot be excluded. The same applies for Cl¯ formation. In this case it is also 

worth mentioning that in a recent study by Li et al. [75], the energy dependence of the formation 

of the neutral CCl3 counterpart was studied in the energy range from about 0 to 3.0 eV and was 

confirmed to reflect the Cl¯ formation at these energies. For completeness, Table 2 lists the 

adiabatic electron affinities of CCln (n = 1-4), Cl and Cl2 as well as the respective BDEs 

calculated by us at the B2PLYP and CCSD(T) level of theory. Where available, these results are 

compared to selected experimentally determined values from the literature.  

 

For the electron affinity of CCl3 and CCl2, B2PLYP delivers lower values than the CCSD(T) 

approach. On the other hand for the respective BDEs; CCl3–Cl and CCl2–Cl, B2PLYP is higher 
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in value in both cases. As the calculated threshold energy values are the difference between these 

values, they are accordingly lower at the B2PLYP level of theory for both CCl3¯ and CCl2¯. 

Comparison with the experimentally determined electron affinity of Cl (see Table 2), which 

should be a reliable reference, shows that while both approaches overestimate this value, the 

CCSD(T) result is a little closer in value to the experimental EA. The Cl–Cl BDE, on the other 

hand, is overestimated by about 0.1 eV at the CCSD(T) level of theory, while the B2PLYP value 

is about 30 meV below the well-established literature value. Nonetheless, the results embodied 

within Table 2 do suggest that both present calculations typically do a good job in reproducing 

the available experimental results. In this context, it is also worth mentioning that recent 

calculations by Grein [109], at the MP2/6-311 + G(3df) level derive a value of 0.82 eV for the 

electron affinity of CCl4. This is 0.08 eV above our CCSD(T) value and 0.05 eV below our 

B2PLYP value, and therefore in fair agreement with our results. 

In summary, Cl¯ formation from CCl4 through DEA in the low energy range (less than about 2 

eV) is a well-studied process [48-50, 62, 65], as is discussed in the introduction and here above. 

Dissociative electron attachment to CCl4 at higher energies is less studied and the only other 

energy-calibrated studies reported, with an energy resolution comparable to the current, were 

conducted by Illenberger's group in the 90's [77-79]. The current observations are in good 

agreement with results from previous studies, with the exception that neither the dipolar 

dissociation observed here in the Cl¯ ion yield, nor the CCl3¯ contribution at around 6 eV, is 

reported in those studies by the Illenberger group. Special attention was thus given to these 

channels and we find that the CCl3¯ contribution at about 6 eV from CCl4 is very week and 

depends strongly on the potentials of the ion extraction optics of our setup. We attribute this to 

the fact that the ions are focused in to the quadrupole mass spectrometer (QMS) through a finite 

aperture and at low extraction voltages. This causes certain discrimination of fragment ions with 

high kinetic energy component perpendicular to the extraction axis. This is general for crossed 

beam setups using a TEM in combination with a QMS and may explain the different 

observations in the current study as compared to that of the Illenberger's group (for this 

discrimination effect see e.g. ref. [121]). Similarly, dipolar dissociation (DD) leading to Cl¯ was 

not observed in the previous gas phase study by the Illenberger's group covering the relevant 

energy range. However, Reese et al. [46] report a contribution to the Cl¯ yield at around 13 eV 

in an early study and attributed this contribution to DD. Similarly Craggs and McDowell [122] 
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report Cl¯ formation from CCl4 with an AE of 12.2 eV and a minimum kinetic energy of 0.5 eV 

for Cl¯ in the process.  Furthermore, in electron stimulated desorption (ESD) from CCl4 

condensed on gold surface, a clear, rising Cl¯ contribution is observed above about 10 eV, 

apparently through DD [123]. We note that in the ESD study additional structures are also 

observed above 6 eV that may additionally contribute to the Cl ion yield in the current study. 

Most likely this apparent disagreement with the previous study by the Illenberger’s group is also 

due to high kinetic energy release (perpendicular to the extraction axis) in the DD channel. In the 

current experimental setup, we do not have the means to study the kinetic energy release or the 

angular dependence in these processes and the setup does not allow for total ion collection. 

However, the currently available velocity slice imaging or momentum imaging instruments (see 

e.g. ref. [124] and refs. therein) would be well suited to remove all ambiguity with regards to 

these ion yields. Finally, we note that the CCl3¯ and Cl¯ ion yields shown in Figure 1 are spectra 

where the best balance between the resolution and ion yield over the full energy range have been 

achieved.  

Overall, we would characterize DEA to CCl4 as being a well-studied process, offering a fairly 

complete and consistent picture of low energy electron attachment to CCl4 in the energy range 

from about 0 - 10 eV.  

3.2 Silicon tetrachloride 

Figure 2 shows the energy dependence of the ion yield for all the negative ions we observed 

upon electron attachment to SiCl4, in the energy range from about 0 to 10 eV. The vertical 

arrows again denote the appearance energy, as determined by a Wannier fit to the onset region 

and as outlined in section 2.2  
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Figure 2. Negative ion yield curves for electron attachment to SiCl4 in the energy range from ∼0 to 12 eV. The 

arrows indicate the appearance energy (eV) determined from the fitting to the rising part of ion yield curves using a 

Wannier type functional except for Cl− low energy negative ion yield curve where the appearance energy is 

determined from the linear fits (see Section 2.2). Intensity on the y axis is normalized to the pressure during the 

respective measurements. The regions highlighted in grey arise from impurities. See the text for further details.  
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In Table 3 the appearance energies and the energies of the intensity peak maxima for individual 

negative ion contributions are listed along with results from the current CCSD(T) and B2PLYP 

calculations of the thermochemical thresholds; Eth, for the formation of the respective ions. In 

addition to the AE values from the Wannier type fits, those derived by linear fits, as also 

described in section 2.2 are shown in parenthesis in the Table. For comparison, AEs and peak 

values reported in earlier energy calibrated studies are also listed in Table 3.  

Similar to CCl4, dissociative electron attachment of SiCl4
 leads to the fragments Cl−, Cl2

− SiCl2
− 

and SiCl3
−. Additionally, the molecular anion SiCl4

− is observed with an appreciable intensity 

through a narrow contribution at threshold 0 eV. Note that in Figure 2 the contributions below 

about 1 eV, in the ion yields for Cl−, SiCl2
− and SiCl3

−, are plotted in grey; signifying that we 

attribute these to impurities formed in the SiCl4 sample during measurements. This latter point is 

substantiated in more detail below.  

From electron attachment to SiCl4, Cl− and the complementary ion SiCl3
− are formed through a 

low energy resonance resulting in distinct maxima in their ion yield curves at 1.8 and 2.1 eV, 

respectively. At the CCSD(T) level of theory, the thermochemical thresholds for these processes 

are found to be 1.13 and 1.74 eV, respectively. For Cl− the CCSD(T) value is lower but in good 

agreement with the experimentally determined AE. The threshold from the B2PLYP calculation 

is even lower still (0.77 eV). For the SiCl3
− formation the calculated thresholds are about 0.1 eV 

higher than the AE determined with the Wannier fit, which is nonetheless well within the error 

margins for the respective AEs. In addition to the low energy Cl− and SiCl3
− contributions, these 

ions are also formed from SiCl4 through a broad high-energy contribution peaking at 7.1 eV in 

the Cl− yield and at 6.9 eV in the SiCl3
− yield. The fragments Cl2

− and SiCl2
−, on the other hand, 

are only observed through the higher-energy features whereby both fragments exhibit a 

maximum at around 7.7 eV. The AEs for these contributions, and the low energy features 

discussed above, agree well with those reported by Jäger et al. [90], except for the fact that Jäger 

et al. observe additional contributions in all their ion yields at 0 eV. We attribute these additional 

signals to impurities formed through hydrolysis of SiCl4, as we discuss later in section 3.2.1, and 

we do thus not include them in Table 3. The agreement with the AE reported by Wang et al. [87] 

for the Cl¯ formation is good for the low energy contribution, but the AE for the high-energy 

contribution reported by Wang et al. is about 0.8 eV higher than the current value. With respect 

to the energy position of the peak maxima, however, the agreement is generally marginal (see 
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Table 3). While there is a fair agreement with most of the values reported by Jäger et al. [90], all 

of Jäger et al. [90], Wang et al [87] and Moylan et al. [89] show the SiCl4
− formation to peak 

significantly above threshold, i.e., at 0.5, 0.3 eV and 2 eV respectively, whereas we find it to be 

at 0 eV. The peaks of the higher energy contributions determined in these earlier studies are also 

generally somewhat higher in energy than those reported here, though the present peak 

maximum for the low energy Cl− formation at about 1.8 eV agrees well with all those studies as 

well as with that of Pabst et al. [88].    

Wan et al. [80] reported ETS, and TCS data, for all of the chloro- and teterahalo-silanes in 1989. 

For SiCl4 their ETS shows a weak but distinct resonance close to 1.3 eV, two prominent 

resonances at 2.2 eV and at about 5.5 eV, respectively, and a broad less distinct resonance close 

to 9 eV. Note that in their TCS the 1.3 eV resonance appears as a low-energy shoulder on the 

prominent 2.2 eV peak. The authors assign the 2.2 eV contribution to the t2 symmetry LUMO+1, 

but the 1.3 eV feature and the higher-energy resonances at about 5.5 and 9 eV are left 

unassigned. In conjunction with the 1.3 eV contribution, the authors [80] point out that the total 

symmetric a1 orbital does not give rise to a centrifugal barrier and should thus not appear in ETS 

above threshold. Further, they conjectured that splitting of the triply degenerate t2 orbital might 

be a possible source of the low energy contribution in the ETS. However, based on quantum 

chemical calculations, they conclude that this splitting would be insufficient to support that 

interpretation. In a later publication by the same group [125] this assignment is revisited in 

conjunction with electron impact inner shell excitation of the chlorosilanes, including SiCl4. 

Based on their inner shell excitations (and in light of previous observations of ETS features 

associated with the a1 orbitals in halogenated compounds) the authors reassigned the 1.3 eV 

resonance to the a1 LUMO of SiCl4. In a later study, Modelli et al. [74] reported ETS and ion 

yield curves for SiCl4 along with results from MS-Xα calculations. In good agreement with the 

previous ETS, they observe resonant contributions at 1.15, 2.07 and at 5.4 eV and assign the 

former two contributions to single electron occupation of the a1 LUMO and t2 LUMO+1, 

respectively. These assignments are supported by their MS-Xα calculations, which place these 

resonances at 0.9 and 2.3 eV respectively. Further, in their ion yield they observe a dominant 

formation of SiCl4
− at threshold (0 eV incident electron energy), which they also associate with a 

single electron occupation of the a1 LUMO mediated by the rapid increase of the capture cross 

section near 0 eV. In a more recent study, Bettega et al. [83] report SMC results on the elastic 
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integral, differential and momentum transfer cross sections for low-energy electron collisions 

with SiCl4 using the static-exchange and static-exchange (SE) plus polarization (SEP) 

approximations. In the SE approach resonant enhancements belonging to the A1, T2, and E 

symmetries are computed at 3, 4, and 8 eV, but in the SEP approach the A1 contribution becomes 

a bound state and the T2 and E contributions are shifted to about 2 and 6 eV, respectively. This is 

in good agreement with the location of these resonances in the ETS spectra, assuming that the 

5.4 eV ETS contribution corresponds to the E symmetry component in the SEP calculations. 

With respect to the resonance positions, their agreement [83] with the experimental TCS of Wan 

et al. [80] and Mozejko et al. [81] is also good. Furthermore, in conjunction with the sharp rise in 

the s-wave cross section observed in their calculations at low energies and the dominant SiCl4
− 

threshold contribution observed by Moelly et al. [74], Bettega et al. [83] have explored the 

potential presence of a virtual state enabling s-wave attachment at threshold.  In fact, from their 

calculations of the s-wave eigenphase at very low energies, they derive large negative numbers 

for the scattering length, i.e., values that support the presence of a virtual state at threshold.  

According to these studies we can safely assign the 1.8 and 2.1 eV features in the ion yields of 

Cl− and SiCl3
−, respectively, to a single electron shape resonance associated with the σ*(Si-Cl), t2 

LUMO+1. Correspondingly, the SiCl4
− threshold contribution must be ascribed to s-wave 

attachment associated with the a1 LUMO. In the current DEA spectra the Cl− ion yield is shifted 

to lower energies compared to the location of the T2 resonance in the ETS, while the maximum 

in the SiCl3
− ion yield is at a comparable energy to that of the T2 resonance. This is likely to 

result from the energy dependence of the branching ratio of the respective resonance with respect 

to dissociation paths and survival probability [97]. In that respect, we note that the 

thermochemical threshold for Cl− formation is at 1.15 eV while that for SiCl3
− formation is 1.67 

eV. The assignment of the high-energy contributions that exhibit peaks in the energy range from 

6.9 to 7.7 eV, in the Cl−, SiCl3
−, SiCl2

− and Cl2
− ion yields from SiCl4, is not as straight forward. 

These contributions appear well above the energy of the E symmetry shape resonance observed 

at about 6 eV in the SMC-SEP calculations, and well above the resonant structures observed in 

the ETS and the experimental TCS, which appear at 5.4 eV and about 5.5 eV, respectively [74, 

81]. The DEA features in the range from 6.9 to 7.7 eV are thus more likely to arise from core 

excited resonances associated with electronic excitations from higher lying valence orbitals, such 

as the bonding t1 and t2 HOMOs to either the a1 or t2 LUMOs. From photoabsorption [126] and 
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X-ray inner electron spectra of SiCl4 [127], the energy difference between the HOMO and 

LUMO is found to be around 6.2 eV.  

In, Table 4 we show the electron affinities of SiCln (n = 1-4) and the BDEs for SiCln−Cl (n = 0 -

3), calculated again at the CCSD(T) and B2PLYP level of theory. Our calculated BDE values 

agree well with the experimental values reported in the literature, except for Si−Cl where our 

results are more than 1 eV higher. Experimentally determined EA values for SiCl4 and its 

fragments, on the other hand, are very limited in numbers, and we are only aware of estimates 

from Pabst et al. [88], for SiCl2 and SiCl3, and a lower limit for SiCl2 from a very early study by 

Vought et al. [85]. All those values are in poor agreement with the calculated results reported 

here. In addition to these, a vertical electron affinity has been determined for SiCl4 by Hatano 

and Ito [128] and it is also presented in Table 4. Finally, we note that Grein et al. [109] have 

calculated the adiabatic EA of SiCl4 at the MP2/6-311 + G(3df) level of theory and find it to be 

0.47 eV. This value agrees fairly well with our B2PLYP calculations (0.40 eV) but is more than 

0.3 eV higher than the value we obtain at the CCSD(T) level. 

3.2.1 Impurities formed during the measurements, inconsistency of the previous 

measurements.  

In addition to the contributions discussed above, we also observe significant 0 eV features in the 

yields of SiCl2¯ and SiCl3¯ as well as contributions at about 0 and 0.8 eV in the Cl¯ ion yield. 

These contributions are all well below the thermochemical thresholds we calculated for these 

fragments, when formed from SiCl4. Furthermore, for SiCl2¯and SiCl3¯ their intensity was found 

to increase with increasing measurement time. This indicates that these features originate from 

degradation products formed from SiCl4 during the measurements. This is clearly documented in 

Figures 3, 4 and 5 which show the ion yield curves for SiCl2¯, SiCl3¯ and Cl¯, respectively, for 

repeated scans over a time period of 1 hour, 3 hours and 3.5 hours, respectively. For SiCl2¯ and 

SiCl3¯ the 0 eV contribution is marginal in the first scan, but it is absolutely dominant for SiCl2¯ 

and very significant for SiCl3¯ by the time the last scan is recorded.  

As discussed in the introduction, previous measurements on DEA to SiCl4 give results that are 

sometimes quite contradictory. We believe that the dramatically different product distributions 

observed originates through the decomposition of SiCl4. To examine this idea, we performed a 

negative ion mass scan for the higher masses, with 0 eV electron incident energy (not shown 

here). We observed the formation of higher masses like Si2Cl6, Si2Cl5, Si2Cl4, SiCl3O, Si2Cl6O 
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and Si2Cl5O. The thresholds for the formation of SiCl3¯ from Si2Cl6, Si2Cl5 and Si2Cl5OH are 

0.33, -1.34 and -2.17 eV respectively. Similarly, the thresholds for the formation of SiCl2¯ from 

Si2Cl6, Si2Cl4 and Si2Cl5OH are respectively 0.24, -0.592 and -2.38 eV (calculated at the 

B2PLYP level of theory). Hydrolysis of chlorosilanes is a very efficient process that may lead to 

dimerization/oligomerization of the intermediates. As a consequence, the low energy 

contributions in the SiCl3¯ and SiCl2¯ ion yields are attributed to DEA reactions of hydrolysis 

products formed through reactions of SiCl4 with residual water in the inlet system.  

 

 

Figure 3. Progressive negative ion yield curves showing the formation of SiCl2¯ recorded over a total time of 1 

hour. The 0 eV contribution is absent in the first scan, but is the most significant in the last scan, while the high-

energy contribution at about 7.5 eV stays constant over this time period. 

 

Similarly the low energy contribution at about 0.8 eV in the Cl¯ ion yield is attributed to DEA of 

HCl [59], also formed through hydrolysis of SiCl4. This process, however, displays no obvious 

time dependence (see Figure 5). We attribute this later observation to the relatively high vapour 

pressure of HCl and the comparatively low cross section for Cl¯ formation from HCl at 0.8 eV 
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[59].  

 

 

Figure 4. Progressive negative ion yield curves showing the formation of SiCl3¯recorded over a total time of 3.0 

hours. The 0 eV contribution is absent in the first scan, but is the most significant in the last scan. On the other hand 

the high energy contributions at about 2 and 7.5 eV stay relatively constant. 

 

This follows as the former provides a relatively stable partial pressure, while the latter hampers 

observation of the effect of any small partial pressure changes on the ion yield. Finally the low 

intensity 0 eV contribution in the Cl¯ ion yield also does not show the same time dependency as 

was observed for SiCl3¯ and SiCl2¯, and the thresholds for the formation of Cl¯ from the high 

mass hydrolysis products are in all cases well above 0 eV. Considering the exceptionally high 

cross section for Cl¯ formation from CCl4 at 0 eV incident electron energies, we consider it most 

likely that this signal results from trace amounts of CCl4 contributing to the SiCl4 measurement, 

through either the sample or inlet system. For the current signal intensity observed, these 

impurities do not have to exceed 0.0005 % to explain the 0 eV contribution in Figure 5.  
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Figure 5. Progressive negative ion yield curves showing the formation of Cl¯ recorded over a total time of 3.5 

hours. The 0.8 eV contribution is attributed to HCl formed through hydrolysis of SiCl4, while the 0 eV contribution 

is attributed to traces of CCl4. 

 

In summary, several DEA studies on SiCl4 have been previously conducted and indeed they date 

back to 1947. These studies, however, are all incomplete in one-way or another, and their results 

do not generally agree. In the current study, the experiments were conducted under well-defined 

single collision conditions and the relevant energy range from 0-12 eV was covered with an 

energy resolution of about 120 meV and high sensitivity. We can thus offer the first complete 

and consistent picture of the DEA processes induced in SiCl4, in the relevant energy range, and 

we can correlate our results to resonance structures observed in previous scattering studies and 

predicted by theory. Furthermore, through comparison with calculated thermochemical 

thresholds and the examination of high mass fragments, we can offer a plausible explanation for 

some of the inconsistencies found between the earlier experiments. 
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3.3. Germanium tetrachloride 

Figure 6 shows the energy dependence of the ion yield for all negative ions observed upon 

electron attachment to GeCl4, in the energy range from about 0 to 10 eV. As was the case 

previously, the vertical arrows show the appearance energy, determined by fitting a Wannier 

type function to the onset of the ion yields, as outlined in section 2.2. In Table 5 the appearance 

energies and the energies of the peak maxima for the individual negative ion contributions are 

listed, along with the current CCSD(T) and B2PLYP DFT calculation results of the 

thermochemical thresholds; Eth, for the formation of the respective ions. The respective AEs 

derived from a linear fit (also see section 2.2) are shown in parenthesis. For comparison, 

appearance energies and energy peak values available from earlier energy calibrated studies are 

also listed in the table.  

Similar to CCl4 and SiCl4, dissociative electron attachment to GeCl4 leads to formation of the 

fragments Cl−, Cl2
−, GeCl2

− and GeCl3
−. Here, we find that the most significant contribution is 

through GeCl3
− formation at about 0 eV (see Figure 6). Further contributions to the GeCl3

− ion 

yield are observed at about 1.4 eV and at about 5.0 eV. Both of these contributions are fairly 

narrow, the former with a FWHM of about 0.5 eV, the latter with a FWHM of about 1.4 eV. 

Significant intensity is also observed in the Cl− channel from GeCl4, but only through the broad 

higher lying resonance. This contribution peaks at about 5.5 eV, and noticeably the intensity of 

this peak is about a third of that of the 0 eV contribution in the GeCl3
− ion yield.  This is unusual 

as the attachment cross section for a given anion is normally significantly higher close to 0 eV, 

where the energy dependency of the attachment cross section is proportional to E−1/2 [97].  

Further, low intensity contributions are visible in the Cl− ion yield at about 0 eV and about 0.8 

eV (shown in grey in the top panel of Figure 6). We, however, attribute the former of these 

features to residual CCl4 in the inlet system, and the latter to electron attachment to HCl [59] 

formed through hydrolysis of GeCl4. The origin of these impurities, and their significance, was 

discussed for SiCl4 above and the same rationale applies here for GeCl4. The fragments Cl2
− and 

GeCl2
− are also formed through the high-energy resonance, but with an intensity more than 2 

orders of magnitude lower than that for the Cl− yield through the same resonance. For Cl2
− the 

maximum intensity is at about 6 eV, while the maximum intensity for GeCl2
− production is at 

about 5.7 eV.  
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Figure 6. Negative ion yield curves for electron attachment to GeCl4 in the energy range from ∼0 to 10 eV. The 

arrows indicate the appearance energy (eV) determined from fitting the rising part of ion yield curves using a 

Wannier type fitting function except for the GeCl3
− and Cl2

− low energy ion yield curve where the appearance 

energy is determined from the linear fits (see Section 2.2). The intensity is normalized with regards to the pressure 

during the measurements. 

 

Finally, GeCl2
− is also produced, though with very low intensity, through a contribution with a 

maximum at about 1.3 eV. Marginal 0 eV contributions are also observed in the ion yields for 

GeCl2
− and Cl2

−. In the former case we attribute this contribution to residues of the SF6 

calibration gas leading to SF6
− formation, which has the m/z ratio of 146. The origin of the 0 eV 
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contribution in the Cl2
− ion yield is not clear, but for these very small intensities we consider 

electron attachment to decomposition products formed at the hot cathode to be the most likely 

explanation. 

According to our CCSD(T) calculations, the formation of GeCl3
− is endothermic by about 0.3 eV 

while at the B2PLYP level of theory it is endothermic by about 0.1 eV (see Table 5). From the 

ion yield curves, on the other hand, it is clear that this process is exothermic and that the 

calculated thresholds are an overestimate, particularly at the CCSD(T) level of theory. The AE 

for the low energy contribution in the Cl2
− yield is also below the CCSD(T) threshold value. The 

intensity of this contribution is, however, very low and thus not allowing the exclusion of a 

proportionally significant contribution through the high energy tail of the Maxwell Boltzmann 

distribution of internal energies, i.e., hot band transitions. The AEs of all the other fragments 

observed in DEA to GeCl4 are well above their threshold, restricting our ability to further 

compare the AEs between experiment and theory. Table 5 also compares the current AEs, with 

those reported by Guillot et al. [92], and the energies of peak intensity maxima values estimated 

from Pabst et al. [88], Guillot et al. [92] and Modelli et al. [74]. 

In the early study by Pabst et al. [88], the formation of Cl−, Cl2
− GeCl2

− and GeCl3
−, through a 

broad contribution appearing with a maximum in the ion yield curves in the range from about 

5.5-6.5 eV, is reported. With the exception of the GeCl3
− ion yield, the energy range above 1 eV 

is only considered in their study. In the GeCl3
− ion yield, Pabst et al. [88] also observe a 

contribution at around 2 eV, which most likely corresponds to the 1.3 eV contribution observed 

in the current study. The significant 0 eV GeCl3
− contribution observed here is not reported by 

Pabst et al. [88], and neither is the low intensity Cl2
− contribution at about 1.3 eV. The 

differences between the current observations and those by Pabst et al. [88] are most significant in 

the low energy range, and most likely are rooted in the poorly defined electron energy in their 

study and limitations of their instrumentation in respect to the formation and detection of 

negative ions at very low energies, i.e., in the range around 0 eV. 

In a later ETS and DEA study, Guillot et al. [92] report the observation of two resonances in 

their ETS spectra, the former at 1.72 eV and the latter at about 5.6 eV. In DEA they observe the 

formation of GeCl3
− through a narrow contribution at 0 eV, and the formation of Cl− and GeCl2

− 

with peak maxima at 5.5 eV and 5.7 eV respectively. While both GeCl3
− and Cl− are produced 

with appreciable intensity, the GeCl2
− contribution is only minor and no contributions are 
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observed through the resonance located at 1.72 eV in their ETS. In a later publication by Modelli 

et al. [74] these findings are confirmed, and the reported relative scale DEA intensities of the 

fragments observed in the previous study are corrected and reported to be in the ratio 100:94:10 

for GeCl3
−, Cl− and GeCl2

−. This is qualitatively in fair agreement with the corresponding 

100:45:1 ratios observed here. In the studies by Modelli et al [74] and Guillot et. al [92] the 

authors assign the ETS 1.72 eV resonance to a single electron occupation of the triply 

degenerated, t2-symmetry LUMO+1, which is in good agreement with their MS-Xα calculations 

that placed this resonance at 1.7 eV. The 0 eV contribution is attributed to single electron 

occupation of the a1 LUMO, which their MS-Xα calculations predict to be 0.6 eV below the 

ground state neutral species. We, however, note that Guillot et. al  [92] also offer  an alternative 

explanation for the 0 eV GeCl3
− contribution. That explanation stems from the low energy tail of 

the T2 resonance associated with the triply degenerate LUMO+1. The resonance they observed at 

5.6 eV in the ETS, and is exhibited in their Cl− and GeCl2
− ion yields at 5.5 and 5.7 eV 

respectively, is discussed in relation to its FWHM, which is reported to be about 1.1 eV. This is 

quite narrow considering the relatively high energy of this resonance, which indicates a fairly 

long lived, possibly a closed-channel core excited, resonance. However, these authors [92] point 

out that this feature may also be associated with a high barrier single particle shape resonance 

with predominant Ge d-orbital character, i.e., l = 2. They further note that this interpretation 

would be in agreement with single electron occupation of an e-symmetry (6e), predominantly 

Ge-d character orbital, as identified in their X-ray spectra.  

Finally, Table 6 shows the electron affinities of GeCln (n = 1-4) and the BDEs for GeCln−Cl (n = 

0 -3) calculated at the CCSD(T) and B2PLYP level of theory. Similar to SiCl4, experimentally 

determined EA values for GeCl4 and its fragments, are very limited. We are only aware of the 

estimates from Pabst et al. [88] for GeCl2 and GeCl3, and a lower limit for GeCl2 reported from a 

very early study by Vought et al. [85]. As is the case for SiCl4, all these earlier values are in poor 

agreement with the calculated values reported here for GeCl4. In addition, the vertical EA of 

GeCl4 reported by Hatano and Ito [128] is also shown in Table 6. Finally, in their calculations at 

the MP2/6-311 + G(3df) level of theory, Grein [109] finds the adiabatic EA of GeCl4 to be 

1.43 eV, which is about 0.4 eV lower than our B2PLYP value (1.80 eV) and about 0.1 eV lower 

than our CCSD(T) value. 
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4. Conclusions  

As a part of our effort to characterise the electron attachment reactions of the group IV 

tetrahalides, the present work has reported electron attachment to the group IV tetrachlorides: 

XCl4 (X = C, Si and Ge) in the energy range from about 0 - 10 eV. We have further determined 

the AEs of individual fragments and we compare these to the respective threshold energies 

calculated at the B2PLYP and the CCSD(T) level of theory. We have also provided an extensive 

literature review on the presently available electron attachment investigations, experimental and 

theoretical electron scattering studies and on electron transmission studies of these molecules. 

The electron attachment reactions observed were discussed in relation to these previous studies 

in an attempt to give a complete and consistent picture of the reactions of these molecules upon 

electron attachment. 

The current work on CCl4 is consistent with results from previous studies, already offering a 

fairly complete picture of the observed electron attachment and dissociation processes. Electron 

attachment to CCl4 in the energy range from about 0-10 eV is characterized by the formation of 

Cl−, Cl2
−, CCl2

− and CCl3
−. These are formed through three resonances appearing in the ion 

yields through maxima at 0 eV, 0.8-1.8 eV and around 6 eV. The 0 eV contribution is only 

apparent in the Cl− ion yield and is attributed to a single particle resonance associated with the 

a1-symmetry LUMO. The contributions peaking between 0.8 and 1.8 eV, are apparent in the ion 

yields of all fragments and are assigned to a single particle shape resonance associated with 

occupation of the t2-symmetry LUMO+1. Finally, the contribution at around 6 eV, also apparent 

in the ion yield of all fragments, is associated with a single particle resonance of e-symmetry. 

These assignments are derived with support from previous scattering and ETS studies and 

calculations. The absence of CCl3¯ contribution at about 6 eV and Cl¯ formation through DD in 

most of the previous studies we attribute to the discrimination of fragments with high kinetic 

energy component perpendicular to the extraction axis and high kinetic energy release in the 

process. We propose studies with velocity slice imaging or momentum imaging instruments to 

remove these ambiguities with regards to CCl3¯ and Cl¯ ion yields.  

For SiCl4 the earlier electron attachment studies have been incomplete and contradictory. Here 

we have presented a complete and consistent picture of electron attachment to this molecule and 

we have offered an explanation for the inconsistency between the previous studies. Similar to 

CCl4, electron attachment to SiCl4 leads to the formation of the fragment anions Cl−, Cl2
−, SiCl2

− 
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and SiCl3
−. Additionally, the molecular anion SiCl4

−, is observed with appreciable intensity at 0 

eV. No fragmentation is observed at such low energies. Based on ETS and Xα calculations [74], 

we attribute the formation of the molecular anion to a single particle resonance associated with 

the a1 LUMO of this molecule. According to the ETS, this state lies 1.15 eV above threshold and 

the formation of the molecular ion at 0 eV is anticipated to be through a virtual state at threshold. 

This assertion is substantiated through converged coupled-channel calculations by Bettega et al. 

[83]. All fragments formed upon DEA to SiCl4 are observed through features peaking in the 

energy range from 6.9-7.7 eV and Cl− and SiCl3
− are also observed through appreciable 

contributions peaking close to 2 eV. We assign the contributions at around 2 eV to a single 

particle shape resonance associated with the t2 LUMO+1, observed in the ETS at 2.07 eV. The 

high energy contributions peaking in the energy range from 6.9-7.7 eV are however well above 

the e-symmetry resonance observed in the ETS and TCS. As a consequence they are tentatively 

assigned to core excited resonances associated with HOMO-LUMO transitions.  

With regard to the inconsistencies in the results from previous studies, we have shown that even 

if utmost care is taken, SiCl4 is subject to hydrolysis in our inlet system, leading to dimerization 

and silicon ether formation (presumably also oligomerization). The formation of SiCl2
− and 

SiCl3
− from these compounds through DEA is exothermic, leading to their observation at 

threshold, in the current and in previous studies, with the significance of these contributions 

depending strongly on the experimental conditions.  

For GeCl4 the picture is again similar, with electron attachment leading to the formation of Cl−, 

Cl2
−, GeCl2

− and GeCl3
−. From these, GeCl3

− is formed through a significant contribution at 0 eV 

and through a feature peaking at about 1.3 eV. The fragment Cl2
− also shows a low intensity 

contribution peaking at ≈1.4 eV, and all these fragments are additionally formed through higher 

energy contributions peaking in the energy range from about 5 to 6 eV. Leaning on the results 

from Xα calculations and ETS, we assign the first contribution to a single particle resonance 

associated with the a1 LUMO and the second to the t2 LUMO+1. The assignment of the high-

energy contributions is not as straight forward, but these are in good agreement with the 5.6 eV 

feature observed in the ETS study where it was assigned as an e-symmetry shape resonance with 

significant Ge-d character [92]. The strong atomic d-character, and thus the comparably long life 

time, of this resonance is apparently reflected in its width in the ETS, and is in agreement with 

the significant contribution we observe in the Cl− ion yield at around 5.5 eV. However, we note 
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that at this time we can by no means exclude contributions from core-excited resonances 

associated with HOMO-LUMO transitions. 

Though the current picture of electron attachment and negative ion formation from these 

compounds is consistent and must be considered fairly complete, there are still ambiguities with 

regards to the assignment of individual contributions to the respective resonances. These 

ambiguities may be clarified through techniques such as velocity slice imaging and momentum 

imaging of the angular dependency of the DEA process, see for example refs. [22, 132] and 

references therein.    

Finally, we found that our calculations at the B2PLYP and CCSD(T) level of theory generally 

overestimated the thresholds for the respective DEA processes. This is more significant at the 

CCSD(T) level of theory and most apparent for DEA channels observed for CCl4. Nonetheless, 

these discrepancies are generally not very significant and judging from the experimental values 

for CCl4 they are mainly rooted in an underestimate of the EAs of the fragments. However, in 

some cases they also arise from overestimates of the BDEs. Nevertheless we consider our 

calculated EAs and BDEs to be generally accurate to within 0.2 to 0.3 eV, and in many cases to 

be better than these estimations. For most of the channels reported here these values are thus the 

most accurate available in the literature today. 
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Tables 
Table 1. Calculated threshold values (Eth), measured appearance energies (AEs) and energies of the intensity (Int.) 

maxima for the formation of negative ions from CCl4. The AE values are determined by fitting a Wannier type 

function to the onset region of the individual contributions, and with a linear fit to the onset region and the rising 

part of the respective ion yields as described in section 2.2. The latter are reported in parenthesis. An asterisk (*) 

denotes values determined when only the rising part of the peak is fitted. For low intensity ion yields, the AEs are 

estimated from a linear fit to the rising edge of the peak above the onset region (see supporting material S1). 

Threshold energies are calculated at the DFT/B2PLYP and CCSD(T) level of theory. AEs and peak maxima 

determined in the current work are compared with that of (a) Scheunemann et al. [77], and peak maxima estimated 

from (b) Oster et al.  [78]. All energies are in eV.   

Fragments Eth(CCSD) Eth(B2PLYP) AE 

(present)  

a 

CCl3¯ 0.84 0.79 0.3 ± 0.1 

(0.6 ± 0.1) 

0.5 ± 0.1 

   5.1 ± 0.1 
(5.2 ± 0.1) 

— 

CCl2¯ 1.71 (loss of Cl2) 

4.20 (loss of 2Cl) 

1.6 (loss of Cl2) 

3.97 (loss of 2Cl) 

1.2 ± 0.1 

(1.3 ± 0.1) 

0.9 ± 0.1  

   4.8 ± 0.1 

(5.1 ± 0.1) 

4.7 ± 0.1  

Cl2¯ 0.87 0.65 0.2 ± 0.1 

(0.5 ± 0.1) 

0.6 ± 0.1  

   4.9 ± 0.1 
(5.2 ± 0.1) 

5 ± 0.2 

Cl¯ -0.71 -1.03 0 0 

   (0.4 ± 0.2)* ≤0.3  

   (4.3 ± 0.2)* ≈4  

Fragments Peak Int. position 

(present) 

a b  

CCl3¯  1.3 ± 0.1   1.3 ± 0.1 ≈1.2 

  6.1 ± 0.1  — — 

CCl2¯ 1.8 ± 0.1   1.65 ± 0.1  ≈1.7 

 6.1 ± 0.1   6 ± 0.1 ≈6 

Cl2¯ 1.2 ± 0.1   1.1 ± 0.1  — 

 6.1 ± 0.1   — — 

Cl¯ 0 0 0 

 0.8 ± 0.1 0.75 ± 0.05 —  

 6 ± 0.1 — — 
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Table 2: Relevant bond dissociation energies (BDE) of CCl4 and electron affinities (EA) of CCln (n = 1-4), Cl and 

Cl2 calculated at the DFT/B2PLYP and CCSD(T) level of theory. The calculated BDE and EA values are compared 

with selected experimentally determined literature values. All energies are in eV.   

Bond BDE(CCSD) BDE(B2PLYP) Experimental 

CCl3 – Cl 2.97 2.73 3.0 [113] 
3.30 ± 0.3 [48] 

3.0 ± 0.2 [114] 

CCl2 – Cl 2.86 2.85 2.76 ± 0.08 [derived in [115]] 
3.70 ± 0.3 [114] 

CCl – Cl 3.34 3.23 3.40 ± 0.13 [derived in [115]] 

C – Cl 5.52 5.93 3.90 ± 0.13 [derived in [115]] 
3.17 ± 0.1 [78] 

Cl – Cl 2.49 2.37 2.40 ± 0.02 [116]  
2.39 ±  0.02 [117] 

Species EA(CCSD) EA(B2PLYP) Experimental 

CCl4 0.77 0.87 0.94 [72] 

CCl3 2.13 1.94 2.5 ± 0.2 [79]  

1.3 ± 0.3 [114] 

CCl2 1.63 1.60 1.60 [118]  

1.8 ± 0.3 [114] 

CCl 0.04 -0.14 — 

Cl 3.68 3.76 3.61 [119] 

Cl2 2.47 2.55 2.9 ± 0.3 [79] 
2.38 ± 0.1 [120] 
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Table 3. Calculated threshold values (Eth), measured appearance energies (AE) and the energies of the peak 

intensity maxima for the formation of negative ions from SiCl4. The AE values are determined by fitting a Wannier 

type function to the onset region of the individual contributions, and with a linear fit to the onset region and the 

rising part of the respective ion yields as described in section 2.2. The latter are reported in parenthesis. An asterisk 

(*) denotes values determined when only the rising part of the peak is fitted. Threshold energies are calculated at the 

B2PLYP and CCSD(T) level of theory. AEs determined in the current work are compared with those from (a) Jäger 

et al. [90] and (b) Wang et al [87].  Peak maxima are compared with (a) Jäger et al. [90] and (b) Wang et al [87], (c) 

Pabst et al. [88]. and (d) Moylan et al. [89]. All energies are in eV.   

Fragments Eth(CCSD) Eth(B2PLYP) AE (present) a b 

SiCl4¯ -0.14 -0.4 0 0 0 

SiCl3¯ 1.74 1.7 1.6 ± 0.2 

(1.6 ± 0.1) 

1.7 — 

   5.8 ± 0.3 

(6.1 ± 0.2) 

5.9 — 

SiCl2¯ 3.94 3.78 6.7 ± 0.1 
(6.8 ± 0.1) 

6.7 — 

Cl2¯ 2.73 2.4 6.2 ± 0.1 
(6.2 ± 0.1) 

6.5 — 

Cl¯ 1.13 0.77 (1.2 ± 0.2)* 1.4 1.2 

   5.9 ± 0.1 
(6.1 ± 0.1) 

6.1 6.8 

Fragments Peak Int. position 

(present) 

a b c d 

SiCl4¯ 0  ≈0.3 0.5 —  ≈2 

SiCl3¯ 2.1 ± 0.1   ≈2.0 — — — 

 6.9 ± 0.1   ≈6.6 —  ≈7.1  ≈8.2 

SiCl2¯ 7.7 ± 0.1   — —  ≈8.6 — 

Cl2¯ 7.7 ± 0.1   — — ≈8.8 — 

Cl¯ 1.8 ± 0.1    ≈1.8 1.8 ≈1.6  ≈2 

 7.1 ± 0.1    ≈6.9 7.8 ≈7.5 ≈10.5 
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Table 4. Relevant bond dissociation energy (BDE) of SiCl4 and electron affinities (EA) of SiCln (n = 1-4), as 

calculated at the B2PLYP and CCSD(T) level of theory. The calculated BDE and EA values are compared with 

experimentally determined literature values. Note that the literature value for SiCl4 is the vertical EA. All energies 

are in eV.   

Bond BDE(CCSD) BDE(B2PLYP) Experimental 

SiCl3 – Cl 4.81 4.54 4.66 ± 0.04 [129] 

SiCl2 – Cl 2.87 2.79 2.8 ± 0.04 [derived in [115]] 

SiCl – Cl 4.53 4.38 4.35 ± 0.06 [derived in 

[115]] 
Si – Cl 5.26 5.47 4.17 ± 0.06 [derived in 

[115]] 

Species EA(CCSD) EA(B2PLYP) Experimental 

SiCl4 0.14 0.40 -0.3 (vertical) [128] 

SiCl3 2.99 2.84 1.1 [88] 

SiCl2 1.25 1.16 ≥2.6 [85] 
0.9 [88] 

SiCl 0.51 0.30 — 
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Table 5. Calculated threshold values (Eth), measured appearance energies (AE) and the energies of peak intensity 

maxima for the formation of negative ions from GeCl4. The AE values are determined by fitting a Wannier type 

function to the onset region of the individual contributions, and with a linear fit to the onset region and the rising 

side of the respective ion yields as described in section 2.2. The latter are reported in parenthesis. An asterisk (*) 

denotes values determined when only the rising part of the peak is fitted. Threshold energies are calculated at the 

B2PLYP and CCSD(T) level of theory. Appearance energies determined in the current work are compared with 

those reported by (a) Guillot et al. [92], the peak maxima energies are additionally compared with those shown by, 

(b) Modelli et al. [74] and (c) Pabst et al. [88]. All energies are in eV. 

Fragments Eth(CCSD) Eth(B2PLYP) AE 

(present) 

a 

GeCl3¯ 0.31 0.09 0 0 

   (0.8 ± 0.2)* — 

   3.1 ±  0.2  

   (3.2 ± 0.1) — 

GeCl2¯ 2.32 1.98 4.2 ± 0.1 
(4.5 ± 0.1) 

4.6 ± 0.3  

Cl2¯ 1.34 0.85 (0.8 ± 0.2)*  — 

   3.9 ± 0.1 

(4.4 ± 0.1) 

— 

Cl¯ 0.46 0.02 3.3 ± 0.2 

(4.0 ± 0.1)  

4 ± 0.3  

Fragments Peak Int. position 

(present) 

a b c 

GeCl3¯ 0 0 0 — 

 1.3 ± 0.1  — —  ≈2 

 5.0 ± 0.1 — —  ≈5 

GeCl2¯ 5.8 ± 0.1    ≈5.7  ≈5.7  ≈6.1 

Cl2¯ 1.4 ± 0.1 — — — 

 6.0 ± 0.1 — —  ≈5.7 

Cl¯ 5.5 ± 0.1    ≈5.5  ≈5.5  ≈5.1 
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Table 6. Relevant bond dissociation energies (BDEs) for sequential Cl loss from GeCl4 and electron affinities (EA) 

of GeCln (n = 1-4), as calculated at the B2PLYP and CCSD(T) level of theory. Calculated BDE and EA values are 

compared with experimentally determined values, where available. Note, that for intact GeCl4 this is the vertical EA. 

All energies are in eV.  

Bond BDE(CCSD) BDE(B2PLYP) Experimental 

GeCl3 – Cl 4.14 3.78 3.5 ± 0.5 [derived in [115]] 

3.1 ± 0.2 [130] 

3 [94] 

GeCl2 – Cl 2.16 1.99 2.2 ± 0.5 [derived in [115] 

GeCl – Cl 4.29 4.10 3.6 ± 0.2 [ derived in 
[115]] 

3.9 [131] 

Ge – Cl 5.08 5.15 3.9 ± 0.1 [131] 
4.2± 0.2 [derived in [115]] 

Species EA(CCSD) EA(B2PLYP) Experimental 

GeCl4 1.54 1.80 0.87 (vertical) [128] 

GeCl3 3.83 3.70 1.8± 0.1 [88] 

>2.61 [94] 

GeCl2 1.49 1.42 0.31 [88] 

GeCl 0.62 0.43 — 
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