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Abstract

Fuchs’ endothelial corneal dystrophy (FECD) is a progressive, vision impairing disease.

Common single nucleotide polymorphisms (SNPs) and a trinucleotide repeat polymor-

phism, thymine-guanine-cytosine (TGC), in the TCF4 gene have been associated with the

risk of FECD in some populations. We previously reported association of SNPs in TCF4

with FECD risk in the Australian population. The aim of this study was to determine whether

TGC repeat polymorphism in TCF4 is associated with FECD in the Australian population. In

189 unrelated Australian cases with advanced late-onset FECD and 183 matched controls,

the TGC repeat polymorphism located in intron 3 of TCF4 was genotyped using a short tan-

dem repeat (STR) assay. The repeat length was verified by direct sequencing in selected

homozygous carriers. We found significant association between the expanded TGC repeat

(� 40 repeats) in TCF4 and advanced FECD (P = 2.58 × 10−22; OR = 15.66 (95% CI: 7.79–

31.49)). Genotypic analysis showed that 51% of cases (97) compared to 5% of controls

(9) were heterozygous or homozygous for the expanded repeat allele. Furthermore, the

repeat expansion showed stronger association than the most significantly associated SNP,

rs613872, in TCF4, with the disease in the Australian cohort. This and haplotype analysis of

both the polymorphisms suggest that considering both the polymorphisms together rather

than either of the two alone would better predict susceptibility to FECD in the Australian pop-

ulation. This is the first study to report association of the TGC trinucleotide repeat expansion

in TCF4 with advanced FECD in the Australian population.

Introduction

Fuchs’ endothelial corneal dystrophy (FECD, MIM 136800) is a progressive, degenerative dis-

ease of the corneal endothelium [1]. The clinical hallmarks of the disease include the presence

of microscopic outgrowths (guttae), aberrant thickening of the Descemet’s membrane [2], and

corneal endothelial cell loss [3]; Descemet’s membrane is the collagen rich basal lamina

secreted by the corneal endothelium [4]. These pathological changes are accompanied by
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impaired ability of the corneal endothelium to pump excess fluid from the corneal stroma [1]

which results in corneal oedema, pain, and ultimately vision loss, if left untreated [2]. Corneal

transplantation, in the form of either penetrating or partial keratoplasty, is currently the only

effective treatment for FECD [5].

The prevalence of FECD varies markedly across the world. In the USA, it affects ~4% of the

population over the age of 40 [6] but is less frequent in Asian [7] and Middle-Eastern popula-

tions [8]. The prevalence has not been reported in Australia but corneal grafting for FECD

accounted for ~26% (n = 395) of the corneal grafts (n = 1533) performed in 2014 [9], indicat-

ing that the disease is relatively common.

FECD is genetically a heterogeneous disease and manifests as two forms depending upon

the age of onset. The rare, early-onset form [10] is typically inherited as an autosomal dominant

disease with high penetrance and nearly uniform expressivity [2]. Mutations in the COL8A2
(collagen, type VIII, alpha 2) gene account for some cases of early-onset FECD [11]; COL8A2,

an extracellular matrix protein, is a major component of the Descemet’s membrane [12]. The

more common late-onset FECD typically occurs after the age of 40 [13] and can be a familial

disease; the risk of the disease increases with age and female sex [6]. Familial late-onset FECD

shows an autosomal dominant inheritance with high penetrance but variable expressivity [6].

Mutations in the ZEB1 (zinc-finger E-box binding homeobox 1), SLC4A11 (solute carrier family 4,
sodium borate transporter, member 11), LOXHD1 (lipoxygenase homology domains 1) and

AGBL1 (ATP/GTP binding protein-like 1) genes cause the late-onset disease in a small number

of familial, and/or unrelated cases [6, 8, 14–17]. Additionally, four chromosomal loci have been

linked with familial late-onset disease but the causative genes are yet to be identified [17].

In 2010, Baratz and colleagues [18], through a genome-wide association study (GWAS) in

white American cases, reported a highly significant association between single nucleotide poly-

morphisms (SNPs) in the TCF4 (Transcription factor 4) gene and late-onset FECD; the intronic

SNP rs613872 was the most significantly associated variant. Recently, our collaborative group

through GWAS identified genome-wide significant association of SNPs in the KANK4 (KN
motif- and ankyrin repeat domain-containing protein 4) and LAMC1 (Laminin gamma-1), and

near ATP1B1 (Na+, K+ transporting ATPase, beta-1 polypeptide) genes with FECD [19] and

revealed three additional loci involved in the disease. However, the TCF4 locus remains the

strongest associated locus with FECD [19].

The TCF4 gene is located on chromosome 18 and codes for the helix-loop-helix transcrip-

tion factor E2-2 [18]. Our group, through an independent replication study, reported the asso-

ciation of SNPs in TCF4with advanced FECD in white Australians, which demonstrated the

contribution of this gene to the disease risk in the Australian population [20]. Similar indepen-

dent studies by other groups have shown association of SNPs, mainly rs613872, in TCF4with

advanced FECD including in the Indian and Chinese populations [21–24]. Subsequently, Wie-

ben and colleagues [25] identified a significant association of thymine-guanine-cytosine

(TGC) repeat expansion in intron 3 of TCF4with FECD in white Americans and reported the

repeat expansion to be a stronger predictor of the disease than SNP rs613872; repeat lengths of

>50 were found to be more frequent in cases compared to controls [25]. The TCF4TGC trinu-

cleotide repeat was first identified by Breschel et al. in 1997 and named as the CTG18.1 locus

[26]. Association of this repeat expansion in TCF4with the disease has been replicated since in

independent white American, Indian, Chinese and Japanese case cohorts [24, 27–30]; TGC

repeat length of�40 was associated in these populations. This cut-off is based on the initial

discovery that indicated that expansion of the TGC repeat locus in 3% of subjects in white ped-

igrees was not associated with any known phenotypes [26] whereas the expanded alleles with

repeat lengths >37 were reported to be unstable [26]. Additionally, Mootha et al. [31] found

segregation of the expanded TGC repeats in TCF4with the disease in several affected families
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with high or low penetrance indicating the importance of this repeat expansion in late-onset

FECD. In this study, we aimed to determine whether TGC repeat polymorphism in TCF4 is

associated with late-onset FECD in the Australian population.

Materials and methods

Ethics statement, participant recruitment, and sample collection

The study was approved by the Southern Adelaide Clinical Human Research Ethics Commit-

tee, Southern Adelaide Local Health Network and Flinders University (South Australia, Aus-

tralia), and the Human Research Ethics Committee of the Royal Victorian Eye and Ear

Hospital (Melbourne, Victoria, Australia). The research was conducted in accordance with the

guidelines of the National Health and Medical Research Council, Australia, and adhering to

the tenets of the revised Declaration of Helsinki. All participants underwent a complete oph-

thalmic examination including slit lamp examination, confocal specular microscopy, and

fundoscopy. Patients diagnosed with Grade 3–6 advanced late-onset FECD according to a

modified Krachmer grading system [13] were recruited after obtaining written informed con-

sent. Blood samples were collected from 189 participants through the Flinders Eye Clinic

(Adelaide, South Australia, Australia) and the Royal Victorian Eye and Ear Hospital (Mel-

bourne, Victoria, Australia). Control genomic DNA samples were from 183 unrelated, unaf-

fected South Australian residents aged over 50 years recruited previously for use as controls

in a variety of ocular genetic studies [32–34]. Genomic DNA from cases and controls was

extracted using QIAamp DNA Blood Maxi kit (Qiagen Pty Ltd, Doncaster, Victoria, Australia)

following the manufacturer’s protocol.

STR assay and DNA sequencing

Gene-specific PCR primers (Forward: 5’-CAGATGAGTTTGGTGTAAGATG-3’,Reverse:

5’- ACAAGCAGAAAGGGGGCTGCAA-3’) used for amplification of the TGC trinucleotide

repeat region in the third intron in the TCF4 gene were the same as reported by Wieben et al

[25]. A 5’FAM label was added to the forward primer. The TGC repeat polymorphism in geno-

mic DNA was genotyped using short tandem repeat (STR) assay as previously described [25,

31]. Forty nanograms of genomic DNA was used as template and PCR was performed in a

10μl volume using HotStar Plus Taq1 DNA polymerase (Qiagen GmbH, Hilden, Germany).

The enzyme was activated at 95˚C for 6 minutes followed by 35 cycles of denaturation at 95˚C

for 1 minute, annealing at 64˚C for 1 minute, and elongation at 68˚C for 3 minutes. The final

elongation was at 68˚C for 7 minutes. Each PCR product was diluted 1:10 and 1μl of the

diluted product mixed with 0.15μl of GeneScanTM1200LIZ1 Dye Internal Size Standard

(Applied Biosystems, Foster City, CA) and 8.85μl of Hidi Formamide (Applied Biosystems),

and electrophoresed on a 3130xL Genetic Analyser (Applied Biosystems) according to stan-

dard protocols. The TGC repeat alleles were manually called using Peak ScannerTM Software

v1.0 (Applied Biosystems).

In selected cases and controls homozygous for the shortest or the longest repeat allele,

Sanger sequencing was performed for validation of STR assay results. Amplification was per-

formed as described above except unlabelled forward primer was used in a reaction volume of

20μl. The amplified products (5μl) were treated with 10U Exonuclease (New England Biolabs,

Ipswich, MA, USA) and 2U Shrimp Alkaline Phosphatase (SAP; USB Corporation, Cleveland,

Ohio, USA) at 37˚C for 1 hour to digest and dephosphorylate remaining primer DNA and

dNTPs; the reaction was terminated by incubation at 80˚C for 20 minutes. Cleaned PCR prod-

ucts were sequenced using BigDye1 Terminator v3.1 (Applied Biosystems) and forward

primer, on a 3130xL Genetic Analyser (Applied Biosystems) according to standard protocols.
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DNA Sequences were aligned to the TCF4 reference sequence (NM_001083962.1) retrieved from

the Reference Human Genome sequence version 19 (hg19_RefGen), using the Sequencher1 soft-

ware 5.0 (GeneCodes Corporation, Ann Arbor, MI). The TGC repeats were counted manually.

Statistical analysis

Statistical analyses were performed using SPSS (Statistical Package for the Social Science; ver-

sion 22) or in PLINK software [35]. Baseline characteristics of cases and controls–age and sex–

were compared using Student’s t-test and chi-square test, respectively. The trinucleotide repeat

alleles in cases and controls were compared by chi-square test. Difference in the distribution of

the TGC repeat lengths between cases and controls was assessed by Mann-Whitney U test. A

trend test for association of genotypes with FECD was performed in PLINK [35]. Logistic

regression analysis was also performed in PLINK with age and sex as covariates to explore

their effects. Conditional analysis was performed on SNP rs613872 (previously genotyped and

association reported [20]) and the expanded TGC allele in TCF4 to determine if the SNP was

independently associated with the disease. Haplotype analysis was also performed using

PLINK to investigate the effect of haplotypes of the associated TCF4 expanded TGC repeat

locus and the SNP rs613872, on FECD.

Results

In this study, we determined an association between the trinucleotide repeat polymorphism in

TCF4 gene and FECD in white Australian cases by screening a total of 189 unrelated cases with

advanced late-onset disease and 183 controls for the TGC repeat polymorphism in the gene.

The TGC repeat was individually genotyped in each case and control by the previously

reported STR assay [25]. The TGC repeats in selected homozygous cases and controls carrying

the shortest repeat length (4 cases and 4 controls with 12 repeats each), and the longest repeat

lengths (3 cases with 76, 83 and 84 repeats, respectively; 3 controls with 18 repeats each) were

directly sequenced to confirm the repeat lengths. Size fractionation of the amplified repeat

region showed products of the expected sizes in both cases and controls (Fig 1A) and con-

firmed the repeat lengths detected by the STR assay (Fig 1B). Sequence chromatograms and

STR electropherogram traces of representative cases and controls are shown in Fig 1B–1F.

The characteristics of the case and control cohorts are given in Table 1. Females comprised

69% of cases and 72% of controls and the difference was not statistically significant (p = 0.555).

A relatively higher percentage of females than males in the case cohort is consistent with the

reported higher prevalence of FECD in females [36]. The controls were significantly older than

cases (p = 0.023) by design to reduce the likelihood of yet to manifest disease.

In accordance with denotation of the TCF4TGC repeat in previous studies [27, 31, 37], we

dichotomised the TGC repeat alleles such that repeat length of�40 was considered as an

expanded allele and<40 as a non-expanded allele. As shown in Table 1, the expanded allele is

relatively rare in controls, but occurs on 28% of chromosomes in cases (p = 2.58 × 10−22;

OR = 15.66 (95% CI: 7.79–31.49)). We found that cases carrying alleles with�40 TGC repeat

lengths in TCF4 are at 15 times greater risk of developing the disease than non-carriers. This is

consistent with the findings of previous studies in white cases with FECD [25, 31], which also

showed that those carrying expanded alleles of TGC repeats in this gene are at a greater risk of

the disease than those carrying non-expanded alleles.

Next, we assessed the distribution of the TGC repeat lengths in the study cohort. In cases,

median repeat length was 53 and ranged from 11 to 115 whereas in controls it was 18 and ran-

ged from 11 to 83 (Fig 2). The difference in the distribution of the repeat length in cases com-

pared to controls was statistically significant (p = 0.0005).
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Fig 1. Analysis of TCF4 TGC repeat polymorphism in homozygous FECD cases and controls. PCR

was performed on genomic DNA from cases and controls carrying the shortest or the longest TCF4 TGC

repeat length. Data from two representative cases (F-31 and F-137 with 12 and 83 repeats, respectively) and

controls (C-62 and C-05, with 12 and 18 repeats, respectively) are shown. A. Agarose gel electrophoresis of

the PCR amplified repeat region from homozygous FECD cases and controls. Sizes of the products are

shown on the right and correspond with the expected sizes (F-31 and C-62, 265 bp each; F-137, 478 bp; C-

05, 283 bp). Sizes of DNA markers are indicated on the left. B. Sequencing chromatograms of FECD-affected

(F-31 and F-137) and control (C-62 and C-05) individuals homozygous for the shortest (B.I and B.II) and the

longest (B.III and B.IV) repeat alleles are shown. TGC repeat length in each individual was calculated by

substracting 230 bps, corresponding to the DNA region flanking the repeat region amplified during PCR, from

the detected PCR product size and dividing the difference by 3 (number of nucleotides of the repeat). C-F.

Electropherograms showing the sizes of TGC repeat alleles in FECD cases F-31 (C) and F-137 (E) and in two

control individuals C-62 (D) and C-05 (F) detected by STR assay. The peaks representing the TCF4 TGC

repeat fragments are indicated by arrows. Multiple peaks seen in panel E are due to variation in product size

when large repeats are amplified. X-axis, fragment sizes in base pairs; Y-axis, relative fluorescence units;

orange peaks, sizes of internal standards; red line across the electropherograms, slope threshold for peak

start/end.

https://doi.org/10.1371/journal.pone.0183719.g001

TCF4 TGC repeat expansion associates with FECD susceptibility in Australia

PLOS ONE | https://doi.org/10.1371/journal.pone.0183719 August 23, 2017 5 / 13

https://doi.org/10.1371/journal.pone.0183719.g001
https://doi.org/10.1371/journal.pone.0183719


Considering the genotype of the TGC repeat at the individual level, 87 cases (46%) were het-

erozygous and 10 cases (5%) homozygous for the expanded repeat allele; the remaining cases

(n = 92; 49%) were homozygous for the non-expanded repeat allele (Fig 3). Of the cases homo-

zygous for the expanded repeat, 7 cases carried both alleles with the same repeat lengths. Of

those homozygous for the non-expanded repeat, 34 cases (18%) carried two alleles with differ-

ent repeat lengths, and the remaining 58 cases (30.7%) carried both alleles with the same repeat

lengths. In contrast, the majority of the controls were homozygous for the non-expanded repeat

allele (n = 174; 95%) and a small proportion were heterozygous for the expanded repeat allele

(n = 9; 5%). None of the controls carried the expanded repeat allele in a homozygous state (Fig

3). Of the homozygous non-expanded repeat carrying controls, the majority, 154 (84%), carried

different repeat lengths on the two alleles; only 20 controls (11%) carried both alleles with the

same repeat lengths. Overall, we observed a significant genotypic association between FECD

and the expanded repeat allele (p = 3.92 × 10−22) in the Austalian population.

Next, we evaluated the effect of age and sex on the observed association through logistic

regression analysis which revealed that the association of the expanded TGC repeat with the

disease is independent of age and sex (p = 2.09 × 10−14; OR = 18.26 (95% CI: 8.67–38.46)). To

determine any inter-dependence of association of the repeat expansion and the most associ-

ated SNP rs613872 in TCF4with FECD, we performed conditional analysis on the SNP. As evi-

dent from the reduced p-value and odds ratio, this analysis showed that association of the

TGC repeat with the disease is partially independent of the SNP rs613872 (p = 9.74 × 10−10;

OR = 10.76 (95% CI: 5.02–23.05)), and that using both polymorphisms together can better pre-

dict FECD susceptibility in Australian cases than either of the two alone. This was confirmed

by the haplotype analysis of the associated TCF4TGC repeat locus and SNP rs613872, which

revealed significant association with FECD with overall p-value of 7.74 × 10−32 (Table 2). A

similar observation has been reported in non-Australian populations in an independent study

[31].

Discussion

In this study, we determined the association between FECD and the expanded TGC repeat

polymorphism in TCF4 in Australian cases. The study reveals that the expanded TGC repeat is

significantly associated with the disease in the white Australian population and is more signifi-

cantly associated ((P = 2.58 × 10−22; OR = 15.66 (95% CI: 7.79–31.49)) than the rs613872 SNP

((P = 5.25 × 10−15; OR = 4.05 (95% CI: 2.82–5.83)) observed in our previous study [20]. Condi-

tional analysis of the rs613872 SNP with the expanded TGC repeat suggests that these poly-

morphisms in TCF4 are partially independently associated with FECD, implying that each can

independently contribute to the pathogenesis of the disease. This study replicates the findings

Table 1. Characteristics of the FECD case and control cohorts, and dichotomised distribution of the TCF4 TGC repeat alleles in cases and con-

trols. The age and sex between cases and controls were compared using the Student’s t-test and chi-square test, respectively. Expanded allele counts

between cases and controls were compared using chi-square test.

Description Case Control p-value

N Participants 189 183 -

N Females (%) 130 (69%) 131 (72%) 0.555

Mean age in years ± SD 69.9 ± 11.2 76.6 ± 8.7 0.023

(Age range in years) (32–93) (42–96)

N TGC repeat alleles with repeat length of <40/�40 271/107 357/9 2.58 × 10−22

N = number; SD = standard deviation.

https://doi.org/10.1371/journal.pone.0183719.t001
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Fig 2. Distribution of TGC repeat lengths in the TCF4 gene in FECD cases and controls. Median repeat

length in cases = 53; range: 11–115, and median repeat length in controls = 18; range: 11–83. The

box represents the second and third quartiles and the line in the middle indicates median. The lower and

upper wiskers represent the limits of the first and fourth quartiles, respectively. The dots represent individual

data points for controls (n = 183) and cases (n = 189).

https://doi.org/10.1371/journal.pone.0183719.g002
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by other groups in American and Chinese cases with FECD [25, 27, 31]. It also suggests that

considering both, the rs613872 SNP and the expanded TGC repeat polymorphism together

can better predict susceptibility to FECD than either of the two alone, as shown by the haplo-

type analysis (p-value of 7.74 × 10−32, Table 2).

FECD is the first aging-related ocular disease to be associated with trinucleotide repeat

expansion. Pathogenic expansion of trinucleotide repeat sequences has been reported in sev-

eral neurodegenerative and neuromuscular diseases such as Friedreich’s ataxia and myotonic

dystrophy type 1 [38–40]. Pathogenic expansion of both alleles of the GAA repeat present in

the first intron of the Frataxin gene has been reported in the majority of cases with Friedreich’s

ataxia; it contributes to the disease by prolonging transcription, resulting in a significant

decrease in Frataxin protein levels [38, 41]. The disease can also occur in a minority of patients

as a result of expansion of one GAA repeat allele and the presence of a point mutation in the

Fig 3. Distribution of genotypes of the TCF4 TGC repeat alleles in FECD cases and controls. The

numbers of individuals with each of the three possible genotypes of the dichotomised repeat alleles are

shown. S represents short (<40 repeats; non-expanded) and L long (�40 repeats; expanded) allele. SS

represents homozygous non-expanded, LL homozygous expanded, and SL heterozygous with one non-

expanded and one expanded allele.

https://doi.org/10.1371/journal.pone.0183719.g003

Table 2. Association between common haplotypes of genotyped polymorphisms (TGC repeat locus, L/S, and rs613872, G/T) in the TCF4 gene and

FECD. f = frequency; OR = Odds ratio; CI = Confidence Interval; L = long repeat allele; S = short repeat allele.

Over-all p-value = 7.74 × 10−32

Haplotype f cases f controls P-value OR (95% CI)

LG 0.26 0.02 9.59 × 10−24 19.98 (9.08–44)

SG 0.21 0.14 0.009 1.68 (1.13–2.5)

LT 0.03 0.003 0.0002 113.3 (0.32–3.99× 104)

ST 0.50 0.84 3.34 × 10−26 0.12 (0.08–0.19)

https://doi.org/10.1371/journal.pone.0183719.t002
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second allele [41]. Regardless of the genetic abnormality, transcription inhibition causes loss-

of-function of Frataxin, and consequently pathogenesis of Friedreich ataxia [42]. The FECD-

associated expanded TGC repeat in TCF4 is also an intronic repeat. However, our differential

gene expression analysis data (unpublished) and reported studies [28, 43] have shown that

expression levels of TCF4mRNA in the corneal endothelium between FECD cases and con-

trols and between carriers of risk and non-risk alleles of SNP rs613872 are similar indicating

that transcription inhibition likely is not involved in the pathogenesis of FECD.

RNA-mediated gain-of-function mechanism has been shown to underlie myotonic dystro-

phy type 1 [38] that is caused by expansion of the CTG repeat in the 3’UTR of the DMPK (Dys-
trophia myotonica protein kinase) gene [38]. The expanded CTG repeat has been reported to

affect alternative splicing of the DMPK gene [38, 44]. The expanded DMPK (CUG)n, mRNA is

transcribed normally but fails to undergo translation and is thus retained in the nucleus as

hairpin structures [45–47]. The hairpin structures exhibit a toxic dominant gain-of-function

abnormality by sequestration and accumulation of RNA-binding regulatory proteins, such as

the alternative splicing regulator muscle blind-like 1 (MBNL1) and CUG triplet repeat RNA-

binding protein 1 (CUG-BP1) [48], and formation of nuclear foci [49–53]. The aberrant

nuclear foci cause cellular toxicity that contributes to the disease pathogenesis [44]. Interest-

ingly, Mootha et al. [28] and Du et al. [54] reported the presence of RNA nuclear foci in a pro-

portion of corneal endothelial cells in some patients with FECD carrying the TCF4 expanded

TGC repeat. The expanded mRNA co-localised with sequestered MBNL1 protein in nuclear

foci leading to mis-splicing of MBNL1-regulated transcripts. These reports implicated RNA

toxicity and mis-splicing in the pathogenesis of FECD, and possibly a shared disease mecha-

nism between FECD and myotonic dystrophy type 1 disease [28, 54]. The recent study by Wie-

ben et al [55] found mis-splicing of several genes in the corneal endothelium of FECD cases

carrying expanded TGC repeat in TCF4, and validates these findings [28, 54]. Thus, RNA mis-

splicing induced by TGC trinucleotide repeat expansion in the TCF4 gene is the likely mecha-

nism of pathogenesis in patients with FECD carrying the expanded repeats [55]. However

other yet to be identified mechanisms may underlie the disease in patients carrying non-

expanded repeats in this gene.

The STR analysis employed for detection of TGC repeat lengths in this study, is unable to

detect very large repeat expansions of several hundred repeats, which is a limitation of the

study. Previous studies have reported the prevalence of very large TGC repeat lengths in TCF4
in ~5% of FECD cases [37]. Assuming similar prevalence of very large repeat expansions in the

Australian cohort, nine cases, and one of the 20 controls found to carry the same non-

expanded repeat length on both the alleles may carry a very large repeat expansion that was

not detected in this study. This missing information would further strengthen the overall find-

ings of the study.

In conclusion, this study provides independent evidence for the association of the expanded

TGC repeat polymorphism in the TCF4 gene with advanced FECD. This is the first study to

report an association of the repeat polymorphism in TCF4with FECD in the Australian popu-

lation and further confirms the contribution of this gene to FECD susceptibility in Australia.

The findings suggest a partially independent association of the expanded TGC repeat and

SNP rs613872 in TCF4with FECD in Australian cases, and indicate that considering both

the polymorphisms together would better predict susceptibility to FECD in the Australian

population.
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