
European Review, Vol. 22, No. S1, S145–S162 r 2014 Academia Europæa. The online version of this article is

published within an Open Access environment subject to the conditions of the Creative Commons Attribution
licence http://creativecommons.org/licenses/by/3.0/

doi:10.1017/S1062798713000811

Natural Law and Universality in the

Philosophy of Biology

AL EXAND E R R EU T L I N G E R

Ludwig-Maximilians-Universität München, Fakultät für Philosophie,

Wissenschaftstheorie und Religionswissenschaft, Ludwigstr. 31 Room 130, 80539

Munich, Germany. E-mail: Alexander.Reutlinger@lrz.uni-muenchen.de

Several philosophers of biology have argued for the claim that the generalizations

of biology are historical and contingent.1–5 This claim divides into the following

sub-claims, each of which I will contest: first, biological generalizations are restricted to a

particular space-time region. I argue that biological generalizations are universal with

respect to space and time. Secondly, biological generalizations are restricted to specific

kinds of entities, i.e. these generalizations do not quantify over an unrestricted domain.

I will challenge this second claim by providing an interpretation of biological general-

izations that do quantify over an unrestricted domain of objects. Thirdly, biological

generalizations are contingent in the sense that their truth depends on special (physically

contingent) initial and background conditions. I will argue that the contingent character

of biological generalizations does not diminish their explanatory power nor is it the case

that this sort of contingency is exclusively characteristic of biological generalizations.

1. Introduction: The Universality of Laws

Many philosophers of biology are convinced that there are important differences between

(fundamental) physics and the biological sciences. One salient way in which biology is unlike

physics – these philosophers claim – concerns the features of generalizations that play an

epistemic role in the scientific practice of these disciplines. It is a majority view in philosophy

of biology that (fundamental) physics states universal and exceptionless laws, while the

biological sciences rely on non-universal and physically contingent generalizations1–7 This

majority view in the philosophy of biology converges with the results of the literature on

ceteris paribus laws since the mid-1990s: generalizations in the so-called ‘special sciences’

(such as neuroscience, psychology, sociology, economics, and the life sciences, and so on)

have different features than the laws of (fundamental) physics (cf. Ref. 8 for a survey).9

In this paper, I will agree with these philosophers that the dynamical laws in fundamental

physics and the laws in the special sciences differ in the way they describe.10 However,

despite the differences between laws in fundamental physics and generalizations in the special
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sciences (including biology), most philosophers believe that, in physics as well as in the

special sciences, laws are important because they are statements used to explain and to predict

phenomena, they provide knowledge how to successfully manipulate the systems they

describe, and they support counterfactuals. Statements that are apt to play these roles

in the sciences I call lawish. Similarly, Mitchell11,12 characterizes generalizations in the bio-

logical sciences (and in the special sciences in general) as ‘pragmatic laws’ in virtue of

performing at least one these roles.

One might begin to wonder: what exactly is the target of philosophers of biology who stress

differences between the features of generalizations in fundamental physics and in the biological

sciences? Philosophers of biology are worried that logical-empiricist views have created certain

philosophical prejudices about how we think about laws of nature (e.g. Refs 1 and 5). In the

early debate on laws of nature, empiricist philosophers of science believed that lawlikeness was

the crucial concept in order to find out which statements are law statements and which are

not. Most importantly for our purposes, lawlikeness is commonly associated with universality

(Ref. 13, p. 301). Philosophers of biology argue that the logical-empiricist view is a philo-

sophical prejudice that ought to be overcome because it has been developed by focusing

exclusively on physics while ignoring the biological sciences and other special sciences. It is

simply false to believe that the generalizations of the latter scientific disciplines are universal.

By contrast to lawlikeness, I use ‘lawish’ in the following way: a general statement is

lawish if it is of explanatory and predictive use, successfully guides manipulation, and

supports counterfactuals. Contrary to the traditional understanding of laws, being lawish

does neither require universality nor other characteristic features of fundamental physical

laws (such as the feature of satisfying symmetry principles). It is a matter of convention

whether one would still want to use the term ‘law’ for non-universal (i.e. not lawlike)

general statements.14 In other words, whether one wishes to refer to lawish statements by

the honorific term ‘law’ is merely a verbal issue and not an interesting philosophical

problem. One can either use a new term for lawish, non-universal explanatory, general

statements. For instance, Woodward and Hitchcock15 introduce the concept of an expla-

natory generalization. Or, as I maintain in this paper, one can insist that if a statement plays

a lawish role then it shares sufficiently many properties with universal laws in order to be

called a law. Christopher Hitchcock and James Woodward admit that their account may be

read as a reconceptualization of lawhood (cf. Ref. 15, p. 3). In order to avoid a fruitless

quarrel about verbal issues, my strategy in this paper will be to address two questions.

1. Are the laws of biology non-universal – and, if so, in which sense?

2. If the generalizations of biology are indeed in some sense non-universal,

does this fact question their ability to play a lawish role?

Before I go on to answer these questions, let me provide a few examples of candidates for

lawish generalizations in biology. The following five generalizations are classic examples

in the debate on whether there are any laws of biology.

> Mendel’s Law of Segregation. ‘In a parent, the alleles for each character

separate in the production of gametes, so that only one is transmitted to each

individual in the next generation’ (Ref. 16, p. 36).
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> Hardy-Weinberg-law. ‘In an infinite, randomly mating population, and in

the absence of mutation, immigration, emigration, and natural selection, gene

frequencies and the distribution of genotypes remain constant from

generation to generation’ (Ref. 16, p. 36, cf. Ref. 1, p. 221).
> The Krebs-cycle-generalization. ‘In aerobic organisms, carbohydrate meta-

bolism proceeds via a series of chemical reactions, including the eight steps

of the Krebs cycle.’ (Ref. 1, p. 219)
> Bergmann’s rule. ‘Given a species of warm-blooded vertebrates, those races

of the species that live in cooler climates tend to be larger than those races of

the species living in a warmer climates’ (Ref. 1, p. 224).
> Allen’s rule. ‘Given a species of warm-blooded vertebrates, those races of the

species that live in cooler climates have shorter protruding body parts like

bills, tails, and ears than those races of the species that live in warmer

climates’ (Ref. 1, p. 224).

Recently, the debate has been enriched by a large number of interesting examples of

lawish generalizations (cf. especially Refs 17–21). It is important to present a few

of these example in order to prove the point that the above-listed classic examples of

lawish generalizations are not an exceptional (and sometimes even outdated, no longer

accepted) part of scientific practice in biology. Quite to the contrary, biology seems be

full of lawish generalizations (which, admittedly, do not live up to the standard of

lawlikeness).

The area law. ‘The equilibrium number S of a species of a given taxonomic group on an
island (as far as creatures are concerned) increases [polynomially]22 with the island’s
area [A]: S5 cAz. The (positive-valued) constants c and z are specific to the taxonomic
group and island group’ (Ref. 17, pp. 235f)

The classic Lotka-Volterra Model. ‘The classical Lotka-Volterraprey–predator model’s
equations are the following. Prey’s growth equation is

dN 1=dt ¼ rN1 � bN1N2

Predator’s growth equation is

dN 2=dt ¼ ebN1N2 � cN2

In the equations, r is the intrinsic growth rate of prey (in the absence of predation), c is
the intrinsic death rate of predator (in the absence of their prey), b is the predation rate
coefficient, e is predation efficiency, N1 is the population size of prey at time t, and N2 is the
population size of predators at time t. These equations describe the dynamics in which
populations of both prey and predators exhibit periodic oscillations’ (Ref. 20, p. 222).

The Volterrarule. ‘Any biotic or abiotic factor that both increases the death rate of
predators and decreases the growth rate of their prey has the effect of decreasing the
predator population size, whereas the population size of its prey increases’ (Ref. 20,
p. 228).

Kleiber’s rule. ‘Basal metabolism, an estimate of the energy required by an individual
for the basic processes of living, varies as aW0.75, where W is its body size [and a is a
constant – A.R.]’ (Ref. 20, p. 219).

Natural Law and Universality in the Philosophy of Biology S147

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1062798713000811
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 26 Nov 2018 at 13:39:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1062798713000811
https://www.cambridge.org/core


The exponential population growth model. ‘Population growth is density independent,
and it can be described by the equation

N t ¼ N0e
rt

where Nt is the population size at time t, N0 is the initial size of the population, and r is
the growth rate of the population, called the intrinsic rate of increase’ (Ref. 20, p. 212).

Mechanistic models. In the recent literature, the focus is on a large class of generalizations
describing the steps in a mechanism such as the mechanism of photosynthesis, the LTP
mechanism (Ref. 4).

Generalizations like these are believed to be lawish, although they are not universal

generalizations.

So, why is it important to understand lawishness? One weighty reason stems from the

conceptual connection of laws to causation and explanation. As mentioned above,

according to the empiricist interpretation the most important feature of lawlikeness is

universality. The idea to understand lawhood mainly in terms of universality has led

many theories of causation and explanation to rely on universal laws. This assumption

turns out to be problematic: the central challenge for any theory of non-universal laws in

the biological sciences is to account for their apparent lawish function (in the sense

introduced above). If we are not able to provide an explication of non-universal laws,

then (at least) the philosophy of biology faces a severe problem concerning causation and

explanation in its domains. Many theories of causation and explanation in their standard

form presuppose universal laws of nature (cf. Ref. 23, p. 99 for a detailed discussion). If

we do not want to give up the immensely plausible opinion that the biological sciences

refer to causes and provide explanations (Assumption 1) for purely philosophical reasons,

then we are in need of a theory of non-universal lawish generalizations.

In this paper, I will proceed as follows: in Section 2, I will provide several alternative

meanings of the ambiguous concept of universality. I suggest that the claims made by

philosophers of biology about the non-universality of lawish statements ought to be

distinguished into three claims: first, the lawish statements are restricted to a space-time

region. Second, the lawish statements are restricted to specific kinds of entities. Third, the

lawish statements are true only if special physically contingent initial and background

conditions obtain. In Section 3, I argue against the claims that lawish generalizations are

historical in sense that they are restricted to a specific spatio-temporal region and specific

kinds of entities. In Section 4, I question the view that the feature of contingency

undermines the lawish character of a statement. I argue for this claim by showing that the

feature of contingency is compatible with four standard accounts of laws in the special

sciences (i.e. completer, normality and statistical, invariance, and dispositionalist theories).

In Section 5, I summarize the results of the preceding sections. I conclude with an outlook

on future research concerning the features of laws describing biological complex systems.

2. What is Universality?

As stated in the introduction, many philosophers of biology believe that the lawish

generalizations of biology are – unlike the laws of fundamental physics – not universal.
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But what does it mean to be universal, and, respectively, to be non-universal? It is an

astonishing fact that this question is seldom answered in a systematic way (Refs 12,

23–25 are notable exceptions). The lack of a systematic approach is a serious problem,

because universality is an ambiguous concept. In accord with Andreas Hüttemann

(Ref. 25, pp. 139–141), we may distinguish four dimensions of universality with respect

to a law statement.

(1) First Dimension – Universality of space and time. Laws are universal1 iff

they hold for all space-time regions.

(2) Second Dimension – Universality of Domain of Application. Laws are

universal2 iff they hold for all (kinds of) objects.

(3) Third Dimension – Universality for External Circumstances. Laws are

universal3 iff they hold under all external circumstances, i.e. circumstances

that are not referred to by the law statement itself. One useful way to

interpret Hüttemann’s reference to external conditions is to say that laws are

true for all initial and background conditions of the system whose

behaviour is described by the law.

(4) Fourth Dimension – Universality with respect to the Values of Variables.
Laws are universal4 iff they hold for all possible values of the variables26

in the law statement. Universality in this sense acknowledges that laws

usually are quantitative statements (and, thus, the predicates contained in

these statements are to be conceived as variables ranging over a set of

possible values).

Paradigm examples of fundamental physical laws (such as Newton’s laws, Einstein’s

field equations, and the Schrödinger equation) are usually taken to be universal in all four

dimensions (cf. Ref 24, section 6.1; Ref. 25, pp. 139–141).

The crucial question in this paper is which dimension of universality is at stake

when philosophers of biology claim that the lawish generalizations of their discipline

are non-universal. Philosophers of biology seem to refer to several dimension of

(non-)universality. Hence, we need to disambiguate their claims. I think it is a fair

reconstruction to say that three claims with respect to three dimensions of universality

prevail in the literature.

1. Historicity claim I. The lawish generalizations of biology are historical

because they are spatio-temporally restricted (Ref. 3, pp. 755–758). That is,

the generalizations are non-universal1.

2. Historicity claim II. The lawish generalizations of biology are historical

because they are restricted to certain kinds of objects that exist in a limited

space-time region (Ref. 3, pp. 755–758). In other words, the generalizations

do not have the feature of being universal2.

3. Contingency claim. The lawish generalizations of biology are true only if

(a) certain physically contingent initial and background conditions C obtain;

and (b) these conditions C lead to the evolution of those biological entities

that biological generalizations in question describe (Ref. 1, pp. 218f).
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I interpret Beatty’s influential evolutionary contingency claim as a special

case of non-universality3: lawish generalizations in biology are true only if

specific initial and background conditions obtain.

In Section 3, I will argue that we can easily reject Historicity claim I and Historicity

claim II. Hence, the lawish generalizations of biology can indeed be regarded as

universal1 and universal2. In Section 4, I will agree with most philosophers of biology

that the lawish generalizations are true only if certain physically contingent initial and

background conditions obtain. However, I will argue that this kind of contingency does

not prevent generalizations from playing a lawish role.

3. Against the Alleged Historical Character of Biological Generalizations

Are the lawish generalizations of biology universal1 and universal2? I think the answer is yes.

Being universal1 and universal2 are features that the lawish generalizations of biology and the

laws of physics have in common. My answer is in conflict with Rosenberg’s historicity

claims I and II (see Section 2). Contrary to Rosenberg, I will argue for two claims: first,

lawish generalizations in the biological sciences hold for all space-time regions (i.e. they

are universal1). This kind of universality allows that these generalizations simply lack an

application in some space-time regions. Secondly, lawish statements can be formalized such

that they quantify over an unrestricted domain of objects (if so, they are universal2).

Arguing for these claims might not seem plausible at first glance, because generalizations

in the biological sciences are usually interpreted as system laws (Cf. Ref. 27, Essay 6, for

the similar notion of a phenomenological law.) Gerhard Schurz (Ref. 24, Section 6.1)

introduces the notion of a system of laws as follows: while fundamental physical laws ‘are

not restricted to any special kinds of systems (be it by an explicit antecedent condition or

an implicit application constraint)’ (Ref. 24, p. 367), system laws refer to particular systems

of a certain (biological, psychological, social, etc) kind K in a specific space-time region.

Hence, so the usual characterization continues, lawish statements in the special sciences

typically have an in-built historical dimension, which the fundamental physical laws lack,

because they are restricted to a limited space-time region where the objects of a certain

kind K exist (for instance, cf. Refs 1 and 3). I will argue that Schurz is absolutely correct in

characterizing lawish statements in the biological sciences as being ‘restricted to [y]
special kinds of systems (be it by an explicit antecedent condition or an implicit application

constraint)’ (Ref. 24, p. 367). However, if one adopts Schurz’s characterization of

generalizations in biology as system laws, then one is still entitled to believe that these

statements are universal1 and universal2. Let me explain why I think Schurz’s interpretation

of biological generalizations as system laws differs from Rosenberg’s spatio-temporally

restricted laws. I will argue for this claim in two steps: first I will argue for the universality1
of lawish statements, then for their universality2.

Argument for Universality1

Does Schurz’s characterization of system laws imply that the generalizations of biology

are non-universal1? No. Simply because a generalization G does not have an application
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in some space-time region s, it does not mean that the law does not hold at s. In order to

be truly non-universal1, G would have to conform to a thought experiment of ‘Smith’s

Garden’ by Tooley:

All the fruit in Smith’s garden at any time are apples. When one attempts to take an
orange into the garden, it turns into an elephant. Bananas so treated become apples as
they cross the boundary, while pears are resisted by a force that cannot be overcome.
Cherry trees planted in the garden bear apples, or they bear nothing at all. If all these
things were true, there would be a very strong case for its being a law that all the fruit in
Smith’s garden are apples. And this case would be in no way undermined if it were found
that no other gardens, however similar to Smith’s garden in all other respects, exhibited
behaviour of the sort just described. (Ref. 28, p. 686, emphasis added)

According to Tooley, a law L can be spatio-temporally restricted to a space-time region s

(as the laws in Smith’s garden) in the sense that L fails to be true in a situation that is

perfectly similar to the situation in s, except for the fact that this perfectly similar

situation is located in a different space-time region s* (cf. Ref. 29).

I think the generalizations of biology that are truly non-universal1 would be similar to

the laws that are true of various fruit in Smith’s garden. But it seems to be a far too strong

claim that laws in the biological generalizations are local in the same way as are the laws

in Smith’s garden. It seems to be a more promising option to say that (a) biological

generalizations are universal1, and (b) these generalizations simply lack application in

some space-time regions. For instance, Bergmann’s rule, the classic Lotka-Volterra

Model and Mendel’s law of segregation do not hold on Mars, because there are neither

warm-blooded vertebrates, nor anything standing in a predator-prey relation, nor cells

with alleles. However, this situation does not indicate that Bermann’s rule, the classic

Lotka-Volterra Model and Mendel’s law of segregation are local laws – as are the laws of
Smith’s garden. A better understanding seems to be that these statements happen to have

no application on Mars (e.g. if there are no warm-blooded vertebrates on Mars, then the

conditions of application for Bergmann’s rule are not satisfied; cf. Ref. 30, Section 3). To

illustrate my claim in another way, consider the following scenario: suppose we were to

find a space-time region s that is in biological aspects perfectly isomorphic to Earth

(including certain physically contingent initial and background conditions) – that is, the

only difference between life on Earth and life in this region s is the spatio-temporal

location. And suppose further we were to discover that none of the generalizations of

current terrestrial biology is true in region s. Would we not demand an explanation for

this local inapplicability? It is precisely this demand for an explanation that reveals the

intuition that Bergmann’s rule is quite dissimilar to the laws of Smith’s garden.

Argument for Universality2

Does the characterization of lawish statements in the biological sciences as system laws

imply that these statements are non-universal2? No, it does not. At first glance, biological

generalizations, if viewed as system laws, appear to be non-universal2: special science

laws quantify over a restricted domain of objects of a certain kind – not over a domain of

objects of all kinds. For instance, consider Bergmann’s rule once more: ‘given a species

of warm-blooded vertebrates, those races of the species that live in cooler climates tend
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to be larger than those races of the species living in a warmer climates’ (Ref. 1, p. 224).

Bergmann’s rule seems to be restricted to warm-blooded vertebrates – it does not make

any claim about electrons, atoms, neurons, rational agents, markets, etc. One might get

the idea that generalizations of biology refer to a restricted domain D that is a proper

subset of the domain X of all things. Bergmann’s rule can be formalized as quantifying

over a restricted domain D of warm-blooded vertebrates (with d as an individual variable

of domain D):

8(d) ((lives in cooler climates)d- (tends to be larger than those races of the species
living in a warmer climates)d.

But is this really a convincing reconstruction of lawish statements in the special sciences?

I can provide an alternative formalization that quantifies over the domain of all objects.
This formalization interprets the kind of object (here: warm-blooded vertebrates) as a

predicate and not as a restriction of the domain. In the alternative formalization, x is an

individual variable for the unrestricted domain X:

8(x)(is a member of a species of warm-blooded vertebrates)x4(lives in cooler
climates)x- (tends to be larger than those races of the species living in a warmer
climates)x.

The alternative, unrestricted formalization of Bergmann’s rule is a way to save

universality2. By formalizing lawish generalizations in this way, I provide a reason to

reconstruct them as generalizations quantifying over all kinds of objects.31

This is not a trivial result at all, because philosophers of biology, such as Beatty1

and Rosenberg,3 insist that generalizations in the biological sciences should be regarded

as (a) being historical in the sense of applying only to a specific space-time region

(this is in contradiction with universality1), and (b) as referring to a restricted domain

of objects (this contradicts universality2). Contrary to these philosophers, I want to

emphasize that one can maintain that lawish generalizations in the biological sciences are

universal1 and universal2. In other words, the lawish generalizations do not differ from

the fundamental laws of physics with respect to the first and the second dimension of

universality.

4. The Case for Non-universal3 Generalizations

In Section 2, I interpret Beatty’s evolutionary contingency thesis as a special case of

non-universality3: lawish generalizations such as Allen’s rule, the Volterra rule, and the

exponential growth model hold only if very specific initial and background conditions

obtain. Allen’s rule, the Volterra rule, and the exponential growth model do not hold

under all (physically) possible initial and background condition. This is why I interpret

these lawish generalizations as being non-universal3. There is good evidence for the view

that the biological sciences are not an exceptional case in postulating contingent laws.

Physically contingent lawish generalizations are of importance in the physical sciences as

well. Let me provide a famous example from the physical sciences: the second law of

thermodynamics (for short, the Second Law). The Second Law is a non-fundamental

physical law. The Second Law is usually taken to play a role in physical explanation,
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prediction, and manipulation – i.e. it performs a lawish role. The standard formulation of

the Second Law is:

The total entropy of the world (or of any isolated subsystem of the world), in the course
of any possible transformation, either keeps at the same value or goes up. (Ref. 32, p. 32)

Craig Callender provides an example as an illustration of the Second Law:

Place an iron bar over a flame for half an hour. Place another one in a freezer for the same
duration. Remove them and place them against one another. Within a short time the hot
one will ‘lose its heat’ to the cold one. The new combined two-bar system will settle to a
new equilibrium, one intermediate between the cold and hot bar’s original temperatures.
Eventually the bars will together settle to roughly room temperature. (Ref. 33)

It is majority opinion that an explanation of why the second law obtains has to require

more than just the fundamental laws of physics. According to a tradition originating

in the work of Ludwig Boltzmann, one has to rely on physically contingent initial

conditions – among other things – in order to explain why macroscopic physical systems

conform to the Second Law. An influential proposal for such an initial condition is the

so-called past hypothesis, i.e. the claim that the initial macro state of the universe (or an

isolated subsystem thereof) was a state of low entropy (Ref. 32, p. 96; Ref. 34,

pp. 298–304; Ref. 35, pp. 156–158). The upshot of the Boltzmannian explanation of the

Second Law is as follows: the Second Law is a lawish statement which is true only if

special initial conditions (expressed by the past hypothesis) obtain – and these special

initial conditions are a physically contingent fact with respect to the fundamental

dynamical laws of physics. (Cf. Refs 53 and 54 for further examples of physically

contingent lawish statements.)

The question I would like to answer in this section is the following: if the

generalizations of biology are indeed non-universal3, does this fact undermine their

ability to play a lawish role? I will provide arguments for the following answer: no, a

generalization might be non-universal3 and lawish at once. I will argue for this claim by

showing that several standard theories of lawish statements (or ceteris paribus laws) are

consistent with the fact that the truths of some lawish statements depend on whether

special initial and background conditions obtain (cf. Ref. 8 for a survey of these and

other accounts of ceteris paribus laws).

(i) Completer Accounts

The basic idea of completer approaches consists of regarding lawish generalizations in

the biological sciences – such as Bergmann’s rule, the area law, the Volterra rule, and so

on – to be incomplete as they stand. Adding missing conditions to the antecedent of the

law statement completes the generalizations. The guiding thought is that the completed

antecedent implies the consequent of the lawish statement. Jerry Fodor motivates the

completer account of laws in the special sciences (including the biology) as follows:

Exceptions to the generalizations of a special science are typically inexplicable from the
point of view of (that is, in the vocabulary of) that science. That’s one of the things that
makes it a special science. But, of course, it may nevertheless be perfectly possible to
explain the exceptions in the vocabulary of some other science. [y]. On the one hand
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the [special sciences’] ceteris paribus clauses are ineliminable from the point of view of
its propriety conceptual resources. But, on the other hand, we have – so far at least – no
reason to doubt that they can be discharged in the vocabulary of some lower-level
science (neurology, say, of biochemistry; at worst physics). (Ref. 36, p. 6)

Fodor’s idea is that the additional, completing factors whose existence is required by the

ceteris paribus clause cannot be entirely specified within the conceptual resources of, for

instance, biology. However, the completion can (at least in principle) be achieved within

the vocabulary of some fundamental science such as neurophysiology or physics.

A physical microdescription of the antecedent condition A is called a realizer of A (the

same A may have several different realizers). Fodor defines a completer more precisely:

A factor C is a completer relative to a realizer R of A and a consequent predicate B if:
(i) R and C is strictly sufficient for B
(ii) R on its own is not strictly sufficient for B
(iii) C on its own is not strictly sufficient for B. (cf. Ref. 37, p. 23)

Based on this notion of a completer, Fodor defines the truth conditions of a cp-law as

follows:

‘cp(A-B)’ is true if for every realizer R of A there is a completer C such that (A4C)-B.
[Cf. Refs 23, 38 and 39 for variants of the completer account.]

The crucial question for my purposes is whether the completer approach is compatible

with lawish generalizations that have the feature of being non-universal3. The answer is

yes, I believe. The natural place for listing the specific physically contingent initial and

background conditions – that Beatty (1995) emphasizes – is the completer condition C.

For instance, in the case of Allen’s rule the completer consists of certain physically

contingent initial and background conditions without which a species of warm-blooded

vertebrates that live in cool climates would not have evolved. It is a controversial matter

whether adding the evolutionary history to the antecedent of the lawish generalization is

strictly sufficient for the truth of the consequent of the law statement (cf. Refs 18 and 40

versus Ref. 21).41 However, what matters most for the problem that this paper is

concerned with is that there is nothing in the completer account itself preventing lawish

generalizations from being dependent on specific initial and background conditions.

(ii) Normality and Statistical Accounts

The main idea of normality theories consists of advocating the following truth conditions

for laws in the biological sciences: Allen’s rule is a true lawish generalization if it is

normally the case that given a species of warm-blooded vertebrates, those races of the

species of warm-blooded vertebrates that live in cooler climates have shorter protruding

body parts, such as bills, tails, and ears, than those races of the species that live in warmer

climates (cf. Ref. 8, Section 8). Schurz (Refs 42; 24, Section 5) analyses lawish state-

ments in biological sciences as normic laws of the form ‘As are normally Bs’. Schurz

explicates normality in terms of a high probability of the consequent predicate, given

the antecedent predicate, where the underlying conditional probabilities are objective

statistical probabilities. According to the statistical consequence thesis, normic laws
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imply numerically unspecified statistical generalizations of the form ‘Most As are in fact

Bs’, by which they can be empirically tested.

So, is it compatible with the normality account that the truth of lawish statements of

biology depends on specific physically contingent initial and background conditions?

Here the answer is also positive: normality statements can have a complex antecedent

which lists further conditions. In analogy with the completer approach, these conditions

might include those physically contingent conditions without which – in the case of

Allen’s rule – warm-blooded vertebrates would not have evolved in a cool climate.

An analogue strategy can be applied to the statistical approach to lawish generalizations

proposed by Ref. 43. Their view is closely related to Schurz’s normic account. According

to Earman and Roberts, a typical special science generalization ‘asserts a certain

precisely defined statistical relation among well-defined variables’ (Ref. 43, p. 467).

That is, special science laws are statistical generalizations of the following form:

‘in population H, a variable P is positively statistically correlated with variable S across

all sub-populations that are homogeneous with respect to the variables V1, y,Vn’

(Ref. 43, p. 467). The obvious place to mention the physically contingent conditions

without which, for instance, warm-blooded vertebrates would not have evolved in a cool

climate are the variables V1, y,Vn. It is worth pointing out a genuine feature of normic

and statistical accounts: unlike in the case of completer accounts, it is not the case that a

proponent of the statistical and the normic account claims that the antecedent of the

lawish statement is sufficient for the consequent.

Moreover, and most likely in agreement with Beatty and Rosenberg, Schurz42 defends

the statistical consequence thesis by appealing to an evolution theoretic argument.44

Schurz argues that evolutionary systems are self-regulatory systems whose self-regulatory

properties have been gradually selected according to their contribution to reproductive

success. He claims that the temporal persistence of self-regulatory systems is governed by

a certain range of ‘prototypical norm states’, in which these systems constantly have

to stay in order to keep alive. According to Schurz, regulatory mechanisms compensate

for disturbing influences coming from the environment. Although the self-regulatory

capacities of evolutionary systems are the product of a long adaptation history, they are

not perfect. Some organisms may be dysfunctional and their normic behaviour may have

various exceptions. However, Schurz claims, it has to be the case that these systems are in

their prototypical norm states in the high statistical majority of cases and times. For

otherwise, these systems would not have survived in evolution.

The upshot of this discussion is that the normality account is not merely compatible

with non-universality3. In fact, one of its main proponents, Gerhard Schurz, even provides

an evolution-theoretic argument in favour of the account. If Schurz’s argument is sound,

then it implies that normic laws are a direct result of biological evolution.

(iii) Invariance Accounts

In accord with invariance theories, the distinctive feature of lawish generalization is

their invariance. Invariance is the feature that separates lawish and accidentally true

generalizations. A generalization is invariant if it holds for some, possibly limited, range
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of the possible values of variables figuring in the generalization. According to Woodward

and Hitchcock (Ref. 15, p. 17) and Woodward (Ref. 45, p. 250) a statement G is

minimally invariant if the testing intervention condition holds for G. The testing inter-

vention condition states for a generalization G of the form Y5 f (X):

(1) there are at least two different possible values of an endogenous variable X,

x1 and x2, for each of which Y realizes a different value (y1, y2) in the way

that the function f in G describes; and

(2) the fact that X takes x1 or, alternatively, x2 is the result of an intervention.

Take the Volterra rule as an example of an invariant generalization. According

to Woodward and Hitchcock’s account, the Volterra rule is minimally invariant if there is

an intervention (‘any biotic or abiotic factor’) such that the death rate of predators

(counterfactually) increases and the growth rate of their prey (counterfactually) decreases,

then the predator population size decreases and the population size of its prey increases.

So again, is the invariance account of lawish generalizations compatible with the

contingency claim? Yes, it is. Invariance is defined relative to a set of variables (such as

death rate of predators, population size, and so on) and a set of functions relating the

variables (such as an increase-decrease-function). An invariantist is free to embrace the

view that biological entities (e.g. rabbits and foxes) to which these variables apply have

evolved. And she is free to say that it is a physically contingent fact that biological

entities of this kind have evolved. The crucial point for the advocate of an invariance

account is this: given that certain entities of a kind K have evolved, the lawish

generalizations about members of K are the invariant generalizations.

(iv) Dispositionalist Accounts

According to the dispositionalist account, a law statement is true if the type of system in

question (i.e. those entities to which the law applies) has the disposition that the law

statement attributes to the system.46–48 For instance, the Krebs-cycle-generalization

states that aerobic organisms are the kind of system disposed to have a carbohydrate

metabolism proceeding via a series of chemical reactions, including the eight steps of the

Krebs cycle. The manifestation of this disposition might be disturbed, but aerobic

organism still have the disposition for Krebs-cycle-behaviour. That is, dispositionalists

reconstruct law statements as statements about dispositions, tendencies, and capacities,

etc, rather than about overt behaviour.49 The claim is that certain kinds of systems have

certain kinds of tendencies or dispositions.

Is it the case that the dispositionalist account is compatible with the claim that the

lawish generalizations of biology are non-universal3? We can provide a positive answer.

The dispositionalist can happily accept that the dispositions of biological systems have

evolved and, at the same time, she can maintain that lawish generalizations ought to be

interpreted as claims about the dispositions of evolved biological entities, such as aerobic

organisms (cf. Ref. 50, for further examples of biological dispositions).

What has been established in this section? I have started out by interpreting Beatty’s

evolutionary contingency claim as a special case of non-universality3. Then I have

S156 Alexander Reutlinger

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1062798713000811
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 26 Nov 2018 at 13:39:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1062798713000811
https://www.cambridge.org/core


pointed out that biology is not the only sciences that relies on generalizations that depend

on physically contingent initial conditions (the Second Law is an example from physics).

The main result of this section is that four standard theories of lawish statements in the

special sciences (i.e. the completer account, the normality account, the invariance and the

dispositionalist account) are compatible with the feature of non-universality3. Thus, it

might be the case that the generalizations of biology differ from the fundamental physical

laws because the former are not true for all initial and background conditions (as Beatty

and Rosenberg argue). However, this result does not need to impress us since the gen-

eralizations of biology might still play a lawish role. This result requires a qualification:

these generalizations play a lawish role to the extent that discussed theories of special

science laws can be integrated into theories of explanation, prediction, and manipulation.

One can be optimistic about the prospects of a successful integration lawish statements

into theories of explanation because several recent theories of explanation do not require

universal laws and rely on non-universal generalizations instead.4,5,45,51

Before concluding this section, I will add a disclaimer: it is not the case that I have to

accept that every generalization that is true of evolved biological entities can play a

lawish role. In order to support this claim, I can rely on a distinction proposed by

Ken Waters.55 Waters distinguishes two classes of generalizations about evolved entities:

the first class of generalizations concerns the architecture of a biological entity, i.e. the

way it is built (such as ‘all major arteries have thick layers of elastic tissues around

them’, ‘all birds have wings’, ‘all zebras have stripes’, and so on). The second class

of generalizations describes how a biological entity changes over time. The lawish

role seems to be primarily ascribed to members of the second class – the dynamical

generalizations (or ‘causal’ generalizations, to use Waters’ terminology). Let me put is

more cautiously: it is at least not clear why I would have to accept that all architecture-

generalizations do in fact play a lawish role in scientific biological practice. The

epistemic role of architecture-generalizations might be limited to classifying systems of a

certain kind (which is the product of evolution and which might also be described by a

dynamical generalization).52

5. Conclusion

What has been achieved in the preceding sections? In Section 1, I reconstructed a view

held by many philosophers of biology: the generalizations occurring in the biological

sciences differ from the fundamental laws of physics, as the latter are typically taken to

be universal while the former are not. But what exactly does universality amount to? In

Section 2, I attempted to disambiguate ‘universal’ by suggesting several alternative

meanings of the concept of universality. Based on these alternative meanings I propose

understanding the claims made by philosophers of biology about the non-universality of

lawish statements in the following ways: first, the lawish statements are restricted to a

space-time region, i.e. the statements are non-universal1. Second, the lawish statements

are restricted to specific kinds of entities, i.e. the generalizations are non-universal2.

Third, the lawish statements are true only if very special physically contingent initial

and background conditions obtain. I take this kind of contingency to be a special case of
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non-universality3. In Section 3, I argued against the claims that lawish generalizations are

historical in the sense that they are restricted to a specific spatio-temporal region and to

specific kinds of entities. I opposed non-universality1 and non-universality2. The upshot

is that lawish generalizations and the laws of physics resemble one another because they

share the features of universality1 and universality2. In Section 4, I raised objections to

the view that the feature of contingency somehow undermines the lawish character of a

statement. I argue for this claim by showing that the feature of contingency is compatible

with four standard accounts of laws in the special sciences. This compatibility suggests that

a contingent generalization G of biology is lawish to the extent to which the presented

standard accounts of laws in special sciences permit that G is used for explanatory and

predictive purposes, that G guides manipulations, and supports counterfactuals etc. One

significant result of this discussion is that it does not matter at all whether one is willing to

call, for instance, Bergmann’s rule or the exponential growth model a law.
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