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Abstract 

Background 

Genetic components play important roles in the susceptibility to major depressive disorder 

(MDD). The rapid development of sequencing technologies is allowing scientists to 

contribute new ideas for personalized medicine; thus, it is essential to design non-invasive 

genetic tests on sequencing data, which can help physicians diagnose and differentiate 

depressed patients and healthy individuals.   

Methods 
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We have recently proposed a genetic concept involving single-nucleotide variant proportion 

(SNVP) in genes to study MDD. Using this approach, we investigated combinations of 

distance metrics and hierarchical clustering criteria for genetic clustering of depressed 

patients and ethnically matched controls.  

Results 

We analysed clustering results of 25 human subjects based on their SNVPs in 46 newly 

discovered candidate genes.  

Conclusions 

According to our findings, we recommend Canberra metric with Ward’s method to be used in 

hierarchical clustering of depressed and normal individuals. Futures studies are needed to 

advance this line of research validating our approach in larger datasets, those may also be 

allow the investigation of MDD subtypes.   

Limitations 

High quality sequencing costs limited our ability to obtain larger datasets.   

Abbreviations 

MDD, major depressive disorder; SNV, single-nucleotide variant; SNVP, single-nucleotide 

variant proportion; WGS, whole-genome sequencing; UPGMA, Unweighted Pair Group 

Method with Arithmetic mean; WPGMA, Weighted Pair Group Method with Arithmetic 

mean; UPGMC, Unweighted Pair Group Method with Centroid; WPGMC, Weighted Pair 

Group Method with Centroid. 

 

Keywords: major depressive disorder; sequencing; distance metric; hierarchical clustering; 

candidate gene; Canberra distance; Ward’s method 

 

1. Introduction 
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        Major depressive disorder (MDD) has a lifetime prevalence of 10%-20% in the general 

population; it produces significant morbidity and mortality, and leads to high suicide rates 

(Wong and Licinio, 2001). Genetic factors have been proven to play important roles in the 

development of MDD (Flint and Kendler, 2014). The growth of newer and cheaper high-

throughput sequencing technologies has allowed the progress of novel methods towards 

personalized treatment (Soon et al., 2013). Specifically, whole-genome sequencing can 

identify most or even all private genetic variations such as single-nucleotide variants (SNVs), 

small insertions and deletions, and copy number variations (Belkadi et al., 2015). Thus it is 

desirable to develop a non-invasive genetic test using sequencing data, which can help 

physicians diagnose and differentiate depressed patients from normal healthy people. Genetic 

clustering has provided a promising conduit to explore this topic (Yu et al., 2017a).  

        Recently, we proposed a new genetic concept, single-nucleotide variant proportion 

(SNVP) in genes, to study MDD based on DNA sequencing data (Yu et al., 2017b)., 

Multivariate cluster analysis such as hierarchical cluster tree method can be designed to 

identify depressed individuals and normal controls using SNVPs in a range of candidate 

genes (Yu et al., 2017b). Since hierarchical clustering is sensitive to both the choice of 

distance metric technique (e.g., Euclidean distance, Manhattans distance, etc.) and the 

criterion for determining the order of clusters (e.g., complete linkage, average linkage, etc.), 

various combinations of those approaches may yield different results. Thus, the distance 

metric technique and the clustering criterion should be carefully selected.  

        In this report, we focused on methodological refinement by investigating different 

combinations of distance metrics and hierarchical clustering criteria for genetic clustering of 

depressed patients and normal controls. Based on SNVPs in 46 candidate genes associated 

with major depression, different clustering trees were compared to evaluate the robustness of 

combination results.  
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2. Materials and methods 

2.1 Subjects  

        We have obtained complete whole-genome sequencing data of two samples of human 

participants (Yu et al., 2017b, 2017c). Two samples were respectively recruited from two 

populations: Mexican-American in Los Angeles, California, USA (Wong et al., 2016) and 

Australian of European-ancestry in Adelaide, South Australia, Australia (Baune and Air, 

2016). The Mexican-American sample included 15 subjects (10 MDD patients and 5 healthy 

controls, sequenced by Illumina HiSeq 2000 at BGI-Shenzhen, Shenzhen, Guangdong, 

China), and the Australian sample consisted of 10 subjects (5 MDD patients and 5 healthy 

controls, sequenced by Illumina HiSeq X at Garvan Institute, Sydney, New South Wales, 

Australia). All the participants provided written informed consent, and we confirmed that 

there were no blood relatives among them. The details about MDD and healthy control 

diagnostic criteria can be found in our previous work (Wong et al., 2016). The study was 

registered in ClinicalTrials.gov (NCT00265291) and approved by the Institutional Review 

Boards of the University of California, Los Angeles and the University of Miami in USA, 

and the Human Research Ethics Committees of the Australian National University, the 

University of Adelaide, the Flinders University and Bellberry Limited in Australia.  

2.2 SNVP in 46 candidate genes  

        SNVP in a gene was defined as the ratio of the number of SNVs to the number of all 

nucleotides in the gene sequence (Yu et al., 2017b). In recent work, using genome-wide 

association study for common mutations (Minor Allele Frequency, MAF > 0.01) and rare-

variant analysis for rare mutations (MAF < 0.01) on exome genotyping data from a large 

Mexican-American cohort, we identified 46 genes which may confer susceptibility to MDD, 

namely, ALDH3B1, ANKMY2, ANO8, ARHGAP8, BCAR3, C10orf27, C19orf39, C2orf54, 
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CACNA1G, CIZ1, CNTD1, CNTNAP1, CRAMP1L, EMR2, FAM69B, FASN, FSCB, GNA15, 

GRK4, HOMER3, KRBA1, LILRA1, LRRC24, LRWD1, MUC5B, MUC6, MYH13, OR1L4, 

OR2T12, OR52I1, OR6C4, ORAI1, PHF21B, PLEKHG6, PRR5, RABAC1, SLC2A8, SLX4, 

TBC1D2B, TMEM150B, TMEM151A, TRIO, TRPM2, TRPV4, UNC13D, and VENTX (Wong 

et al., 2017). We have performed SNV callings on whole-genome sequencing data analysis 

and calculated SNVPs in those 46 genes for 25 human subjects (Yu et al., 2017b) using high-

performance computers in eResearch South Australia (www.ersa.edu.au). 

2.3 Distance metrics  

         When clustering subjects, we put subjects with similar features into the same cluster 

and dissimilar subjects into different clusters. The distance metric showing similarity and 

dissimilarity is significant as it determines how different two subjects are. Mathematically, a 

distance function D(X, Y) between two N-dimensional numerical vectors
1 2( , ,..., )NX x x x  

and
1 2( , ,..., )NY y y y is said to be metric if it satisfies the following properties:  

        (i) Non-negativity: D(X, Y) ≥ 0;  

        (ii) Identity of indiscernibles: D(X, Y) = 0 if and only if X = Y; 

        (iii) Symmetry: D(X, Y) = D(Y, X); 

        (iv) Triangle inequality: D(X, Z) ≤ D(X, Y) + D(Y, Z) for any X, Y and Z.  

Here we compared the following distance metrics for clustering. Since SNVP is a ratio 

number between 0 and 1, we consider 0 < ,  1i ix y   for i = 1, 2, …, N.   

        (1) Euclidean distance: 2
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        (4) Chebyshev distance: ( , ) max | |i i
i

D X Y x y  .  

        (5) Minkowski distance: 

1/
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 
  
 
 , for P ≥ 1. Actually, for P = 1, it is 

Manhattan distance and for P = 2, it is Euclidean distance.   

        (6) NTV distance (Nieto et al., 2003): 1
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 . The triangle 

inequality for this metric has also been verified by a simple proof (Dress and Lokot, 2003).  

         In this study, we use D(X, Y) to represent the genetic distance between two human 

subjects X and Y. Here each subject is represented by an N-dimensional numerical vector, i.e., 

a set of SNVP values for N candidate genes (N = 46 in work presented here). 

2.4 Hierarchical clustering criteria 

        The hierarchical clustering results are commonly displayed in a dendrogram, and there 

are many different linkage criteria for this aim. In this study we compared the following 

agglomerative algorithms: single linkage (nearest neighbour method), complete linkage 

(farthest neighbour method), average linkage (Unweighted Pair Group Method with 

Arithmetic mean - UPGMA), McQuitty’s linkage (Weighted Pair Group Method with 

Arithmetic mean - WPGMA), centroid linkage (Unweighted Pair Group Method with 

Centroid - UPGMC), median linkage (Weighted Pair Group Method with Centroid - 

WPGMC) and Ward’s method (Arabie et al., 1996). We also used bootstrap resampling 

techniques to assess hierarchical clustering uncertainty. By using Pvclust package (Suzuki 

and Shimodaira, 2006) two types of probability values, approximately unbiased (au) 

probability value and bootstrap probability (bp) value, were calculated and shown in the 

dendrogram. All statistical calculations and dendrogram graphs in this study were performed 

using the R software (www.r-project.org).   
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        We tested different combinations of eight distance metric techniques and seven 

hierarchical cluster analysis criteria to cluster those 25 subjects based on SNVPs in the 46 

candidate genes. For the Minkowski metric, we examined P = 1.25, 1.5, and 1.75. The 

expected clustering result was supposed to firstly separate the two population groups 

(Mexican-American and Australian) and then separate two subgroups (depressed and normal 

control) within each population sample.  

 

3. Results    

        In Table S1, we present descriptive statistics of gender, age and HAM-D (Hamilton 

depression) scores for the 15 Mexican-American and the 10 Australian subjects whose whole 

genome data were analysed in this study. The Australian group included both acutely 

depressed and remitted depressed patients who had by definition a lower depression severity 

compared to acutely depressed patients; thus, the HAM-D scores for Australian sample may 

be lower on average than the Mexican-American sample.          

        After checking the dendrogram results of all combinations, we found that the Ward’s 

method as a hierarchical clustering criterion generated the best outcomes for all the distance 

metrics except the Chebyshev metric (see Figure 1). Clustering relationships in the trees 

showed that the two populations were well separated. Furthermore, within the Mexican-

American group, MDD patients clustered together and ethnically matched controls clustered 

away and separately. However, although the Australian individuals stably stand as a 

separated group, within that group the depressed and control subjects could not be well 

distinguished for all the combinations of distance metrics and hierarchical cluster analysis 

criteria. The clustering results on other hierarchical clustering criteria were presented in 

Figures S1-S6.  
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        We also examined all the distance metrics and found that the Canberra metric produced 

the best results for all the hierarchical clustering criteria except for the single linkage 

algorithm (see Figure 1 and Figures S1-S6). Actually, single linkage method could not 

perform well for all the distance metrics. To assess the uncertainty in hierarchical clustering 

by the Canberra metric and the Ward’s method, we used the Pvclust package to perform 

5,000 iterations bootstrapping in order to construct the cluster dendrogram with au/bp values 

(%) as shown in Figure 2. The au values for two population clusters are 100 and 100, and for 

the two subgroups within Mexican-American cluster are 82 and 80. The au values computed 

by multiscale bootstrap resampling better approximate to unbiased probability values. Au 

value of a cluster indicates how strongly this cluster is supported by data. Our result implies 

very strong clusters for the two populations (100% and 100%), and the two subgroups (82% 

and 80%) within the Mexican-American sample. Therefore, based on the SNVP data, we 

recommend that the Canberra metric with Ward’s hierarchical clustering method be used in 

genetic cluster analysis of depressed individuals and normal controls.  

 

4. Discussion      

        In this study, we tested different combinations of distance metrics and hierarchical 

clustering criteria based on SNVP. The Canberra metric with Ward’s criterion clearly 

surpassed the other combinations. Actually, the Canberra metric has attracted attention from 

computational geneticists and has been used in checking ranked lists of molecular biomarkers 

(Jurman et al., 2008). The Ward’s criterion, which focuses on minimizing the total within-

cluster variance, may also reveal information on genetic variation between/within MDD and 

control clusters. Further investigation on this combination should examine larger genetic data 

sets and additional replication samples from other ethnic groups.   
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        Our approach could cluster the 15 Mexican-American subjects into two groups in the 

hierarchical cluster tree: major depression and normal control. We could potentially 

determine how close new Mexican-American participants were to the existing depressed or 

control group using genetic clustering. Subjects within or close to the depression group in the 

cluster tree could be predicted to be individuals with depression. 

        Cluster analysis based on SNVP not only could derive a predictive/diagnostic tool, as 

one can test whether a new subject falls within or close to an existing diseased cluster, but 

may also provide an alternative way for determining MDD subtypes. Major depression as a 

clinically heterogeneous illness has been classified based on distinct clinical features that 

include course, periodicity, qualitative and quantitative types of symptoms, age or phase of 

life, and cause (van Loo et al., 2012). Since different subtypes of MDD may respond 

differentially to various medications, there has been considerable interest in studying 

classification systems and subgroupings of depressed patients (Hybels et al., 2013; Ulbricht et 

al., 2015). Clinical data-driven subtypes of MDD remain largely controversial due to the 

heterogeneity of this disorder (Harald and Gordon, 2012; Bosaipo et al., 2016); thus, our 

methodology of genetic clustering on sequencing data would bring a new direction to this 

field. However, high quality deep sequencing costs are currently still a concern that limits 

obtaining larger datasets. Furthermore, the fact that Australian subjects fail cluster into case 

and control subgroups may imply that our current computational strategy may be restricted to 

specific populations, with a higher degree of genetic diversity, such as Mexican-Americans 

(International HapMap 3 Consortium, 2010). Thus future studies on larger genetic data of 

other ethnical groups will be needed to test the robustness of our method.   
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Figure legends 

Figure 1: The dendrograms constructed by Ward’s method using eight different distance 

metrics. MA_D, Mexican-American MDD case; MA_C, Mexican-American control; AU_D, 

Australian MDD case; AU_C, Australian control.  

Figure 2: Hierarchical clustering of 25 human subject with au/bp values (%) on Canberra 

metric and Ward’s method.  
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Highlights 

 Sequencing allows us to detect all single-nucleotide variants within an individual. 

 It is desirable to develop non-invasive genetic tests by using sequencing data.  

 Multivariate cluster analysis can differentiate depressed cases and controls. 

 We investigated combinations of distance metrics and clustering criteria. 
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 Canberra metric and Ward’s method are recommended for genetic clustering. 

 




