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Abstract. The normalised difference vegetation index
(NDVI) is a useful tool for studying vegetation activity
and ecosystem performance at a large spatial scale. In this
study we use the Gravity Recovery and Climate Experiment
(GRACE) total water storage (TWS) estimates to examine
temporal variability of the NDVI across Australia. We aim to
demonstrate a new method that reveals the moisture depen-
dence of vegetation cover at different temporal resolutions.
Time series of monthly GRACE TWS anomalies are decom-
posed into different temporal frequencies using a discrete
wavelet transform and analysed against time series of the
NDVI anomalies in a stepwise regression. The results show
that combinations of different frequencies of decomposed
GRACE TWS data explain NDVI temporal variations better
than raw GRACE TWS alone. Generally, the NDVI appears
to be more sensitive to interannual changes in water stor-
age than shorter changes, though grassland-dominated areas
are sensitive to higher-frequencies of water-storage changes.
Different types of vegetation, defined by areas of land use
type, show distinct differences in how they respond to the
changes in water storage, which is generally consistent with
our physical understanding. This unique method provides
useful insight into how the NDVI is affected by changes
in water storage at different temporal scales across land use
types.

1 Introduction

In many parts of the world, such as Australia, water storage is
the dominant limiting factor in vegetation growth (Donohue
et al., 2008; Nemani et al., 2003). As such, changes in water

storage can lead to changes in vegetation mass and green-
ness (Yang et al., 2014). As vegetation plays a vital role in
gross primary production and the carbon and hydrological
cycles, studies of the temporal and spatial variation of vege-
tation are vital for understanding ecosystem performance and
its climatic responses (Campos et al., 2013). As the climate
and water resources change as a result of natural and anthro-
pogenic influences, understanding how fluctuations in water
storage are associated with biomass changes can have a pro-
found importance for the future.

Previous studies have used different hydrological parame-
ters to examine the effect of hydrological changes on ecosys-
tem performance. Most commonly, precipitation and soil
moisture have been used as defining variables (Chen et al.,
2014; Huxman, 2004; Méndez-Barroso et al., 2009; Wang et
al., 2007). Both of these have shown generally meaningful
correlations with ecosystem performance (by various mea-
sures such as the normalised difference vegetation index,
NDVI, and above-ground net primary production). However,
both indicators have shown limitations. The total amount
of precipitation is not necessarily used by vegetation in an
ecosystem. Part of precipitation is lost from the ecosystem
as runoff or soil evaporation (Liping et al., 1994). Only the
part which is retained as soil moisture in the root zone can be
viably consumed by vegetation and this is categorised as “ef-
fective precipitation” (Bos et al., 2009). For a given amount
of rainfall, the fraction of effective precipitation varies spa-
tially due to differing geographical features, soil types, and
vegetation cover conditions. Soil moisture gives a better rep-
resentation of the water that is available to plants. However,
in situ soil moisture data are generally limited and spatially
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(vertically and horizontally) sparse. Estimations from land
surface models are often highly uncertain (Chen et al., 2013).

Recently Yang et al. (2014) used monthly total water-
storage anomalies (TWS∗) from the Gravity Recovery and
Climate Experiment (GRACE) to examine hydrological con-
trols on variability in surface vegetation. GRACE provides
monthly global terrestrial water storage derived from varia-
tions in the earth’s gravity field. The authors suggested that
where large surface water reservoirs do not exist, GRACE
TWS changes are mostly from soil moisture and groundwa-
ter, making it ideal for examining hydrological controls on
vegetation activity. GRACE is found to be a good indica-
tor of seasonal variability in surface greenness over mainland
Australia (Yang et al., 2014). For the period 2003–2010, for
which GRACE data are available, changes in the NDVI∗ are
explained more strongly by GRACE TWS∗ than by precipi-
tation, suggesting it poses a more direct influence on surface
greenness and ecosystem performance.

GRACE TWS gives the total relative water storage at a res-
olution of a few hundred kilometres. It is the sum of surface
water, soil water, groundwater, ice etc. We previously devel-
oped an approach to “split” GRACE TWS into shallow and
deep subsurface storage components using a discrete wavelet
decomposition (Andrew et al., 2017). In this study, we aim
to expand on the general findings of Yang et al. (2014) by
decomposing GRACE TWS∗ into different temporal compo-
nents and analysing them against the NDVI∗. Given that root
zone water storage is the source of water to vegetation we
hypothesise that decomposed TWS∗ data that reflect the tem-
poral pattern of soil moisture in the root zone will perform
better than the total TWS∗ in association with the NDVI∗.

The questions we seek to address are (1) does the decom-
posed TWS∗ data show a better relationship to the NDVI∗

than the raw TWS∗ data, (2) how does the sensitivity of the
NDVI∗ in response to changes in TWS∗ vary spatially, and
(3) which temporal components of TWS∗ are most signifi-
cant in influencing the NDVI∗ for different land use types
across Australia?

2 Data

2.1 GRACE data

We use gridded GRACE total water storage (TWS) data
from the University of Texas Center for Space Research
(CSR) and NASA’s Jet Propulsion Laboratory (JPL). The
gridded GRACE data sets are freely downloadable from
the GRACE Tellus website (http://grace.jpl.nasa.gov/data/
get-data/). Data are suitably post-processed, including appli-
cation of the recommended scaling correction (gain factors)
(Swenson and Wahr, 2006). The scaling coefficients are in
part designed to remove leakage errors (Landerer and Swen-
son, 2012). Monthly data from March 2003 to December
2014 are used. The average of the two data sets is calcu-

lated for each cell at each month to reduce the uncertainty.
The data are presented spatially in 100 by 100 km grid cells.
Although this is not the true resolution of GRACE, with the
appropriate gain factors applied the 100 by 100 km gridded
data are suitably recovered (Landerer and Swenson, 2012).
An alternative would be to aggregate the other data set in this
study (NDVI) to a larger scale to match true GRACE reso-
lution, but this would increase errors in land and vegetation
cover. We selected which cells should be included based on a
shape file of Australia. If at least two thirds of the cell is part
of the continent then it is included; this eliminates some cells
which covered only a small coastal land mass.

There are a few occurrences of missing data in the GRACE
data set. These months of missing data are filled with a
simple temporal interpolation using the months either side.
Because of the monthly temporal resolution this is deemed
appropriate and maintains the average seasonal cycle well
(Long et al., 2015).

2.2 NDVI data

We use GIMMS 3g NDVI data for the same time period as
the GRACE data. The data are downloaded from the NASA
database. The NDVI data are produced at a higher spatial res-
olution (0.25 by 0.25◦) than GRACE. This data are rescaled
to match the GRACE cell size using the resampling tool in
ArcGIS. Like the GRACE data, only cells which contain at
least two thirds land are used and missing data are filled by a
temporal interpolation.

2.3 Land use type data

The Moderate-resolution Imaging Spectroradiometer
(MODIS) land use data are used to identify different land
use types across Australia (product MCD12Q1). They are
freely available online from http://glcf.umd.edu/data/lc/.
With regards to rescaling and cell selection, the same proce-
dures are applied as in the case of NDVI data. In Australia,
MODIS land use type data define 12 different classes of land
use. This is reduced to five (or six including barren land)
classes by grouping similar classes such as different types of
forests. The resulting land use types are forest, shrubland,
savanna, grassland, and agricultural land (Table 1).

Figure 1 shows the spatial distribution of different land
use types across Australia, grouped as previously stated (Ta-
ble 1). Note that no analysis is performed for areas consid-
ered barren due to a lack of vegetation.

3 Methodology

3.1 Calculating anomalies

For variables with strong seasonality, a statistical relationship
between them does not necessarily mean that a physical re-
lationship exists. Climatological anomalies of both GRACE
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Figure 1. (a) The spatial distribution of various land use types across Australia and (b) the area covered by each land use type.

Table 1. Subcategories of land use types as defined by MODIS.

MODIS land use type Classification in
this study

Evergreen needleleaf forest

Forest
Evergreen broadleaf forest
Deciduous needleleaf forest
Deciduous broadleaf forest

Closed shrublands
Shrubland

Open shrublands

Woody savannas
Savanna

Savannas

Grassland Grassland

Cropland
Agricultural land

Cropland/natural vegetation mosaic

Barren Barren

TWS and the NDVI are used in order to remove seasonality
in the data which would otherwise result in large but irrele-
vant and misleading correlations between variables examined
in this study.

The anomalies are calculated following the method of
Yang et al. (2014),

X∗(ij)=X(ij)
1
n

∑n

j=1
X(i,j), (1)

where X∗ represents the climatological anomaly of X (i.e.
raw GRACE TWS), i is the month, j is the year, and n is the
total number of years.

New lagged GRACE TWS∗ anomaly data sets are pro-
duced by offsetting the GRACE data from the NDVI data

by 1 to 6 months. This is to allow any delays in the NDVI
response to water storage to be revealed (Farrar et al., 1994).

3.2 Wavelet decomposition

GRACE TWS∗ is decomposed into different signals using
a discrete wavelet transform. Introduced in the early 1980s,
a wavelet is a mathematical function used to divide data
series into different frequency components (Goupillaud et
al., 1984). The method expresses decompositions as a mul-
titude of smaller “waves” at different frequencies (He and
Guan, 2013). The Meyer wavelet is applied here to decom-
pose GRACE TWS∗ into components at different temporal
scales and is suitable for this temporal data (He and Guan,
2013). This is relatively easy to achieve by means of a sim-
ple MATLAB code using the “wavdec” function. Data are
decomposed into “approximation” and “detail” components,
each representing a different temporal scale. Approximation
series maintain trends in the data while detail series neglect
trends (Nalley et al., 2012). The resulting time series are la-
belled A1, A2, A3, A4 and D1, D2, D3, D4 for approxima-
tions and details respectively, with the timescale increasing
with the decomposition number, e.g.A1/D1 (2-month scale),
A2/D2 (4-month scale), A3/D3 (8-month scale), and A4/D4
(16-month scale) (Fig. 2). Essentially, from one time series
eight new time series are made and four different temporal
resolutions are produced. Four levels can be reasonably ex-
tracted given the data length and monthly frequency of the
data. Further decomposition would result in roughly 3- and
6-year timescales, which are too coarse for a time series of
only 11 years of raw data. Because all but the lowest approx-
imation levels contribute partly to details we only use the
lowest frequency approximation, along with all of the de-
tails. The sum of these (D1, D2, D3, D4, and A4) equals
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the raw signal (Fig. 3). So, 5 wavelet decomposition series
are used for GRACE data as well as 6 lagged series for each
decomposition level, giving a total of 35 water-storage time
series.

3.3 Stepwise regression

To evaluate which of the new decomposed time series cor-
respond to different vegetation types, we used a stepwise
regression for every cell. NDVI∗ is the dependent variable
and the GRACE TWS∗ decompositions are taken as pre-
dictor variables. Given the time series of the data, 35 pre-
dictor variables are too many for a stepwise regression to
function properly. The stepwise regression is run multiple
times and the best predictor variables are chosen narrow-
ing them down to nine. The choice is made based on the
number of cells selected for each variable from the step-
wise regression and how relevant they are given their spa-
tial coherence. In general, the predictor variables excluded
from the stepwise regression are not included in any cells
across the country. The remaining variables are (subscript de-
notes lag in months) D10, D21, D30, D31, D32, D40, D41,
A40, andA46. High-frequency signals (D1,D2,A1, andA2)
correspond to water-storage changes of shallow soil mois-
ture while low-frequency signals such as D3, D4, A3, and
A4 correspond to deeper soil moisture or even groundwa-
ter changes. Therefore, forests should correspond with low-
frequency changes; their roots are accessing water storage
that is changing at a low-frequency. Land covers dominated
with grasses (shallow roots) should correspond to higher-
frequency signals where moisture change is more dynamic.

4 Results

As a proof of concept, the relationships between raw GRACE
TWS∗ versus NDVI∗ and decomposed GRACE TWS∗ ver-
sus NDVI∗ are compared (Fig. 4). The results for the decom-
posed TWS∗ data are based on a selection of decomposed
time series selected by the stepwise regression. A time series
example of the results from an individual cell is demonstrated
in Fig. 5. For each cell the correlation coefficient between
NDVI∗ and the regression estimates (r) is calculated. In order
for the tests to be comparable, lagged data are not included
in the decomposed TWS data set for this demonstration, it
shows purely how decomposed data improve the relation-
ship. A scatter plot of the r values shows a clear improve-
ment in the relationship when decomposed GRACE TWS∗

data are used as opposed to raw data, with all points above
the 1 : 1 line. The Student’s t tests confirmed that the stepwise
regression results are statistically highly significant with a p
value of 0.00014.

Lagged data ensure that the relationship between NDVI∗

and TWS∗ is well represented but the decomposed fre-
quency of the TWS∗ data is the focus of this study. Al-

though the stepwise regression is performed using nine vari-
ables including lags where suitable, the results herein are
presented as only five variables, D1, D2, D3L, D4L, and
A4L. For each detail or approximation level using different
lags, one variable is created by combining the results of dif-
ferent lagged data sets together to present the results, i.e.
D3L =D30+D31+D32.

It is important to recognise how the variables that are in-
cluded in the stepwise regression vary spatially, to under-
stand how vegetation responds to different temporal patterns
of water storage across the continent. For a variable to be in-
cluded in the stepwise regression it does not have to show
a positive correlation. Figure 4 shows which variables are
included in the regression for each cell across Australia.
Where lagged data are not used (D1 and D2) the colour de-
notes whether the coefficient is positive or negative. Where
lagged data are used (D3L, D4L, and A4L) the colour de-
notes whether all coefficients for a cell have the same sign or
not. Figure 4 shows that while A4L is included across most
of the country, one of the lagged data sets, A46, has a large
number of negative coefficients included in the regression
(see Fig. A1). A possible explanation for this is that NDVI
is susceptible to the “memory effect”, where past inputs and
outputs affect responses in the system (Shook and Pomeroy,
2011).

Overall, the number of cells covered by each different de-
composition level increases as the decomposition timescale
increases. This shows that, in general, the NDVI changes per-
tain to longer timescale water-storage changes and are not as
much affected by changes on a monthly timescale.

While understanding which variables are used in each cell
is important, it is more important to know their relative im-
pact on NDVI∗. The relative weight of each variable is cal-
culated to show the importance of each on vegetation in dif-
ferent land use types. Of the included variables in each cell,
the relative weight of each variable is calculated as

W =
(C · σX)

σNDVI
, (2)

where W is the relative weight, σX is the standard deviation
of the decomposed data anomaly (X), C is the coefficient
of X in the regression, and σNDVI is the standard deviation
of the NDVI anomaly. Figure 7 shows which variable has
the highest relative weight in each cell. A4L is the dominant
variable, covering the majority of the country, and is a low-
frequency trended signal. D2, a higher-frequency signal, is
the second most dominant variable and shows generally clear
spatial coherence.

The relative weights for all cells of each land use type
are combined and presented as a relative weight percent-
age per land use type (Fig. 8). Forested areas have only
low-frequency decompositions included, with A4L being the
most dominant. This is expected as forests have deep root
systems, which tap into water stores that change slower than
shallower soil moisture (Backer et al., 2003). Therefore, their
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Figure 2. An example of a wavelet decomposition from a cell in central South Australia (29◦ S, 136◦ E). Note the visible trends in the
approximations (A1–A4), which are normalised in the details (D1–D4).

Figure 3. The structure of a wavelet decomposition; decomposition
levels used in this study are highlighted in red.

water store is less likely to be affected by short-term rain-
fall or evaporation, relying more on long-term hydrological
trends and variabilities. Shrubland, savanna, and grassland
show nearly identical distributions of weights. Grassland
shows a marginally higher percentage of theD1 andD2 vari-
ables, which is consistent with our physical understanding as
they are fed by shallow soil moisture which varies at high
temporal frequencies. While all are defined differently, the
three land use types have overlapping characteristics, most
commonly the widespread presence of short grasses (Friedl
et al., 2002) and shallow root systems. These short grasses
respond to changes in the shallow top layer of the soil, which
is influenced at high temporal frequencies by rainfall events
and evaporation. The similarity in the results of these three
land use types suggests that they are hardly distinguishable
by GRACE, likely due to the spatial extend of GRACE cells.

For example, where sparse trees exist in a savanna, their lack
of response to the shallow soil moisture may be negligible
compared to the large coverage of grasses, thus showing a
very similar pattern to grassland.

5 Discussion

Using wavelet decomposed GRACE TWS∗ data proved to
improve the correlation between water storage and NDVI∗.
A previous study by Yang et al. (2014) showed that GRACE
is a superior indicator of surface greenness than soil mois-
ture or precipitation, which were earlier used as indicators
(Chen et al., 2014; Huxman, 2004). Temporal decomposi-
tion of GRACE TWS∗ produces a new temporal dimension
that allow the data to be analysed to their full potential. As
demonstrated in Fig. 4, the decomposed TWS∗ data are more
closely associated with the surface greenness than the raw
TWS∗ data. Furthermore, a better understanding of how sur-
face greenness changes with water storage spatially and tem-
porally is achieved, with different levels of decomposition
existing in spatial clusters across the country. The dominance
of A4L as the most highly weighted predictor variable in-
dicates that generally vegetation responds to low-frequency
(interannual) changes in water storage across Australia.

An interesting result is the large number of negative coef-
ficients produced from the stepwise regression for A46. Two
possible explanations exist. A 6-month lag may correspond
to the opposite seasons (e.g. wet 6 months ago, dry now),
potentially serving as an indicator of water-storage potential.
Alternatively, vegetative systems may be susceptible to the
memory effect. Specifically, this would suggest that for most
of the continent, trends at theA4 scale (roughly annual) influ-
ence vegetation responses to water-storage changes 6 months
later in these areas. Such a memory effect can serve as an in-
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Figure 4. (a) The r values of the relationship between the raw TWS∗ and NDVI∗. (b) The r values of the relationship between the de-
composed TWS∗ and NDVI∗. (c) A scatter plot of the r values of both relationships shows a clear improvement in the results when the
decomposed data are used.

Figure 5. An example of the time series from a single cell. The new estimate uses the coefficients from A40, A46, and D4 as selected by the
stepwise regression. Pearson’s coefficient (r) between the decomposed GRACE estimate and NDVI∗ is 0.872, compared with 0.665 when
using raw GRACE TWS∗.

dicator of an ecosystem’s capacity to store water, as well as
carbon and nitrogen (Schwinning et al., 2004).

The weight distribution of different decompositions across
land use types generally matches our physical understand-
ing. Note firstly that all five land use types have A4L as a
large component of their total weight. This is a further indi-
cation of the general response of vegetation to low-frequency
changes in water storage. Forested areas are only composed
of A4L, D4L, and D3L and are ignorant of high-frequency
changes in water storage. This matches our physical under-
standing as forests have deeper root systems, which rely
on seasonal changes or long-term hydrological trends. Inter-
estingly, shrublands, grasslands, and savannas show a near-
identical composition of relatively weighted decompositions,
with grasslands showing a slightly higher weight percentage
of D1 and D2. The three land use types are all grass dom-

inated, with the addition of sparse trees and shrubs in sa-
vannas and shrublands. As the resolution of GRACE cannot
pick up these additions, it is possible that they all appear as
grassland, or at least skewed that way, as that is the domi-
nant vegetation cover. The dominance of D1 and D2 across
these land use types is typical of relatively dynamic, grass-
dominated regions.

The combination of weights that make up the total for
agricultural land is less straightforward. D2 and A4L con-
tribute to large portions of the total. One major difference
between agricultural land and the other land use types is the
anthropogenic contributions to the land, including the addi-
tions of livestock grazing (Yates et al., 2000). The other land
use types are generally self-sufficient or limiting at the cell
scale, so the interruption of the natural cycle of the vegeta-
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Figure 6. Patterns of the coefficients for each decomposition level. For D1 and D2, no lags are used; for these, red represents a positive
coefficient and blue represents a negative coefficient. ForD3L,D4L, andA4L (which include lags), red represents cells where all coefficients
are positive and blue represents cells where at least one lag had a negative coefficient.

Figure 7. The variable with the highest relative weight in the re-
gression for each cell across Australia. A4 is the most dominant;
however D2 is prominent in distinct areas throughout central Aus-
tralia.D1,D3L, andD4L all occur but with little spatial coherence.

tion in agricultural areas is a potential anomaly, disturbing
any predictable composition of relative weights.

Our method of using decomposed terrestrial water stor-
age as an improved indicator of surface greenness has po-
tential environmental benefits. It allows for an improved un-

Figure 8. The relative weight of each decomposed TWS∗ for each
land use type. Forests areA4L dominated; shrublands, savannas and
grasslands are very similar with relative equal weights of D1, D2,
and A4L and agricultural land is dominated by D2 and A4L.

derstanding of how vegetation responds to changes in water
storage both spatially and temporally. This in turn serves as a
better indicator of ecosystem performance and carbon fluxes.
With predictions of terrestrial water storages to decline in
the future (Oki and Shinkiro, 2006), our method could be
highly useful for predicting carbon fluxes and ecosystem per-
formance at a large scale based on future water-storage es-
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timates. Furthermore, the global mapping of GRACE and
NDVI (as well as other vegetation indexes) means that it
could be applied globally.

6 Conclusion

In this study we aimed to increase the understanding of large-
scale ecosystem responses to water storage by investigating
the links between GRACE TWS∗ and NDVI∗ using decom-
posed TWS∗ data. Combinations of decomposed GRACE
TWS∗ data show an improved relationship with NDVI∗ com-
pared to using raw GRACE TWS∗ data alone. Varying de-
composed frequencies shows spatial coherence in parts of
the country, sometimes independently and sometimes over-
lapping other decomposed frequencies. Generally, NDVI is
influenced by low-frequency changes in water storage; how-
ever, there are some areas which are also sensitive to high-
frequency changes. The NDVI is susceptible to a memory ef-
fect which depends on previous TWS conditions (generally 6
months). The total influence of NDVI changes is made up of
storage changes over different time periods. These vary de-
pending on the land use type and the results are aligned with
our physical understanding. This analysis could be further
used to continue to improve our understanding of vegetative
responses to water storage change in Australia and globally,
and to benefit predictions of ecosystem performance and car-
bon fluxes.

Data availability. Data and codes can be accessed by contacting
the corresponding author.
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Appendix A

Figure A1. Coefficients for all nine decomposition levels including lags. Red represents a positive coefficient and blue represents a negative
coefficient.
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