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Highlights

• Behavior of Orthogonal Polynomials under rotation is in-
vestigated

• Only Hermite-like polynomials are transformed similarly
as the monomials

• Hermite-like moments can generate rotation invariants
simpler than other OG moments

• Exact proofs of all assertions are presented, no heuristics

• Useful for rotation-invariant object recognition
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Abstract

Orientation-independent object recognition mostly relies on rotation invariants. Invariants from moments orthogonal on a square
have favorable numerical properties but they are difficult to construct. The paper presents sufficient and necessary conditions, that
must be fulfilled by 2D separable orthogonal polynomials, for being transformed under rotation in the same way as are the monomi-
als. If these conditions have been met, the rotation property propagates from polynomials to moments and allows a straightforward
derivation of rotation invariants. We show that only orthogonal polynomials belonging to a specific class exhibit this property. We
call them Hermite-like polynomials.

Keywords: Rotation invariants, orthogonal polynomials, recurrent relation, Hermite-like polynomials, Hermite moments

1. Introduction

Rotation invariants play a key role in an orientation-invariant
object description and recognition. Being a part of rigid-body
transformation, object rotation is present almost in all appli-
cations, even if the imaging system has been well set up and
the experiment has been prepared in a laboratory. Rotation is
not trivial to handle mathematically, unlike for instance trans-
lation and scaling. For these two reasons, invariants to rotation
have been in focus of researchers since the beginning. Invari-
ants composed of image moments, moment invariants, belong
to the most popular ones [1].

Moment invariants have been mostly constructed from ge-
ometric moments, which are projections of an image onto a
standard monomial basis xpyq [1]. A theory which allows to
construct complete and independent set of rotation invariants of
arbitrary order was proposed by Flusser [2, 3]. However, geo-
metric moments are not very suitable for practical applications
since they suffer with a numerical instability and precision loss,
which decreases the performance of moments of high orders
[1]. To overcome that, several authors proposed to employ var-
ious orthogonal (OG) moments (i.e. moments with respect to
certain orthogonal polynomial basis) instead.

In 2D, there exist two families of OG polynomials, which
differ from one another by the area of orthogonality – poly-
nomials orthogonal on a disc and polynomials orthogonal on
a square/rectangle. The former group is inherently suitable for
constructing rotation invariants, because these moments change
under rotation in a simple way and the rotation parameter can
be eliminated easily. This was noted for example by Teague [4],

∗Corresponding author
Email addresses: bo.yang@hotmail.fr (Bo Yang),

flusser@utia.cas.cz (Jan Flusser), Jerry.Kautsky@flinders.edu.au
(Jaroslav Kautsky)

Khotanzad and Hong [5], and Wallin and Kubler [6] who used
Zernike moments, and by other authors who employed pseudo-
Zernike moments [7], Fourier–Mellin moments [8, 9], Jacobi-
Fourier moments [10], and Chebyshev-Fourier moments [11].
The negative aspect of using moments OG on a disc is that they
require a mapping of the image into the disc, which is equiv-
alent to image scaling and polar transformation. This opera-
tion leads to a precision loss due to the image resampling and
also increases the computation time (both can be partially com-
pensated by dedicated algorithms for moment computation, see
[12] for instance). That is why some authors turned back to the
moments OG on a square/rectangle.

Moments OG on a square can be calculated efficiently and
precisely because the grid of the area of orthogonality is the
same as the pixel grid of the image. In image processing lit-
erature, we can find many representatives of this group of mo-
ments. Legendre moments [13, 14, 15], Chebyshev moments
[16, 17, 18], Hermite and Gaussian-Hermite moments [19, 20],
Krawtchouk moments [21], and Gegenbauer moments [22] are
the most popular examples. However, construction of rotation
invariants from these moments is generally very difficult. Even
for low orders it leads to complicated clumsy formulas. This
is why only few papers have followed this tedious approach.
Yap et al. [21] did it for Krawtchouk moments, Hosny [15] and
Deepika et al. [23] for Legendre moments. For higher orders,
general forms of the invariants have not been published yet. Be-
fore 2011, the situation looked like a deadlock. We could use
either OG moments on a disc on the expense of computational
precision or geometric moments, which are defined on a rect-
angular grid but which are not OG and hence unstable.

A significant breakthrough on this field was achieved by
Yang et al. [24, 25]. They discovered that 2D Hermite mo-
ments, which are OG on a square grid, offer a possibility of
an easy and efficient design of rotation invariants and demon-
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strated this on low-order moments. Their elegant technique was
later used to construct complete and independent set of rota-
tion invariants of arbitrary orders [26] and was generalized even
to 3D Hermite and Gaussian-Hermite moments [27]. Their
method is based on the Yang’s Theorem, which essentially says
that Hermite polynomials change under an in-plane rotation ex-
actly in the same way as do the monomials xpyq. Hence, if
we have explicit formulas of rotation invariants from geometric
moments (these formulas have been actually known thanks to
[2]), it is sufficient just to replace the geometric moments with
Hermite moments of the same degree and we end up with rota-
tion invariants from OG moments. Since Hermite polynomials
can be evaluated by recurrent relations, we can work with these
invariants with an acceptable precision up to very high moment
orders [26].

However, an important question has still remained open –
are Hermite polynomials the only OG polynomials satisfying
the rotation property described in the Yang’s Theorem, or are
there other 2D separable OG polynomials which provide the
same possibility of construction of the invariants? In this pa-
per, we answer this question completely. We present the proof
that there exists a specific class of polynomials (we call them
Hermite-like polynomials because they are in certain sense sim-
ilar to Hermite polynomials), which are actually the only OG
polynomials with this property.

2. Orthogonal polynomials under rotation

Let us first investigate how the monomials πpq(x, y) = xpyq

are transformed under a coordinate rotation by angle θ. Rota-
tion (x, y)→ (x̂, ŷ) is given as

x̂ =x cos θ − y sin θ

ŷ =x sin θ + y cos θ.
(1)

After a substitution and application of binomial formula, we
obtain the monomial in the rotated coordinates

πpq(x̂, ŷ) =

=

p∑

n=0

q∑

j=0

(−1)n

(
p
n

)(
q
j

)
(cos θ)p−n+ j(sin θ)q− j+nxp+q−n− jyn+ j.

(2)
Grouping the variables of the same power together, Eq. (2) can
be rewritten into the form

πpq(x̂, ŷ) =

p+q∑

r=0

k(r, p, q, θ)xp+q−ryr, (3)

where k(r, p, q, θ) is a coefficient given as a linear combination
of certain powers of sin θ and cos θ (see [24] for detailed formu-
las and basic properties of k(r, p, q, θ)).

Now let us move from the monomials xpyq to bivariate poly-
nomials Gpq(x, y). In this paper, we consider solely 2D separa-
ble polynomials1. We assume Gpq(x, y) can be expressed as a
product

Gpq(x, y) = Gp(x)Gq(y), (4)

1For a short discussion on non-separable polynomials see Section 4.2.

where Gn(x) is a univariate polynomial of degree n.
We are particularly interested in the case when polynomials

Gp(x) form an orthogonal (possibly weighted orthogonal) sys-
tem. Obviously, in such a case also the corresponding bivariate
polynomials (4) are orthogonal. Due to Favard’s Theorem [28],
any symmetric OG polynomials2 can be expressed by a three-
term recurrent relation of the form

Gp+1(x) = apxGp(x) − bpGp−1(x), for p > 1 (5)

with an initialization

G0(x) = c0,

G1(x) = c1x,
(6)

where all coefficients are real-valued, c0 , 0, c1 , 0, ap , 0
and bp > 0 for every p ≥ 1. Conversely, any recurrent relation
of this form generates symmetric OG polynomials.

The Favard’s Theorem allows to work directly with recurrent
relations (5) without loss of generality. All properties of the
polynomials are determined by the coefficients. For example,
the setting c0 = c1 = 1, ap = (2p + 1)/(p + 1), bp = p/(p + 1)
yields Legendre polynomials; c0 = c1 = 1, ap = 2, bp = 1 leads
to Chebyshev polynomials of the first kind; c0 = 1, c1 = 2, ap =

2, bp = 1 leads to Chebyshev polynomials of the second kind;
and c0 = 1, c1 = 2, ap = 2, bp = 2p yields Hermite polynomials
(see [1] or [29] for more details and other examples).

Now we can proceed to formulate the central theorem of this
paper, which introduces necessary and sufficient conditions for
a “simple” (i.e. similar to monomials) transformation of OG
polynomials under rotation.

Theorem 1. Let a family of polynomials Gp(x) be defined by re-
currence (5) with initialization (6). Then bivariate polynomials
Gpq(x, y) (4) are transformed under rotation of the coordinates
(1) as

Gpq(x̂, ŷ) =

p+q∑

r=0

k(r, p, q, θ)Gp+q−r(x)Gr(y), (7)

where k(r, p, q, θ) are from (3), if and only if it holds, for the
recurrence coefficients, the following:

ap =
c1

c0
≡ a,

bp = b · p, b > 0, for any p > 1.
(8)

In other words, Theorem 1 says that if the recurrence has cer-
tain specific form, then the corresponding 2D OG polynomials
are transformed under rotation exactly in the same way as do
the monomials, and vice versa. For the proof of Theorem 1 see
Appendix A.

2Favard’s Theorem holds for general OG polynomials as well; in that case
the first factor in (5) has the form (ap x + sp) instead of just ap x. Since we look
for polynomials with the same rotation properties as xpyq, it is reasonable to
limit ourselves to symmetric OG polynomials (i.e. sp = 0 for any p) which
have the same symmetry/antisymmetry as the monomials. Non-zero sp’s yield
shifted OG polynomials which do not exhibit this property.

3
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Let us show what actually the constraints (8), imposed on the
recurrence coefficients, mean. For c0 = 1, c1 = a = b = 2 we
obtain exactly Hermite polynomials. Other choices of parame-
ters c0, a (resp. c1) and b make a scaling of the variable x, which
is the same for all degrees, and scaling of the values of Gp(x),
which, however, depends on p. Since this does not change the
character of the polynomials, we call the polynomials satisfy-
ing (8) Hermite-like polynomials. Theorem 2 specifies these
polynomials exactly.

Theorem 2. Let a family of polynomials Pn(x) satisfy (8) with
c0 = a = b = 1 and let a family of polynomials Gn(x) satisfy
(8) with an arbitrary setting of c0, a, b; b > 0. Then these two
polynomial families are linked with each other as

Gn(x) = c0

√
bnPn(ax/

√
b). (9)

Polynomials Pn(x) are sometimes called probabilists’ Her-
mite polynomials. Polynomials Gn(x) are orthogonal on
(−∞,∞) with respect to weighting function

w(x) = e−
(ax)2

2b . (10)

Applying Theorem 2 in a transitive manner, we may establish
the link between any two polynomial families of this kind. For
the proof of Theorem 2 see Appendix B.

3. Rotation invariants from OG moments

In this Section, we show how Theorem 1 can be used for an
easy derivation of rotation invariants from OG moments. First,
consider geometric moments of image f (x, y)

mpq =

∫ ∞

−∞

∫ ∞

−∞
xpyq f (x, y)dxdy. (11)

Under rotation, geometric moments are transformed as

m̂pq =

∫ ∞

−∞

∫ ∞

−∞
x̂pŷq f (x, y)dxdy. (12)

Substituting from Eq. (3) we obtain

m̂pq =

∫ ∞

−∞

∫ ∞

−∞

p+q∑

r=0

k(r, p, q, θ)xp+q−ryr f (x, y)dxdy

=

p+q∑

r=0

k(r, p, q, θ)mp+q−r,r.

(13)

Rotation invariants are such functions of moments that elim-
inate rotation parameter θ. A consistent theory how to construct
them was first proposed in [2], for a deeper insight and links to
other approaches see [1]. The main conclusion is that an inde-
pendent and complete set of rotation invariants from geometric
moments can be designed as

Φpq =


q0∑

k=0

p0∑

j=0

(
q0

k

)(
p0

j

)
(−1)p0− jip0+q0−k− jmk+ j,p0+q0−k− j


p−q

·
p∑

k=0

q∑

j=0

(
p
k

)(
q
j

)
(−1)q− jip+q−k− jmk+ j,p+q−k− j

(14)

where p ≥ q and p0, q0 are fixed user-defined indices (usually
very low) such that p0 − q0 = 1.

If we have OG polynomials Gpq(x, y) satisfying conditions
(8), then, thanks to Theorem 1, we can only replace geometric
moments in (14) with the corresponding OG moments

ηpq =

∫ ∞

−∞

∫ ∞

−∞
Gp(x)Gq(y) f (x, y)dxdy (15)

and the invariance property of each Φk j is preserved.3 On the
other hand, Theorem 1 says that Hermite-like moments are the
only moments4 which offer this possibility. That underlines the
prominent position of Hermite-like moments in image analysis.

4. Possible extensions

4.1. Extension to 3D

Due to a recent development of 3D imaging devices and tech-
nologies, which have become widely accessible, 3D rotation
moment invariants started to attract an increasing attention of
the researchers [30, 31, 32, 33, 34, 35, 36]. The problem of nu-
merical instability of non-orthogonal moments appears in 3D
even more seriously because it influences lower moment or-
ders than in 2D. To overcome this, Yang et al. [27] proposed
3D rotation invariants from Gaussian-Hermite moments. They
proved that the Yang’s Theorem holds in 3D as well and is fully
analogous to its 2D ancestor. Thanks to this, we can easily gen-
eralize Theorem 1 for the 3D case.

Theorem 3. Let a family of polynomials Gp(x) be defined by
recurrence (5) with initialization (6). Then trivariate polynomi-
als Gpqr(x, y, z) = Gp(x)Gq(y)Gr(z) are transformed under ro-
tation of the coordinates by the same coefficients as monomials
xpyqzr if and only if the conditions (8) hold for the recurrence
coefficients.

The proof is via the same induction as in 2D, only more la-
borious. We do not repeat it in the paper. Theorem 2 of course
holds regardless of the space dimension.

4.2. The case of non-separable polynomials

The question whether or not Theorem 1 can be extended and
reformulated also for non-separable OG polynomials Gpq(x, y)
(i.e. those that cannot be expressed as a product of two univari-
ate polynomials) is very difficult to answer. We should distin-
guish between weakly and strongly non-separable polynomials.
Weakly non-separable polynomials can be made separable af-
ter the coordinates have been rotated by an appropriate angle.
For example, the polynomials x + y and x − y are both weakly
non-separable, because when rotating them by π/4 they become√

2x and
√

2y. For weakly non-separable polynomials Theorem
1 holds well, since we can transform them to a separable case
by means of rotation.

3For Gaussian-Hermite moments, this process is described in detail in [26].
4For practical purposes, Hermite-like moments may be weighted and nor-

malized to ensure reasonable dynamic range of the invariants but this does not
violate their rotation properties.
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For strongly non-separable polynomials the answer is un-
known. We cannot modify Theorem 1 and follow its original
proof, because it is based on the recurrent relations of 1D poly-
nomials. The equivalence between recurrent relations and poly-
nomials in 1D follows from Favard’s theorem. However, no
such theorem exists in 2D, to our best knowledge. To modify
Theorem 1 for strongly non-separable polynomials, we would
have to derive a 2D analogue of Favard’s theorem, which is
quite challenging open problem. Our conjecture is that no
strongly non-separable polynomials change as the monomials
but we do not have a proof of this statement.

We hope that from practical point of view this is not a sig-
nificant restriction. The use of strongly non-separable polyno-
mials and their moments would increase the computing com-
plexity while (probably) not bringing any advantages. Almost
nobody has used non-separable polynomials for image analysis
purposes; [37] is one of very few exceptions.

5. Conclusion

The paper presents sufficient and necessary conditions, that
must be fulfilled by 2D OG polynomials, for being transformed
under rotation in the same way as are the monomials. These
conditions are given by Theorem 1, which is the main novel re-
sult of the paper. If these conditions have been met, the rotation
property propagates from polynomials to moments and allows
an effortless derivation of rotation invariants. We showed that
only Hermite-like polynomials and moments exhibit this prop-
erty.

Appendix A – Proof of Theorem 1

Theorem 1 has a form of an equivalence. To prove it in full,
we first prove that the constraints (8) imposed on the parameters
are sufficient and then that they are also necessary. The proof is
via mathematical induction.

Proof of sufficiency
Let us prove that the validity of (8) implies the validity of (7).

• Initial step
Eq. (7) holds trivially for (p, q) = (0, 0). For (p, q) = (1, 0)
we have

π10(x̂, ŷ) = x̂ = x cos θ − y sin θ,

from where we can see the coefficients k(r, 1, 0, θ), r = 0, 1,
and the validity of (7) can be verified immediately. For
(p, q) = (1, 1) we have on one hand

G11(x̂, ŷ) = G1(x̂)G1(ŷ) =

= c2
1 sin θ cos θx2 + c2

1 cos2 θxy

− c2
1 sin2 θxy − c2

1 sin θ cos θy2.

(16)

On the other hand,
2∑

r=0

k(r, 1, 1, θ)G2−r(x)Gr(y) =

= c2
1 sin θ cos θx2 + c2

1 cos2 θxy

− c2
1 sin2 θxy − c2

1 sin θ cos θy2.

(17)

Hence, Eq. (7) holds for the initial conditions.

• Induction step
Assuming Eq. (7) holds for some positive integers (p, q),
let us prove the validity for (p, q + 1). We can rewrite the
left-hand side of Eq. (7) to the following form:

Φle f t =Gp(x̂)Gq+1(ŷ)

=Gp(x̂)

(
c1

c0
ŷGq(ŷ) − bqGq−1(ŷ)

)

=
c1

c0
(x sin θ + y cos θ)

p+q∑

r=0

k(r, p, q, θ)Gp+q−r(x)Gr(y)

−bq
p+q−1∑

r=0

k(r, p, q − 1, θ)Gp+q−r−1(x)Gr(y).

(18)
The right-hand side Φright can be expressed by means of
Lemma 1 from [24] (the Lemma shows the properties of
coefficients k(r, p, q, θ)) as

Φright =

p+q+1∑

r=0

k(r, p, q + 1, θ)Gp+q+1−r(x)Gr(y)

= sin θ
p+q∑

r=0

k(r, p, q, θ)Gp+q+1−r(x)Gr(y)

+ cos θ
p+q+1∑

r=1

k(r − 1, p, q, θ)Gp+q+1−r(x)Gr(y).

(19)
Since

p+q+1∑

r=1

k(r − 1, p, q, θ)Gp+q+1−r(x)Gr(y)

=

p+q∑

r=0

k(r, p, q, θ)Gp+q−r(x)Gr+1(y)

(20)

due to the index shift, we have

Φright = sin θ
p+q∑

r=0

k(r, p, q, θ)Gp+q+1−r(x)Gr(y)

+ cos θ
p+q∑

r=0

k(r, p, q, θ)Gp+q−r(x)Gr+1(y).

(21)

Substituting the recurrence relations for Gp+q+1−r(x) and
Gr+1(y) in Eq. (21) yields

Φright =

=
c1

c0
(x sin θ + y cos θ)

p+q∑

r=0

k(r, p, q, θ)Gp+q−r(x)Gr(y)

− b sin θ
p+q∑

r=0

(p + q − r)k(r, p, q, θ)Gp+q−1−r(x)Gr(y)

− b cos θ
p+q∑

r=0

rk(r, p, q, θ)Gp+q−r(x)Gr−1(y).

(22)

5
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The second and third terms of (22) vanish for r = p+q and
r = 0, respectively. So, the summation in the second term
goes only to r = p + q − 1 and the summation of the third
term goes from r = 1. Incorporating this into (22) and
using Lemma 2 from [24] to simplify the sums, we obtain

Φle f t = Φright,

which completes the induction step.

To complete the proof of sufficiency, we should repeat the
induction also over p. That is, however, the same as for
q due to the symmetry of the problem. The only change
is that we employ Lemmas 3 and 4 from [24] instead of
Lemmas 1 and 2 which have been used above. We do not
repeat the proof for p here.

Proof of necessity
Assuming Eq. (7) holds for any p and q, we derive the con-

straints (8) on parameters ap and bp via induction.

• Initial step
Let us calculate G11(x̂, ŷ). On one hand, via direct calcula-
tion, it equals c2

1 x̂ŷ, which can be further expanded using
(1). On the other hand, using the assumption of Theorem
1, we have

G11(x̂, ŷ) =

2∑

r=0

k(r, 1, 1, θ)G2−r(x)Gr(y). (23)

Comparing the coefficients of x2 leads to the constraint

a1 =
c1

c0
(24)

while b1 may be an arbitrary positive real number.

• Induction step
We assume Theorem 1 valid for certain p ≥ 1, i.e. we
assume

ap =
c1

c0
and bp = pb, b > 0. (25)

Let us again express the left-hand side of (7) in the form of
(18). The second term of (18) can be expanded by means
of Lemma 2 from [24] (the Lemma is about the properties
of the coefficient k(r, p, q, θ)) as

qb
p+q−1∑

r=0

k(r, p, q − 1, θ)Gp+q−1−r(x)Gr(y)

= b sin θ
p+q−1∑

r=0

(p + q − r)k(r, p, q, θ)Gp+q−1−r(x)Gr(y)

+ b cos θ
p+q−1∑

r=0

(r + 1)k(r + 1, p, q, θ)Gp+q−1−r(x)Gr(y)

= b sin θ
p+q∑

r=0

(p + q − r)k(r, p, q, θ)Gp+q−1−r(x)Gr(y)

+ b cos θ
p+q∑

r=0

rk(r, p, q, θ)Gp+q−r(x)Gr−1(y).

(26)

Hence,

Gp,q+1(x̂, ŷ) =

=
c1

c0
(x sin θ + y cos θ)

p+q∑

r=0

k(r, p, q, θ)Gp+q−r(x)Gr(y)

− b
p+q∑

r=0

sin θ(p + q − r)k(r, p, q, θ)Gp+q−1−r(x)Gr(y)

− b
p+q∑

r=0

cos θrk(r, p, q, θ)Gp+q−r(x)Gr−1(y).

(27)

The right-hand side Φright of Eq. (7) can be rewritten
to Eq. (21). Substituting the recurrence relations for
Gp+q+1−r(x) and Gr+1(y) in Eq. (21) yields

Φright = x sin θ
p+q∑

r=0

ap+q−rk(r, p, q, θ)Gp+q−r(x)Gr(y)

+ y cos θ
p+q∑

r=0

ark(r, p, q, θ)Gp+q−r(x)Gr(y)

− sin θ
p+q∑

r=0

bp+q−rk(r, p, q, θ)Gp+q−1−r(x)Gr(y)

− cos θ
p+q∑

r=0

brk(r, p, q, θ)Gp+q−r(x)Gr−1(y).

(28)

Comparing the coefficients of terms x sin θ, y cos θ, sin θ
and cos θ between (27) and (28) leads to the constraints

ar =
c1

c0

br = rb,
(29)

for any r 6 p + q.

Theorem 1 has been proven completely.

Appendix B – Proof of Theorem 2

The proof is via mathematical induction over degree n.

• Initial step
For n = 0, 1, 2 we have P0(x) = 1, P1(x) = x, P2(x) =

x2 − 1
and
G0(x) = c0, G1(x) = c0ax, G2(x) = c0(ax)2 − c0b.
The validity of Theorem 2 is evident.

• Induction step
Assuming Theorem 2 is valid up to certain degree n, we
prove it for n + 1. We have to prove that

Gn+1(x) = c0

√
bn+1Pn+1(ax/

√
b). (30)

The left-hand side of (30) can be expanded using the re-
currence as

Gn+1(x) = axGn(x) − bnGn−1(x), (31)
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which can be further rewritten, by means of the induction
assumption, into the form

Gn+1(x) =

= c0ax
√

bnPn(ax/
√

b) − c0bn
√

bn−1Pn−1(ax/
√

b) =

= c0

√
bn+1[(ax/

√
b)Pn(ax/

√
b) − nPn−1(ax/

√
b)].

(32)
On the other hand, the right-hand side of (30) can be ex-
pressed by recurrence of Pn+1 as

c0

√
bn+1Pn+1(ax/

√
b) =

= c0

√
bn+1[(ax/

√
b)Pn(ax/

√
b) − nPn−1(ax/

√
b)],

(33)
which is the same as (32). The proof of Theorem 2 has
been completed.
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