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ABSTRACT

Background. Hybridization between native and invasive species can facilitate
introgression of native genes that increase invasive potential by providing exotic species
with pre-adapted genes suitable for new environments. In this study we assessed the
outcome of hybridization between native Senecio pinnatifolius var. pinnatifolius A.Rich.
(dune ecotype) and invasive Senecio madagascariensis Poir. to investigate the potential
for introgression of adaptive genes to have facilitated S. madagascariensis spread in
Australia.

Methods. We used amplified fragment length polymorphisms (141 loci) and nu-
clear microsatellites (2 loci) to genotype a total of 118 adults and 223 seeds from
S. pinnatifolius var.pinnatifolius and S. madagascariensis at one allopatric and two shared
sites. We used model based clustering and assignment methods to establish whether
hybrid seed set and mature hybrids occur in the field.

Results. We detected no adult hybrids in any population. Low incidence of hybrid seed
set was found at Lennox Head where the contact zone overlapped for 20 m (6% and
22% of total seeds sampled for S. pinnatifolius var. pinnatifolius and S. madagascariensis
respectively). One hybrid seed was detected at Ballina where a gap of approximately
150 m was present between species (2% of total seeds sampled for S. madagascariensis).
Conclusions. We found no evidence of adult hybrid plants at two shared sites. Hybrid
seed set from both species was identified at low levels. Based on these findings we
conclude that introgression of adaptive genes from S. pinnatifolius var. pinnatifolius
is unlikely to have facilitated S. madagascariensis invasions in Australia. Revisitation
of one site after two years could find no remaining S. pinnatifolius var. pinnatifolius,
suggesting that contact zones between these species are dynamic and that S. pinnatifolius
var. pinnatifolius may be at risk of displacement by S. madagascariensis in coastal areas.
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INTRODUCTION

The study of hybridization between related species has continued to fascinate biologists
since the early 19th century (Stebbins, 1959) with the potential role of hybridization in
evolutionary diversification of particular interest (Abbott et al., 2013; Anderson ¢ Stebbins
Jr, 1954; Arnold, 20045 Seehausen, 2004; Yakimowski ¢ Rieseberg, 2014). Hybridization can
have diverse outcomes including the formation or extinction of species (Abbott et al.,
20105 Rhymer & Simberloff, 1996; Todesco et al., 2016), introgression of genes from one
parental taxa to another (e.g., Whitney, Randell ¢ Rieseberg, 2006; Whitney, Randell ¢
Rieseberg, 2010), and demographic swamping (e.g., Field et al., 2008; Prentis et al., 2007).
Alternatively, successful hybridization between co-occurring species may be rare enough
to have little long-term impact on either parental taxa.

Hybridization between native and invasive species is of particular interest, indeed in
their seminal review, Ellstrand ¢ Schierenbeck (2000) argue that hybridization (inter- and
intra-specific) can act as a stimulus for the evolution of invasiveness. One mechanism by
which this can occur is through introgression of adaptive genes resulting from hybridization
followed by repeated backcrossing with parental taxa. Introgression of native genes can
increase invasive potential by providing exotic species with pre-adapted genes suitable
for new environments (e.g., Whitney, Randell & Rieseberg, 2010), conversely introgression
of exotic genes can facilitate the transfer of weedy traits to native species, jeopardizing
genetic integrity (e.g., Fitzpatrick et al., 2010). Simulation studies on neutral genes have
revealed that the very nature of the invasive process is likely to promote almost exclusively
unidirectional introgression, from the native species into the invader (Currat et al., 2008)
increasing the likelihood of locally adapted genes facilitating invasive species spread. Aside
from introgression, hybrid progeny can go on to become invasive species in their own right,
such as Senecio squalidus which evolved via homoploid hybrid speciation from the parental
species Senecio aethnensis and Senecio chrysanthemifolius (Abbott et al., 2010). In extreme
cases, hybrid progeny can be so successful that they completely displace their parental
species in the field, such as the Californian wild radish, an invasive hybrid lineage derived
from introduced Raphanus sativus and Raphanus raphanistrum (Hegde et al., 2006).

In the current study, we focus on a native and invasive species pair, Senecio
pinnatifolius var. pinnatifolius A. Rich. (dune ecotype) and Senecio madagascariensis
Poir., which co-occur along ~2,000 km of coast line in New South Wales, Australia.
Senecio madagascariensis is a successful invasive plant in Australia and typically a weed
of agricultural pastures, however it can also be found growing alongside the native
S. pinnatifolius in natural systems, raising the possibility that introgression of adaptive
genes from the native has facilitated its spread into these areas. In previous work on
S. pinnatifolius var. serratus (tableland ecotype) Prentis et al. (2007) found hybrid seed set
but no adult hybrids in the field. Prentis et al. (2007) also modelled loss of viable seeds to
hybridization and predicted the eventual displacement of S. pinnatifolius var. serratus by
the invasive S. madagascariensis at their study sites.

Whether Prentis et al’s (2007) conclusions are more broadly applicable to
other S. pinnatifolius ecotypes is not clear. Reports of potential hybrids between
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S. madagascariensis and S. pinnatifolius var. pinnatifolius (dune ecotype) (Scott, 1994; EM
White, Queensland University of Technology, Australia, pers. comm., 2005) have served
as a stimulus for the current study which sought to assess the incidence of hybridization
between S. madagascariensis and S. pinnatifolius var. pinnatifolius at two sites where the
species co-occur. The species have overlapping flower times (Radford, 1997; Radford ¢
Cousens, 2000) and share pollinators (White, 2008) making hybridization in the field
possible. The two species do possess different ploidy however (S. pinnatifolius is tetraploid,
S. madagascariensis diploid) with the triploid hybrid offspring that would most often
result, typically having low fertility due to meiotic pairing problems between homeologous
chromosomes. Despite the low fertility typical of triploid hybrids, they have been shown
to act as a bridge between taxa facilitating introgression (Koutecky et al., 2011; Lowe &
Abbott, 2000) and it may be possible for S. madagascariensis to produce unreduced gametes
(Brownfield & Kohler, 2010; Koutecky et al., 2011; Ramsey ¢ Schemske, 1998) that could
fuse with normal S. pinnatifolius gametes to produce tetraploid hybrid offspring.

As a successful invader, S. madagascariensis is spreading through south-eastern
Australia into new habitats, possibly due in part to introgression of adaptive genes from
S. pinnatifolius var. pinnatifolius. As a first step to examining this possibility, we assessed
the extent of hybrid seed set and the incidence of adult hybrids at our field sites. We
hypothesized that if introgression was occurring between S. pinnatifolius var. pinnatifolius
and S. madagascariensis, then evidence of mature hybrids should exists at sites where the
two species co-occur.

We use amplified fragment length polymorphisms (AFLPs) and microsatellites from
mature individuals of both species at two sites where the species co-occur and one site for
each species that was at least 2 km away from any other known populations of the congener
(‘allopatric’). We also sampled open pollinated progeny arrays in areas of co-occurrence.
We asked whether hybrid seed set occurs in the field and whether adult hybrids are present
that could backcross with either species to facilitate introgression.

MATERIALS & METHODS
Study species

Senecio madagascariensis is a diploid plant, initially introduced to south-eastern Australia
from the KwaZulu-Natal province of South Africa in the early part of the 20th century
(Radford et al., 2000). Molecular analysis of contemporary and historical field collections
has pointed to at least two separate introductions (Dormontt et al., 2014). Senecio
pinnatifolius (previously S. lautus) is a tetraploid plant native to Australia. There have
been multiple taxonomic treatments of the species complex (Ali, 1969; Radford, 1997; Roda
et al., 2013; Thompson, 2005), with each agreeing on distinction of ‘dune’, ‘headland’ and
‘tableland ecotypes. Senecio pinnatifolius var. pinnatifolius (dune ecotype) occurs on coastal
sands along the east coast of Australia and is the only S. pinnatifolius ecotype analysed in
the current study, hereafter referred to only as Senecio pinnatifolius. Initially included in
the S. pinnatifolius complex, S. madagascariensis was recognised as a separate species after
Hilliard’s (1977) treatment of Asteraceae in Natal (Sindel et al., 1998). This separation has
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Table 1 Information on sites and samples included in the study. Number of adults sampled (#,), num-
ber of adults with genotyped seedlings (n,), number of seedlings analysed (s) and range of seedlings geno-
typed per mother plant.

Species Population Latitude Longitude n, n, s (range)
S. pinnatifolius Southport $27°56'15" E153°25'35" 20 0 -
Lennox Head $28°47'9” E153°35'38" 20 7 52 (2-10)
Ballina S28°52/25” E153°35'21" 20 7 61 (4-10)
S. madagascariensis Oxenford §27° 5323 E153°18'43” 18 0 -
Lennox Head $28°47'9" E153°35'38" 20 6 59 (10-19)
Ballina S28°52/25” E153°35'21” 19 6 51 (4-10)
Total 117 26 223 (2-19)

been supported by morphological comparisons (Thompson, 2005) and cytological studies
(Radford, Liu & Michael, 1995) finding 2n = 20 for S. madagascariensis and 2n = 40 for
S. pinnatifolius.

Both species are considered annuals or short lived perennials (Radford ¢» Cousens, 2000),
look superficially identical, growing to approximately 0.6 m and with bright green leaves
and yellow inflorescences that are heterogamous and radiate. The species can be reliably
distinguished by the number of involucral bracts present, 18-21 in S. madagascariensis,
11-14 in S. pinnatifolius. Both species are outcrossing, self-incompatible (Ali, 1966) and
insect pollinated, predominantly by the introduced European honey bee Apis mellifera and
various species of Syrphidae (White, 2008); seeds are wind dispersed. In comparisons of
life history traits between the species, S. madagascariensis was found to perform better than
S. pinnatifolius with respect to seedling, growth and fecundity measures but S pinnatifolius
maintained a stronger soil seed bank (Radford ¢ Cousens, 2000).

Sample collection and seed germination

One allopatric population of each species was sampled along with two sites where the two
species occurred together (Table 1). At each site, twenty individuals of each species were
sampled with fresh leaf material preserved in silica beads for DNA extraction. Additionally,
at shared sites, multiple mature seed heads were collected from sampled plants where
available and stored for later germination. Plants were sampled in a systematic fashion
(across the contact zone at shared sites) and the location of all plants recorded with GPS
(with the exception of the allopatric S. madagascariensis population where coordinates
were not recorded). Plants that were not sampled for DNA were identified in the field and
GPS coordinates recorded. The GPS recorded relative position to within 1 m accuracy.
Two years after initial sampling, we revisited one of the shared sites to survey the changes
in abundance of S. pinnatifolius and S. madagascariensis.

In the laboratory, mature achenes were detached from their pappus and the seed
coat nicked with a scalpel. Seeds were grown on moist filter paper with gibberellic
acid (GAs3) in a 12 h photoperiod at 25 °C to stimulate germination. All germinated
seedlings, up to a maximum of ten per parent plant, were frozen at —80 °C prior to
DNA extraction, except in one case where 20 seedlings were used (Table 1, see results for
further explanation). The number of seeds per parent plant that successfully germinated

Dormontt et al. (2017), PeerdJ, DOI 10.7717/peer|.3630 418


https://peerj.com
http://dx.doi.org/10.7717/peerj.3630

Peer

Table 2 Details of final round PCR primers used in study. Markers used were amplified fragment length polymorphisms (AFLP), nuclear mi-
crosatellites (nSSR), and one chloroplast microsatellite (cpSSR). Primer information includes primer type (EcoRI or Mse origin for AFLPs, locus
name and primer direction for microsatellites); primer sequence including fluorescent dye (PET, FAM, NED or VIC); annealing temperature (T,);
and number of loci (for AFLPs) or alleles (for microsatellites) scored for each pair (n).

Marker Primer #1 Primer #2 T, (°C) n
AFLP EcoRI TACTGCGTACCAATTCAGC(PET) Mse GACGATGAGTCCTGAGTAACAA 65-56 48
EcoRI TACTGCGTACCAATTCAGC(FAM) Mse GACGATGAGTCCTGAGTAACAG 65-56 57
EcoRI TACTGCGTACCAATTCAGC(NED) Mse GACGATGAGTCCTGAGTAACCG 65-56 37
nSSR Se-116F CCTTCTGGTTGATTTGGCTAAGC(FAM) Se-116R AGAACTGCACATTTGAAGCCTG 48 15
Se-138F ACTTCGTGGGCCATTCCAG(VIC) Se-138R CTTCCTGCATAACATCCACCAC 58 24
cpSSR Ccmp3F CAGACCAAAAGCTGACATAG(PET) Ccmp3R GTTTCATTCGGCTCCTTTAT 50 3

were classified as ‘ten or more’, or ‘less than ten’. Germination rates were compared
between sites using a permutation approach in Resampling Stats Add-In for Excel v4.0
(https://www.statistics.com/). Seeds per parent plant that successfully germinated (‘ten or
more’, or ‘less than ten’) were sampled without replacement to simulate the same number
of parent plants per site as the empirical data. The proportion of ‘less than ten’ seedlings per
site were compared in 10,000 simulations to the empirical data to obtain estimated P values.

Genetic analysis

DNA extractions were carried out using the Machery-Nagel Nucleospin Plant II Kit
with the PL2/PL3 buffer system. Two published microsatellite loci (Le Roux ¢ Wieczorek,
2007) originally developed for S. madagascariensis and found to be cross compatible with
S. pinnatifolius, were used to screen all adults and seedlings from both species (Table 2).
PCR reactions were prepared with ~20 ng of template DNA, 1 x reaction buffer, 0.2 mM of
each ANTP, 2.5 mM MgCl,, 0.4 uM of each primer, and 0.02 U Amplitaq Gold® (Applied
Biosystems, Foster City, CA, USA) to give a final PCR reaction volume of 10 pL. Reactions
involved an initial denaturation step of 94 °C for 2 min, followed by 35 cycles at 94 °C for
1 min, the loci specific annealing temperature for 1 min (Table 2), 72 °C for 1 min and
30 s, and a final extension at 72 °C for 30 min. One published chloroplast microsatellite
locus (Weising ¢ Gardner, 1999) (Table 2) was found to produce bands mutually exclusive
to S. pinnatifolius and S. madagascariensis and so was included to allow identification of
the maternal parent of any hybrid adults detected in the field. Reactions were prepared
with ~20 ng of template DNA, 1x reaction buffer, 0.2 mM of each dNTP, 2.5 mM MgCl,,
0.5 pM of each primer, and 1 U IMMOLASE™ DNA polymerase (Bioline, London, UK)
to give a final PCR reaction volume of 10 pL. Reactions involved an initial denaturation
step of 94 °C for 5 min, 30 cycles of 94 °C for 20 s, 50 °C for 20 s, 72 °C for 20 seconds, and
a final extension at 72 °C for 30 min. Products were separated using the ABI 3730 DNA
analyzer (Applied Biosystems, Foster City, CA, USA) with the GeneScan™—500 LIZ® size
standard. Genemapper® Software v4.0 (Applied Biosystems, Foster City, CA, USA) was
used to score fragments. Scoring was recorded in a binary matrix with presence or absence
of particular alleles indicated by a 1 or 0. This method allowed for polyploidy and diploid
data to be directly compared and analysed together. DNA from thirty one individuals (9%
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of samples) were amplified twice for microsatellite analysis to enable estimation of error
rates, calculated according to DeWoody, Nason ¢ Hipkins (2006).

Amplified fragment length polymorphisms (AFLPs) were assessed according to the
method of Vos ef al. (1995) with modifications. Restriction digests were performed in 20 pul
reactions with ~200 ng of DNA, 1x restriction digest buffer 2, 10 U Msel (New England
Biolabs, Ipswich, MA, USA), 10 U EcoRI (New England Biolabs, Ipswich, MA, USA), and
1 xBSA. Reactions were incubated for 3 h at 37 °C, followed by 20 min at 65 °C to denature
the enzymes. Adapters were ligated to the digested fragments in reactions containing 20 wl
of digested DNA, 1x T4 ligase buffer, 2.5 uM EcoRI adapter, 0.25 uM Msel adapter and 3
U of T4 DNA ligase (New England Biolabs, Ipswich, MA, USA). Reactions were incubated
overnight at 16 °C.

Pre-selective amplifications contained 2 ul of digested and ligated DNA, 1x Optimised
DyNAzyme™ EXT buffer (including 1.5 mM Mg?*), 0.2 mM of each dNTP, 0.5 uM Msel
(+C), 0.5 uM EcoRI (+A) primers and 0.25 U DyNAzyme™ EXT DNA polymerase to
give a final PCR reaction volume of 25 uL. Reactions involved an initial denaturation step
of 75 °C for 2 min, then 20 cycles of 94 °C for 30's, 56 °C for 30 s, 75 °C for 2 min, and
a final extension at 60 °C for 30 min. PCR products were run on agarose gel to check for
successful amplification.

Selective amplifications contained 1 1 of 1 in 30 diluted pre-selective PCR product,
1xTaqGold buffer (Applied Biosystems, Foster City, CA, USA), 2 mM MgCl,, 0.2 mM
of each dNTP, 0.3 pM Msel + 3bp primers, 0.3 uM EcoRI +3 bp primers and 0.75 U
TaqGold (Applied Biosystems, Foster City, CA, USA) in a final PCR reaction volume of
15 pL. Reactions involved an initial denaturation step of 94 °C for 2 min, then 10 cycles
of 94 °C for 30 s, 65—56 °C for 30 s (reduce by 1 °C per cycle), 72 °C for 2 min, then
26 cycles of 94 °C for 30 s, 56 °C for 30 s, 72 °C for 2 min and a final extension at 60 °C
for 5 min. Twelve selective amplifications were trialled using a range of +3 bp primer
combinations on four individuals of each species. Products were run on 5% acrylamide
gels using a Gelscan GS2000 (Corbet Research) and the three most suitable combinations
(based on appropriate number and strength of bands, polymorphisms and ease of scoring)
were chosen for selective amplification of all samples (Table 2). Products were separated
using the ABI 3730 DNA analyzer (Applied Biosystems) with the GeneScan™—500 LIZ®
size standard. Forty one adult individuals (12% of total individuals) were re-extracted for
DNA and the AFLP process repeated to allow loci validation and error rate calculations.
Vegetative material from seedlings was too small to allow for repeated extractions, so only
adults were used. A negative control was included throughout the extraction/AFLP process
to enable exclusion of non-specific bands.

Genemapper® Software v4.0 (Applied Biosystems, Foster City, CA, USA) was used
to manually allocate bins to appropriate loci, all duplicated samples were visualised and
where consistent banding was apparent between samples, this was assigned as a specific
locus. Once manual binning was complete, the full dataset was automatically scored
using Genemapper® Software v4.0 (Applied Biosystems, Foster City, CA, USA) and raw
peak height data obtained. The raw peak height data were then used with AFLPScore
v1.4 (Whitlock et al., 2008) to minimise error whilst maximising number of retained loci.
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AFLPScore allows the user to select a range of loci selection thresholds (the average intensity
of bands at a specific locus, above which a locus is retained in the dataset) and phenotype
calling thresholds (the intensity of a given band, either in absolute terms, or as a percentage
of the average for that locus, above which band presence will be called). By comparing
combinations of different locus selection and phenotype calling thresholds, the user can
select thresholds which result in reduced error and maximised retained loci. After error
reduction via AFLPscore, a phenotype matrix was exported and loci with the highest error
rates systematically removed to create 11 separate datasets with error rates of 0%, 1%, 2%,
3% etc. up to 10% and additionally one with a 17% error rate (the output from AFLPscore
with no loci removed). To assess the effects of each error rate on overall information
content, the data from the allopatric populations of each species were analysed using the
program STRUCTURE (Pritchard, Stephens ¢ Donnelly, 2000) with RECESSIVEALLELES
set to 1 to account for dominant data (Falush, Stephens ¢ Pritchard, 2007). Number of
predefined populations (K) was set from 1 to 5. Each run consisted of a burn-in period of
100,000 Markov Chain Monte Carlo (MCMC) repetitions, followed by 1,000,000 MCMC
repetitions, the program was run five times to allow averaging of results in CLUMPP
(Jakobsson ¢ Rosenberg, 2007). Plots were displayed in DISTRUCT (Rosenberg, 2004).
The final dataset was chosen based on how well it could detect the expected structure
(designation of K = 2, highest probability of individuals belonging to the appropriate
species cluster) and how robust it was to the negative impacts of higher error (such as the
signal from plate effects) see Zhang ¢ Hare (2012) for an in-depth discussion and analysis
of this approach.

Data analysis
To assess hybridisation, the AFLP and microsatellite data were combined into one data
matrix, in the case of the microsatellites, each allele was either designated as present or
absent. Assignment of an individual as either a pure parental species or a hybrid was based
on a consensus between two different analysis methods, with the most conservative (i.e.,
non-hybrid) designation accepted if results were inconsistent between methods. The first
method used the allocation procedure in the program AFLPOP (Duchesne ¢» Bernatchez,
2002). The allopatric populations of each species were set as sources, and the remaining
samples allocated to either one of the pure species or hybrid origin by the program. Zero
frequencies were corrected as 1/n+ 1, where # is the sample size. The allocation minimal
log-likelihood difference (MLD) was initially set to 1 (meaning allocation only occurred
when designation was 10 times more likely than any other possible origin). Samples that
could not be allocated in this way were re-run with MLD set to 0 (allocating to highest
likelihood source regardless of the magnitude of difference between alternate likelihoods).
The second method used the program STRUCTURE (Pritchard, Stephens ¢ Donnelly,
2000) with extensions implemented by Falush, Stephens ¢ Pritchard (2007) to account
for genotypic ambiguity that is inherent in dominant markers; RECESSIVEALLELES
was set to 1. STRUCTURE has been used successfully to assess datasets comprised of
individuals with different ploidy levels (De Hert et al., 2012; Pinheiro et al., 2010; Zalapa et
al., 2011). Number of predefined populations (K) was set to 2. Each run consisted of a
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burn-in period of 100,000 Markov Chain Monte Carlo (MCMC) repetitions, followed by
1,000,000 MCMC repetitions, the program was run five times to allow averaging of results
in CLUMPP (Jakobsson ¢ Rosenberg, 2007). Plots were displayed in DISTRUCT (Rosenberg,
2004). Clustering of adult and seedling genotypes of each species at both allopatric and
shared sites were visualised with a principal coordinate analysis (PCoA) in GENALEX v6.4
(Peakall & Smouse, 2006; Peakall ¢ Smouse, 2012). Hybrid zone mapping was completed
using ArcGIS v9.2 (ESRI, Redlands, CA, USA).

RESULTS

Loci selection

Both nuclear microsatellite loci were polymorphic in both species and retained for
further analysis (Table 2). The single chloroplast microsatellite locus was polymorphic
in S. pinnatifolius (two alleles) and monomorphic in S. madagascariensis but alleles were
not shared between species. All adults and seedlings genotyped conformed to their expected
species specific chloroplast haplotypes. The observed error rate per allele and per locus for
the nuclear microsatellites was zero. Of the 12 AFLP primer combinations trialled, three
were chosen for screening all samples (Table 2).

In AFLPScore v1.4 (Whitlock et al., 2008), mismatch error rates were used to optimise
scoring parameters using both absolute and relative phenotype calling thresholds on an
initial dataset containing 247 loci. The error rate of the exported data set was 0.17 with
233 retained loci (Data S1), achieved by filtering data using an absolute phenotype-calling
threshold of 250 relative fluorescence units (RFU), prior to application of a 50 RFU
locus-selection threshold. After STRUCTURE analysis, the data set equating to an average
error rate of 6% was chosen, as it correctly identified K =2, indicated high assignment
rates of individuals to their correct species, did not display any significant plate effects at
K =3 (the number of plates) and contained a reasonable number of loci (142) (Fig. S1).
An overall error rate of 6% is high compared to the 2-5% reported for most AFLP studies
(Bonin et al., 2004) but under the maximum threshold of 10% recommended by Bonin,
Ehrich & Manel (2007) (Fig. S2). Systematically evaluating the effects of different error
rates on result and selecting that which is most informative and least confounding allows
the information content of the dataset to be maximised without limiting the included loci
in order to conform to an arbitrary cut off point (Zhang ¢ Hare, 2012).

Hybridisation

No adult hybrids were detected in the field. In total, 17 hybrids were observed from 223
seeds (8% of seeds and 5% of all individuals genotyped including adults). Fourteen of
these hybrid seeds were from a single S. madagascariensis mother and three from two
S. pinnatifolius mothers (Fig. 1). Hybrid seed set was observed at Lennox Head where
6% and 22% of the total seeds sampled for each species at that site were hybrid for

S. pinnatifolius and S. madagascariensis respectively. For each adult with a hybrid seed
set, the distance to the nearest congeneric was <15 m (Fig. 1). There was uncertainty
in the field about seeds collected from what appeared to be a single plant but may have
been two adjacent plants. Twenty seeds were germinated from this sample with the hope
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Figure 1 Location of samples at shared field sites. (A) shows location of sites in Australia; (B) shows lo-
cation of sites in New South Wales; (C) shows the Ballina site; (D) shows the Lennox Head site. Senecio
pinnatifolius is depicted with white symbols, Senecio madagascariensis with black symbols. The position

of un-sampled plants is shown by crosses, small circles are genotyped adult plants, and larger circles are
genotyped plants with genotyped seed. The proportion of seeds with pure or hybrid origin is shown in the
large circles, grey indicating hybrid. Where hybrids occur, call out boxes enlarge this detail. The number of
seeds sampled per adult (n) is indicated.

that separation of individuals could be made in the lab from the results of the genetic
analysis. The microsatellite data confirmed that these seeds did indeed come from the
same individual, and so one adult has 20 genotyped offspring instead of the usual 10. A
single hybrid seed was detected at Ballina from a S. madagascariensis mother (Fig. 1), as
designated by agreement between AFLPop and STRUCTURE, however this individual
does closely cluster with other pure S. madagascariensis seedlings in the PCoA analysis
(Fig. 2), which may indicate a false positive result. AFLPOP (Duchesne ¢ Bernatchez, 2002)
allocated 90% of adults and 68% of seedlings with a minimal log-likelihood difference
(MLD) of 1 (indicating that the allocation was at least 10 times more likely than any
other). The remaining samples allocated with MLD set to 0. One S. madagascariensis
seedling was allocated to S. pinnatifolius with MLD set to 0. The chloroplast haplotype of
this individual was consistent with S. madagascariensis maternity and it clustered with the
hybrid seedlings in the PCoA (Fig. 2), so has been designated as a hybrid. Hybrid origin
was more conservatively allocated in the program STRUCTURE (Pritchard, Stephens ¢
Donnelly, 2000) (Fig. 3) with 92% consensus between the two methods. Final designation
used the most conservative (non-hybrid) allocation.
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Figure 2 Principal coordinates analysis. Clustering of adults (A) and seeds (B) of Senecio pinnatifolius
(circles) and Senecio madagascariensis (triangles) at allopatric (grey) and the two shared sites: Lennox
Head (white) and Ballina (black). Hybrid designation is based on the combined results from STRUC-
TURE and AFLPop. Hybrid seeds were found at Lennox Head with S. pinnatifolius mothers (4) and S.
madagascariensis mothers (X). One hybrid with an S.madagascariensis mother was found at Ballina ()§).
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Figure 3 Data output from the program STRUCTURE, runs averaged with CLUMPP and displayed
with DISTRUCT. (A) shows data for Senecio pinnatifolius and (B) for Senecio madagascariensis. Locations,
and whether the samples were adults or seeds, are shown under the bar plots. For both species, the al-

lopatric population is shown first, followed by the shared sites. Individuals designated as hybrid in the fi-
nal dataset are indicated with an asterisk.
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Germination and site revisit

Germination success varied somewhat between individuals with 11-38% of parent plants
per site producing less than ten seedlings for DNA extraction. However, the simulation
approach used to examine germination rates found no significant differences between
germination rates at each site and those expected to arise randomly. The Lennox Head site
was revisited in 2009, two years after initial sampling and a morphological survey of plant
species identity undertaken. All plants observed were identified as S. madagascariensis.

DISCUSSION

Hybridisation between native and exotic species can affect biological invasions in several
ways, including via introgression (Currat et al., 2008; Prentis et al., 2008; Whitney, Randell
¢ Rieseberg, 20065 Whitney, Randell ¢ Rieseberg, 2010) and pollen swamping (Buggs ¢
Pannell, 2006; Petit et al., 2004; Prentis et al., 2007). Despite occasional hybrid seed set
between native Senecio pinnatifolius var. pinnatifolius (dune ecotype) and invasive Senecio
madagascariensis, we found no evidence to support the role of introgression in this
system. We found very low levels of hybrid seed formation in both S. pinnatifolius and
S. madagascariensis mothers at one site (Lennox Head, NSW) where the two species occur
together with a minimum distance of approximately 15 m. A single S. madagascariensis
mother and two S. pinnatifolius mothers produced all the hybrid seeds at this site. At the
other study site (Ballina, NSW) a single hybrid seed was detected in a S. madagascariensis
mother, with a distance of approximately 155 m to the closest S. pinnatifolius plant. The
observed imbalances in hybrid seed set amongst conspecifics may be the result of proximity
to congenerics (Fig. 1) or could indicate individual variation in ability to set hybrid seed.

No adult hybrids were identified at either site which could be explained simply by the low
overall hybrid seed set observed; perhaps hybrid adults were not present simply by chance
in the study year. Prentis et al. (2007) found no significant differences in viability between
seeds generated from intra- and inter-specific crosses suggesting that any fitness costs are
incurred after germination. However, Prentis et al. (2007) examined S. pinnatifolius var.
serratus, not S. pinnatifolius var. pinnatifolius (the focus of this study), so it is possible
that hybrid seed viability varies between S. pinnatifolius varieties. Reciprocal crossing
experiments between S. madagascariensis and the different S. pinnatifolius varieties would
further explore this issue. Alternatively, the lack of mature hybrids observed in the field
could be the result of reduced hybrid fitness acting as a post-zygotic mating barrier between
S. pinnatifolius and S. madagascariensis. Previous work has shown that synthetic hybrids
between the two species grown under glasshouse conditions had low viability and were
sterile (Radford, 1997). Occasional adult hybrid occurrence may explain the findings of
Scott (1994) and EM White, Queensland University of Technology, Australia, pers. comm.,
2005, who report observation of putative hybrid plants.

The present study did not identify the ploidy level of the hybrid seedlings identified
from our open pollinated progeny arrays which would be an interesting topic for further
research. Koutecky et al. (2011) found that hybrids formed from reduced gametes between
diploid Centaurea pseudophrygia and tetraploid Centaurea jacea were less common in the
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seed set of maternal plants but more common in the adult hybrid plants found in the field,
suggestive of increased fitness of the tetraploid hybrids. These tetraploids were also able to
backcross with C. jacea, facilitating introgression of C. pseudophrygia genes into C. jacea.
In S. pinnatifolius x S. madagascariensis hybrids there may be similar fitness asymmetries
associated with ploidy level but as hybridisation rates were so low and no adult hybrids
were detected in the present study, the impact of any such differences is likely minimal.

Selection against hybrids in the field would constitute a post-zygotic mating barrier,
yet the prevailing view is that pre-zygotic mating barriers are stronger in flowering
plants (Dell’Olivo et al., 2011; Rieseberg ¢ Willis, 2007; Widmer, Lexer ¢ Cozzolino, 2009).
However, global change (including increased movement of exotic species) is predicted
to increase opportunities for hybridization through the erosion of pre-zygotic barriers
(Vallejo-Marin & Hiscock, 2016). Evidence for pre-zygotic isolation barriers between
S. pinnatifolius and S. madagascariensis are sparse at present. The two species can be found
occurring in shared sites (Prentis et al., 2007; Radford, 1997; White, 2008), their flowering
times overlap ((Radford, 1997; Radford ¢» Cousens, 2000) and a similar suit of pollinators
visit both species (White, 2008). However, it should be noted that reproductive isolation
can still be favoured even when flowering times overlap but not completely, as is the
case with S. pinnatifolius and S. madagascariensis (Radford, 1997). Even when pollinators
are shared, they may prefer conspecific over heterospecific visitation (White, 2008). The
relative contribution of these potentially reproductively-isolating barriers remains to be
tested in this system with more extensive field and laboratory studies, incorporating greater
geographical and temporal breadth. The use of AFLP and microsatellite markers to explore
hybridization as implemented in this study have also now been superseded by genomic
techniques that utilize next generation sequencing (NGS) methods to develop datasets
with orders of magnitude more information (Goulet, Roda ¢ Hopkins, 2017; Payseur ¢
Rieseberg, 2016). Further work on the system should exploit these resources to better
characterise hybridisation outcomes.

We set out to explore whether hybridisation between S. pinnatifolius var. pinnatifolius
(dune ecotype) and S. madagascariensis was likely to have facilitated the spread of
S. madagascariensis by way of introgression of adaptive genes. Due to the very low level
of hybrid seed set and the absence of adult hybrids, we must conclude that introgression
via fertile hybrids in the field is probably rare, at least at the sites we studied. As only
two field sites were included it is difficult to generalise across the entire ~2,000 km range
in which the two species overlap, however we can tentatively support the findings of
Prentis et al. (2007) who found similar results in their study of hybridisation between
S. pinnatifolius var. serratus (tableland ecotype) and S. madagascariensis. It may be the
case that all S. pinnatifolius ecotypes exhibit the same patterns when in sympatry with
S. madagascariensis.

In their modelling of these hybrid zones Prentis et al. (2007) also predicted a demographic
swamping of S. pinnatifolius by S. madagascariensis assuming that hybridisation is
plant density dependent. However, the very low levels of hybrid seed set observed in
S. pinnatifolius in the current study (6% of seeds) are not consistent with this prediction.
The assumption of density dependence could not be verified as overall levels of hybridisation

Dormontt et al. (2017), PeerdJ, DOI 10.7717/peer|.3630 12/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.3630

Peer

were too low but we did find the greatest proportion of hybrid seed set in an area of high
congeneric plant density (Fig. 1). To adequately assess the density dependent nature of
hybridisation, artificial manipulation of plant densities in open pollinated conditions
would be required. At our subsequent revisitation of the Lennox Head site, two years
after initial sampling, we were unable to find any S. pinnatifolius individuals. Given the
low levels of hybrid seed set, it is most likely that S. madagascariensis achieved dominance
via other competitive advantages such as longer flowering time, production of more
seeds and greater survival rates (Radford ¢ Cousens, 2000). Both S. madagascariensis and
S. pinnatifolius are considered annuals or short lived perennials (Radford ¢ Cousens, 2000),
stochastic recruitment failure in annual S. pinnatifolius combined with perennial behaviour
in some S. madagascariensis plants could also provide a plausible explanation for the lack
of S. pinnatifolius at the study site two years after collection.

CONCLUSION

Despite limited obvious pre-zygotic isolating barriers restricting hybridisation between the
native S. pinnatifolius var. pinnatifolius (dune ecotype) and invasive S. madagascariensis in
coastal areas of eastern Australia, we did not find any evidence of adult hybrid plants at two
shared sites surveyed in 2007 and analysed with a combination of AFLPs and microsatellites.
Hybrid seeds from both S. pinnatifolius and S. madagascariensis were identified at very low
levels from open pollinated progeny arrays in the field. Based on these investigations we
conclude that introgression of adaptive genes from S. pinnatifolius var. pinnatifolius (dune
ecotype) is unlikely to have played a significant role in the success of S. madagascariensis
invasions in Australia.
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