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Abstract 

Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other 

taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-

derived peptides to T cells and play a critical role in pathogen recognition. Here we characterize MHC 

class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC 

class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. 

decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC 

molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and 

Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under 

a birth-and-death mode of evolution. This work provides a stepping stone towards further research on 

the agamid MHC class I region.  

Keywords: transcriptome assembly; Iguania, Agamidae; Ctenophorus decresii; MHC class I 

evolution   
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1. Introduction 

The major histocompatibility complex (MHC) is a multigene family involved in pathogen recognition 

and immune response, and is one of the most diverse regions of the vertebrate genome (Piertney and 

Oliver, 2006). MHC genes encode cell surface glycoproteins that present self- and foreign-derived 

peptides to circulating T-lymphocyte cells (T cells). The evolution of MHC genes is complex and is 

thought to be governed primarily by the birth-and-death model of evolution in which loci are 

duplicated or lost, although concerted evolution via inter-locus gene conversion events may also play 

a role (Edwards and Hedrick, 1998; Nei and Rooney, 2005; Spurgin et al., 2011). These processes can 

occur over short time scales and it is apparent that MHC genes have undergone numerous independent 

expansion and diversification events throughout vertebrate evolution (Nei et al., 1997). The MHC is 

gene rich and is generally extremely polymorphic within loci (Janeway et al., 2001). Pathogen-

mediated natural selection and sexual selection (MHC-associated mating) are considered to be the 

primary mechanisms maintaining these extraordinary levels of diversity (Edwards and Hedrick, 1998; 

Ejsmond et al., 2014; Milinski, 2006).  

The MHC is divided into four classes based primarily on structural and functional differences 

(Janeway et al., 2001). Genes belonging to classes I and II are further separated into classical or non-

classical genes based primarily on function and expression patterns (Alfonso and Karlsson, 2000; 

Janeway et al., 2001). The structure of classical MHC class I (hereafter MHC I) molecules is 

conserved among jawed vertebrates and includes a leader peptide, three α domains, and the 

transmembrane and cytoplasmic (Tm/Cyt) domains, all of which are encoded by a single gene 

(Kaufman et al., 1994). The α1 and α2 domains form the peptide binding cleft and contain amino acid 

positions that are directly involved in peptide binding, termed peptide binding regions (PBR) 

(Janeway et al., 2001). Classical MHC I molecules are anchored to the surface of somatic cells via the 

Tm/Cyt domains and display self-peptides and antigenic peptides derived primarily from intracellular 

pathogens to cytotoxic T cells. When a particular MHC molecule presents an antigenic peptide and is 

recognized by a T cell, an immune response is initiated, which usually involves lysis of the infected 

cell (Neefjes et al., 2011). Non-classical MHC class I genes are distinguished from classical genes by 
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low levels of allelic variation and restricted expression (Janeway et al., 2001). In mammals some non-

classical MHC class I genes undertake important roles within the immune system, both at the cell 

surface and in secreted forms (Adams and Luoma, 2013). 

The MHC has been thoroughly characterised in humans and model organisms, primarily due to 

the critical role that the region plays in organ and tissue transplantation (Garcia et al., 2012). MHC 

genes are also used in conservation genetic studies as a measure of population genetic health and 

adaptive potential (Sommer, 2005). However, many vertebrate groups, especially non-avian reptiles, 

are under-represented within the MHC literature and little is known regarding the mechanisms 

shaping MHC diversity in these taxa. The tawny dragon (Ctenophorus decresii) is a small (<30g) 

agamid lizard endemic to South Australia and provides a promising model system in which to 

investigate the mechanisms shaping MHC diversity. Male C. decresii use visual cues during social 

and sexual interactions (Gibbons, 1979; Osborne, 2005a, b; Yewers et al., 2016) and the species is 

host to external and intracellular parasites (Hacking et al. unpublished results); providing 

opportunities to investigate the roles of sexual selection and parasite-mediated selection in 

maintaining MHC diversity. Here, we characterised MHC I transcripts for C. decresii and investigated 

the evolutionary mechanisms playing a role in the generation of MHC I diversity within Iguanian 

lizards (Iguanidae, Agamidae, Chamaeleonidae, Dactyloidae and related families, Pyron et al., 2013). 

 

2. Materials and methods 

2.1. Sample collection  

A single C. decresii individual was captured in Burra, South Australia (33°40’57.7”S, 138°56’16.8”E) 

in October 2012 and taken directly to Adelaide to be euthanized for tissue collection. Burra is located 

just north of the contact zone between the northern and southern clades of this species (McLean et al., 

2014). The thymus and spleen were collected immediately after euthanasia and were stored separately 

in RNA Later (Qiagen, Venlo, Netherlands) at 4°C for 48 h and then at -80°C until required for RNA 
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extraction. The remainder of the specimen was accessioned into the South Australian Museum 

herpetology collection (SAMAR67384).  

2.2. Transcriptome sequencing and MHC class I discovery 

Total RNA was extracted using the Qiagen RNeasy mini kit. Sequencing libraries were then prepared 

using the TruSeq RNA Kit v1 using a polyA purification. These were then multiplexed with two other 

samples and sequenced (100 bp paired end) on a single lane of the HISEQ 2000. Extractions, library 

preparation and sequencing were carried out by Georgia Genomic Facility (GGF, University of 

Georgia, USA). Adaptor sequences and low quality reads were removed or trimmed using 

Trimmomatic ver. 0.22 (Bolger et al., 2014), with a minimum quality Phred score of 25 per 4bp 

sliding window and a minimum sequence length of 40bp. Assemblies were then constructed from the 

trimmed and filtered reads for each sample separately using the program Trinity v1 (r2013-02-25) 

(Haas et al., 2013) with default settings, followed by an assessment of gene completeness using 

BUSCO v1.22 (Simao et al., 2015) based on the OrthoDB ‘vertebrata’ database. Lastly, to identify 

putative C. decresii MHC I transcripts we performed local BLASTX (E-value ≤ 1e-10) searches 

(Altschul et al., 1997; Camacho et al., 2009) using  predicted Pogona vitticeps MHC gene models 

(Georges et al., 2015) as our reference. Putative C. decresii MHC I transcripts were aligned manually 

with published MHC I sequences (table S1) to confirm expected MHC I structure and the presence of 

conserved sites (Kaufman et al., 1994).  

Due to the high diversity and complex structure of the MHC region, traditional assembly methods 

may not be sufficient to obtain a robust assembly. To refine the MHC I assemblies, 75bp sequence 

fragments congruent with the putative antigen binding α2 domain for each unique sequence were 

iteratively re-assembled using the mirabait utility from MIRA v4.0.2 (Chevreux et al., 1999) as 

presented in Ansari et al. (2015) but using a kmer length of 31 (size of the search string) and requiring 

50 matching kmers (number of matching search strings). Sequences were extended until sequence 

length stabilized or it was no longer possible to uniquely map reads.  The resulting contigs were 

evaluated by concatenating each separated by 200 Ns and remapping cleaned reads using BWA (Li, 
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2013) with default settings and visualizing the resultant BAM file in IGV (Robinson et al., 2011). 

Read pairs spanning sequences were checked for accuracy and suspected chimeric reads removed. 

2.3. Validation of MHC I transcripts and comparison with other vertebrates 

Putative C. decresii MHC class I transcripts were translated and aligned with a subset of published 

full length MHC I amino acid sequences of other vertebrates (table S1) using MUSCLE (Edgar, 2004) 

implemented in MEGA ver. 6.06 (Tamura et al., 2011). The alignment was manually refined to ensure 

correct alignment of conserved regions. Coding domain boundaries were defined as per Koller and 

Orr (1985). Aligned C. decresii transcripts were validated as likely MHC I sequences by (i) 

confirming MHC I gene structure (leader peptide, α domains and Tm/Cyt domains), (ii) confirming 

concordance with known conserved regions and regions with predicted function that are typical of 

MHC I sequences (Kaufman et al., 1994), and iii) confirming the absence of stop codons within 

coding regions. Two additional steps needed to further validate transcripts as likely classical MHC I 

sequences, which were beyond the scope of this study, are confirming polymorphism among 

individuals, and strong and widespread expression. Pairwise nucleotide and amino acid identity 

among validated MHC class I transcript sequences was calculated using Geneious ver. 8.1.7 (Kearse 

et al., 2012). Validated C. decresii MHC class I transcripts were named according to Klein et al. 

(1990); each unique nucleotide sequence was given the species identification prefix (Ctde) followed 

by U (Uno; class 1) and A (locus group/family designation), and a unique number (e.g. Ctde-

UA*001). Once full-length MHC I genomic data are available for C. decresii locus designations may 

be defined (i.e. UA1 and UA2).  

To investigate relationships among C. decresii MHC I transcripts and their position relative to 

other Iguanian lizards a Bayesian phylogenetic tree was constructed based on an alignment of 

validated full-length C. decresii MHC class I transcripts and all full-length Iguanian MHC I sequences 

available in GenBank (NCBI Resource Coordinators, 2016) (table S1). All sequences obtained from 

GenBank were validated as likely MHC I sequences via confirmation of expected MHC I structure 

and conserved sites. All squamate MHC I nucleotide sequences were translated before aligning with 

Muscle, implemented in MEGA ver. 6.06 and then untranslated for phylogenetic analysis. Tuatara 
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(Sphenodon punctatus) MHC I sequence was used as an outgroup. Only the three α domains (α1, α2 

and α3) of these full-length sequences were used in phylogenetic analysis due to extreme variation at 

leader and Cyt/Tm domains inhibiting alignment. To determine optimal partitioning and the best 

model of evolution for Bayesian phylogenetic analysis, PartitionFinder2 (Guindon and Gascuel, 2003; 

Lanfear et al., 2012; Lanfear et al., 2017) was employed. Sequences were split into three data blocks 

representing codon positions and only models employed by MrBayes were considered, with the best 

model determined using AICc model selection. Bayesian phylogenetic analyses were undertaken in 

MrBayes ver. 3.2.6 (Ronquist et al., 2011), with one analysis employing the model of evolution and 

partitioning identified by PartitionFinder2, and another using mixed models with sequences 

partitioned by codon position. For both MrBayes analyses, two independent runs were performed, each 

with four Markov chains run for 20 million generations at a sample frequency of 1000 and a default burn-

in period of 25%. Convergence diagnostics, including the standard deviation of split frequencies between 

runs, the potential scale reduction factor (PSRF) and the average effective sample size (ESS) were 

examined to confirm run convergence. FigTree ver. 1.4.2 (Rambaut, 2012) was used to annotate trees 

produced by MrBayes. 

 

3. Results and Discussion 

3.1. Transcriptome sequencing and MHC class I discovery 

RNA extractions had RIN values of 9.1 and 9.8 for the thymus and spleen samples, respectively. 

Approximately 49 million paired-end reads were obtained for the thymus and approximately 51 

million paired-end reads were obtained for the spleen. Of these reads, approximately 86% survived 

Trimmomatic filtering. Based on the Busco analysis, 73% and 76% of the vertebrata orthologous gene 

set were recovered and complete for the thymus (C:73%[D:15%],F:7.7%,M:19%,n:3023) and spleen 

(C:76%[D:13%],F:6.4%,M:16%,n:3023) transcriptomes, respectively. Combing the two 

transcriptome assemblies resulted in 82% of the vertebrata gene set being complete 

(C:82%[D:43%],F:5.1%,M:12%,n:3023). In total, eight putative C. decresii MHC I transcripts (Ctde-

UA*001 – Ctde-UA*008) were discovered, based on unique α2 and α3 domains, indicating the 
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presence of at least four different loci. We were unable to confidently assign transcripts to specific 

loci based on data from a single individual. As a result, when naming transcripts all sequences were 

designated the letters ‘UA’ (MHC I locus group ‘A’) and no specific locus numbers were assigned 

(i.e. UA1, UA2, UA3 etc).  

3.2. Validation of C. decresii MHC I transcripts 

Of the eight putative C. decresii MHC I transcripts, six were validated as likely MHC I sequences 

after confirming (i) normal MHC I gene structure, (ii) concordance with known conserved regions and 

regions with predicted function that are typical of MHC I sequences, and (iii) the absence of stop 

codons within coding regions (Ctde-UA*001 – Ctde-UA*006). Each of these transcripts contained 

complete leader peptide, α domains and Tm/Cyt domains and did not contain any premature stop 

codons. An amino acid alignment of putative C. decresii MHC I transcripts with published squamate, 

tuatara (Sphenodon punctatus) and human sequences, confirmed concordance with conserved regions 

and regions with predicted functions that are typical of MHC I molecules (table S2, fig. 1, Kaufman et 

al., 1994). Specifically, nine amino acid positions that bind C- and N-terminal residues of antigenic 

peptides are highly conserved among classical MHC class I molecules (Kaufman et al., 1994). All 

nine of these positions were identified within C. decresii MHC I transcripts and displayed conserved 

amino acids or low (≤2 changes) amino acid variability (site numbers: 45, 101, 126, 167, 187, 190, 

191, 204 and 219). Similarly, amino acid positions involved in salt bridge formation within α1 and α2 

were found to be conserved, with the histidine (H) residues at site 41 and 137, and the aspartic acid 

(D)/glutamic acid (E) residues at sites 69 and 163. The four cysteine (C) residues involved in intra-

domain disulphide bridge formation within α2 and α3 (site numbers: 145, 209, 249 and 305) were 

conserved across all taxa included in the amino acid alignment. Finally, most vertebrates possess an 

NQS or NQT nitrogen-linked glycosylation acceptor site near the end of the α1 domain (Kaufman et 

al., 1994). Nitrogen-linked glycans play an important role in the folding and stability of classical, and 

likely also non-classical, MHC class I molecules (Ryan and Cobb, 2012, 2015). The amino acid 

sequence for nitrogen-linked glycosylation site consists of an asparagine (N), any other amino acid 

except proline, followed by serine (S) or threonine (T) (Ryan and Cobb, 2015). Most of the C. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
decresii transcripts encoded NQS glycosylation sites, with three transcripts (Ctde-UA*005 and Ctde-

UA*006) encoding NHS instead. Together, these findings suggest that transcripts Ctde-UA*001 – 

Ctde-UA*006 produce molecules that undertake classical MHC I functions at the cell surface.  

Classical MHC I gene structure (leader peptide, α domains and Tm/Cyt domains) could not be 

confirmed for two C. decresii putative MHC I transcripts; Ctde-UA*007 and Ctde-UA*008. Both 

Ctde-UA*007 and Ctde-UA*008 ended prematurely; Ctde-UA*007 was missing the 5’ end of the α3 

domain and all of the Tm/Cyt domains and Ctde-UA*008 was missing both the α3 and the Tm/Cyt 

domains. Both Ctde-UA*007 and Ctde-UA*008 possessed the expected conserved sites associated 

with peptide binding at the α1 and α2 domains and did not contain any premature stop codons (fig. 1). 

These sequences could not be unambiguously resolved during transcriptome assembly, probably due 

to similarity with the other transcripts. This is not surprising given that MHC loci arise by periodic 

gene duplication and rearrangement events (Nei and Rooney, 2005). It is also possible that these 

transcripts are naturally truncated and encode non-classical MHC I molecules that are secreted and 

undertake peptide presentation away from the cell surface, given the lack of Tm/Cyt domains and the 

presence of conserved sites associated with peptide presentation (Carlini et al., 2016; Donadi et al., 

2011; Glaberman et al., 2009). Given that Ctde-UA*007 and Ctde-UA*008 are likely truncated due to 

incomplete transcriptome assembly they were not assigned to a new locus group and were included in 

the ‘UA’ MHC I locus group. 

Average nucleotide percent identity among the validated full-length C. decresii MHC I transcripts 

was 79.8%, with this differentiation primarily driven by variation at the α1 and α2 domains (table S2). 

Nucleotide identity within α1 and α2 was 81% and 82%, respectively, whereas nucleotide identity 

within α3 was 88%. Sequences Ctde-UA*001 and Ctde-UA*002 were identical only at the α1 domain, 

suggesting the possibility for exon shuffling recombination in the C. decresii MHC I region. Exon 

shuffling recombination occurs between entire exon regions with breaks within introns and has been 

found to occur in a range of vertebrates (Holmes and Parham, 1985; Wang et al., 2010; Zhao et al., 

2013). Overall percent nucleotide identity between Ctde-UA*001 and Ctde-UA*002 is 95.6% and 

between Ctde-UA*003 and Ctde-UA*004 it is 95.1%. Nucleotide identity is slightly lower between 
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Ctde-UA*005 and Ctde-UA*006 at 93.7%. The high similarity between these pairs of transcripts 

indicates that they may be alleles at the same loci, suggesting five loci in total. Bayesian phylogenetic 

analysis of C. decresii transcripts (see section 3.3 for further details) suggest the presence of five or 

six loci. Ctde-UA*001 and Ctde-UA*002, and Ctde-UA*003 and Ctde-UA*004 each clustered 

together but Ctde-UA*005 and Ctde-UA*006 didn’t, with Ctde-UA*006 located between Ctde-

UA*005 and a P. vitticeps sequence.  

3.3. Phylogenetic analysis of Iguanian MHC class I genes 

One of the Bayesian phylogenetic analyses of MHC I sequences was conducted with no partitioning 

of codon positions and a GTR+G model of evolution, according to PartitionFinder2 results. The other 

analysis was conducted using data partitioned by codon position and allowing mixed models of 

evolution. For both Bayesian analyses, convergence diagnostics indicated run convergence and high 

posterior probability values were obtained across most of the tree. The two resulting trees had 

identical topology but the tree resulting from the PartitionFinder2-informed analysis had slightly 

better overall posterior probability values and was therefore retained. Posterior probabilities were high 

(>0.95) for most branch nodes, but low for some outer nodes (fig. 2).  

Full-length MHC I sequences were only available for three Iguania species (Amblyrhynchus 

cristatus, Conolophus subcristatus and Iguana iguana), one Dactyloidae species (Anolis carolinensis) 

and two Agamidae species (C. decresii and Pogona vitticeps, fig. 2, table S1). No orthologous 

relationships were observed within the Iguanidae clade, representing three genera that diverged 10 to 

20 million years ago (Rassmann, 1997). Instead, MHC I sequences clustered by species, suggesting 

loss of ancestral diversity, recent gene duplications and potentially gene conversion events (concerted 

evolution, Glaberman and Caccone, 2008). In contrast, Agamidae MHC I sequences (C. decresii and 

P. vitticeps) displayed orthologous relationships despite similar divergence times to the iguanid 

species (Hugall et al., 2008). Given divergence of approximately 20 million years between P. vitticeps 

and C. decresii (Hugall et al., 2008), the separation of the agamid MHC I sequences into three 

orthologous clades suggests that at least two gene duplication events occurred greater than 20 million 

years ago (fig. 2). The conservation of MHC class I loci over such a time scale is not unusual; some 
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primate MHC I loci have been conserved for at least 46-66 million years (Piontkivska and Nei, 2003). 

The phylogenetic relationships within the Iguanidae and Agamidae families are consistent with the 

birth-and-death model of evolution; the continual gain and loss of genes (Edwards and Hedrick, 1998; 

Nei and Rooney, 2005). Concerted evolution via gene conversion may also play a role in generating 

diversity within Iguanidae and Agamidae, as evidenced by the patterns observed within Iguanidae and 

putative exon shuffling recombination in C. decresii.  

 

4. Conclusions 

A total of eight MHC I transcripts were isolated and characterised for C. decresii from a single 

individual using HiSeq next generation sequencing of thymus and spleen total RNA. Due to the 

complex nature of the MHC, the initial assembly was refined using an assembly technique capable of 

distinguishing highly similar transcripts. Six of the putative MHC I transcripts were validated as likely 

to encode classical MHC I molecules based on three criteria; (i) normal MHC I gene structure, (ii) 

concordance with known conserved regions and regions with predicted function, and (iii) the absence 

of stop codons within coding regions. Two of the putative MHC I transcripts ended prematurely either 

due to transcriptome assembly restrictions (i.e. due to high sequence similarity among transcripts) or 

non-classical functionality (naturally truncated). Bayesian phylogenetic analysis indicated that a birth-

and-death model of evolution is likely the main mechanism shaping MHC I diversity within Iguanian 

lizards. MHC I sequences from a wider range of squamates are required to obtain a clearer view of the 

mechanisms responsible for creating MHC I diversity within Squamata. This work provides a 

foundation for future work examining the mechanisms shaping diversity at the MHC class I region of 

agamid lizards.  
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Figure 1. Amino acid alignment of tawny dragon (Ctenophorus decresii) MHC I transcripts with 

other squamates, tuatara (Sphenodon punctatus) and human. Coding domain separations are based on 

Koller and Orr (1985). Dots indicate identity with Ctde-UA*001 and dashes indicate alignment gaps. 

¥ = partial coding sequence. Residues with expected functions as per Kaufman et al. (1994) are 

shaded grey; stars = conserved peptide-binding residues of antigen N and C termini, triangles = salt 

bridge-forming residues, circles = disulphide bridge-forming cysteines, square = N-glycosylation site, 

CD8 = expected CD8 binding site. Asterisks represent conserved sites, across C. decresii sequences 

and across all taxa. Gidgee skink (Egernia stokesii) positively selected sites (PSS, putative peptide 

binding regions) (Pearson et al., 2017) and human peptide binding regions (PBR) (Reche and 

Reinherz, 2003) are indicated with hashes and crosses, respectively.  
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Figure 2. Bayesian phylogenetic tree of the α1, α2 and α3 domains of available full length Iguania 

(here, Iguanidae, Agamidae and Dactyloidae) MHC class I nucleotide sequence. Validated full 

length tawny dragon (Ctenophorus decresii) MHC class I transcripts are highlighted by bold text. 

The tree is rooted using tuatara (Sphenodon punctatus) MHC class I sequence. Three orthologous 

Agamidae clades are shaded grey. Nodes for which the Bayesian posterior probability <0.95 are 

indicated with an asterisk. The scale bar indicates the number of expected nucleotide substitutions 

per site. Anolis sequences were predicted by NCBI automated computational searches of genomic 

sequence (NCBI Resource Coordinators, 2016). The Pogona sequences were obtained from the 

Pogona Genome Project (Georges et al., 2015; Georges et al., 2016). Refer to table S1 for further 

information on sequences. 
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Highlights 

- Six full length MHC class I transcripts were identified for an agamid lizard, Ctenophorus decresii 

(tawny dragon lizard). 

- All full length transcripts were validated as likely to encode classical class I MHC molecules. 

- Comparison among C. decresii MHC class I sequences and Bayesian phylogenetic analysis of 

Iguanian MHC I sequences revealed a primary role for the birth-and-death model of evolution and 

a potential secondary role for concerted evolution. 

 




