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Those who have knowledge, don’t predict.

Those who predict, don’t have knowledge.

Lao Tzu (6th century B.C.)



Abstract

Predicting clinical outcomes via a set of omics data, consisting for example of

genomics, proteomics or metabolomics data requires statistical methods which can

deal with the situation of a huge number of covariates vs. a relatively small number

of observations. One option is the application of penalized regression methods like

the Lasso which also results in sparse models because variable selection is part of

the model building process. In contrast to the standard Lasso model, the IPF-

Lasso penalizes the various omics groups (modalities) of a multi-omics data set

individually. However, this advantage has to be paid with exponentially increasing

computation time, when there are more than two or three modalities involved.

In this study, several two-step modifications of the IPF-Lasso model have been

evaluated and compared to the original IPF-Lasso and some other competitors by

analyzing simulated and real data sets. The results show that for a given data

set, the new two-step IPF-Lasso model needs only a fraction of the computation

time of the original IPF-Lasso and nevertheless can compete in terms of prediction

performance.
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1 Introduction

Between the years 2004 and 2010 the cost for DNA sequencing fell dramatically.

The number of processed base pairs per US-Dollar doubled every 5 months and thus

grew much faster than the amount of available computer disk space per US-Dollar

[Stein, 2010]. This opened up new opportunities for research, but also created

new challenges in terms of huge amounts of data which need to be analyzed by

applying adequate methods. Data can be collected across the entire chain of bio-

chemical processes, starting at the DNA and finally ending at a certain disease.

Depending on the origin of the data, one can distinguish between many types of

omics data like genomics, epigenomics, transcriptomics, proteomics, metabolomics

and microbiomics data [Hasin et al., 2017].

Much effort has been put into developing methods for omics data integration in

order to understand interactions and dependencies between the different compo-

nents of the biochemical processes of a living organism and finally being able to

understand the origins and pathways of a disease. Among these methods, there are

also a few which specifically aim at prediction of cancer prognosis [Huang et al.,

2017]. This study follows a naive approach to data integration by combining a

certain number of omics data sets into one huge multi-omics data set which then

serves as input for the prediction models to be investigated.

In omics data the number of covariates outnumbers by far the number of samples

(p�n), especially when there are multiple data sets (modalities) involved. There-

fore, predicting clinical outcome variables with traditional modeling techniques

(e.g. linear or logistic regression) is not possible and there is the need to look for

alternatives. One could either adapt the model input and reduce the data dimen-

sions or apply alternative modeling techniques which can deal with this type of

data. One class of methods among these alternatives is penalized regression and

especially Ridge or Lasso regression [Hoerl and Kennard, 1970],[Tibshirani, 1996]

with the latter becoming quite popular during the last years. Compared to Ridge

regression, Lasso regression not only shrinks the parameter estimates towards zero,

but actually can set parameter estimates equal to zero and thus also does variable

selection during the estimation process. When a clinical outcome needs to be pre-

dicted based on several modalities, lasso regression equally penalizes each variable
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across each modality by providing a single penalization parameter for the entire

data set. However, it might make sense to switch from a one-size-fits-all approach

to a method which distinguishes between the modalities and finally applies an in-

dividual penalty to each modality.

This idea has been realized through the IPF-Lasso model [Boulesteix et al., 2017a].

IPF-Lasso is estimated by first looking at alternative sets of penalty factors, each

set containing one factor for each modality. The final model is then based on

the set of penalty factors which gives the lowest prediction error as a result of

repeated cross-validation. The method has been implemented in an R package

called ipflasso which is publicly available on the R/CRAN website [Boulesteix and

Fuchs, 2015]. The computation time of ipflasso essentially depends on the number

of modalities (M) to be analyzed or how many sets of penalty factors need to be

considered and grows exponentially with M [Boulesteix et al., 2017a]. Therefore,

running ipflasso for multi-omics data with say more than two modalities on normal

hardware like a standard 8GB RAM laptop, quickly becomes a challenge and it

makes sense to look for opportunities which remove or at least widen the bottle-

neck of computation time.

A straightforward solution, but not widely applicable because of cost reasons would

be a hardware upgrade. One could also work on modifying the ipflasso software in

a way that limited RAM space can be used more efficiently. Another option would

be related to the data: One could pre-select a subset of covariates and therefore

reduce the dimensionality of the problem which consequently will reduce compu-

tation time. The focus of this study is on a fourth option which aims at changing

the method itself.

The major change is letting the data decide about a single set of penalty factors

in a first analysis step and then in a second step run IPF-Lasso with these penalty

factors as input. A similar approach has been applied in the context of identifying

biomarker-by-treatment interactions in high-dimensional data [Ternès et al., 2017]

and the idea has been mentioned already earlier in a paper by Tai and Pan [2007].

There are three questions to be answered: Can such a two-step IPF-Lasso (TSIPF-

Lasso) procedure handle more than two modalities in a reasonable time? Can the

TSIPF-Lasso compete with the IPF-Lasso and other modeling approaches in terms
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of prediction performance and model sparsity? Which of the six potential versions

of the new TSIPF-Lasso is the best in terms of computation time and prediction

performance? In this study, the computation time and prediction performance of

the two-step IPF-Lasso has been compared to the original Lasso, separate Lasso

models for each modality, sparse group Lasso (SGL) and the original IPF-Lasso

by analyzing several simulated data scenarios. Additionally, four real data sets

from The Cancer Genome Atlas (TCGA) have been analyzed and the results of

the TSIPF-Lasso models have been compared to the original Lasso and the sepa-

rate models approach. The IPF-Lasso and the SGL had to be excluded because

of too long computation time and certain software issues. Overall, the comparison

showed that the two-step approach needs only a fraction of the IPF-Lasso compu-

tation time and has a competitive prediction performance.

The new two-step IPF-Lasso model and its competitors are described in the fol-

lowing section. The analyzed data and how the analysis has been performed is

explained in Sections 3 and 4. An overview and a discussion of the results is given

in Section 5 and Section 6 contains conclusions from the study and some thoughts

for future research.
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2 Methods

Quite a number of concepts and methods have been developed to manage the

p�n issue of making predictions based on high-dimensional data. An important

group of these methods belongs to the area of machine learning. Another group

consists of regularized or penalized regression models with the Lasso family as a

very popular member [Hastie et al., 2009, Bühlmann and van de Geer, 2011]. This

section describes the new two-step IPF-Lasso model, the original IPF-Lasso, the

standard Lasso, sparse group Lasso, separate Lasso models for each modality and

Ridge regression as optional part of the new method.

2.1 Ridge and Lasso regression

The parameter estimate β̂ of a classical linear regression model as described for

example in Fahrmeir et al. [2009] is given by

β̂ = (X ′X)−1X ′y (1)

where X is the design matrix and y a continuous response variable.

As long as X has full rank, β̂ is the best unbiased estimator for the parameter

vector β. However, with high-dimensional data (p�n) the matrix X’X is not

invertible and β̂ is no longer uniquely defined. This problem can be avoided by

introducing a penalization term which shrinks the parameter estimates towards

zero and although the result is no longer unbiased, it might produce an acceptable

mean square error.

Ridge regression [Hoerl and Kennard, 1970] uses the L2 norm in a penalization

term and estimates the β parameter vector by

‖y −Xβ‖22 + λ‖β‖22
β−→ min (2)

with ‖.‖2 as L2 norm and λ > 0 a scalar. The parameter estimate β̂ for β is then

given by

β̂ = (X ′X + λI)−1X ′y (3)

where I is the identity matrix.

A high-dimensional Ridge regression model can still contain hundreds of thousands
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of covariates as it only shrinks the parameter estimates towards zero, but never

sets them actually equal to zero. Setting parameter estimates equal to zero is a

way of variable selection in order to get a sparse model. This can be achieved by

the Lasso model which uses another penalty term.

Compared to Ridge regression, the penalty term of the Lasso model is built on the

L1 norm. The parameter vector β is now estimated by

‖y −Xβ‖22 + λ‖β‖1
β−→ min (4)

with ‖.‖1 as L1 norm and λ > 0 a scalar. This optimization problem has no explicit

solution like the Ridge model and needs to be solved numerically. The parameter

estimates have been originally calculated by a quadratic program solver, some time

later by the very efficient LARS algorithm and nowadays also with coordinate

descent algorithms [Tibshirani, 2011].

These models can also be applied to binary response variables and to survival data.

For the logistic Lasso the term ‖y − Xβ‖22 has to be replaced by −l(β, β0), the

negative log-likelihood function of β and the intercept β0 and for the Cox Lasso

through −pl(β), the negative partial log-likelihood.

2.2 Sparse group Lasso

The scope of the original Lasso model has been expanded to a number of specific

modeling situations and different Lasso variants have been developed by modifying

the original penalty term [Hastie et al., 2015]. In a scenario where the covariates

belong to different groups (like for example in omics-data), it might make sense to

look for a solution which only contains a few of these groups. Such a situation can

be modeled by the group Lasso approach [Yuan and Lin, 2006]. However, with

omics-data one usually expects some of the covariates of a given modality to be

important for predicting the outcome and it wouldn’t make sense to exclude the

entire modality. Thus, a better solution is the sparse group Lasso model which

combines the group Lasso and the standard Lasso, making sure that the final re-

sult will be a model being sparse within and between groups [Simon et al., 2013b].

Let M be the number of modalities in a multi-omics data set, X(m) the matrix of

covariates in modality m (m=1,...,M) and β(m) the corresponding model parameter
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vector.

The parameter estimate β̂ of a sparse group Lasso model is calculated by mini-

mizing

1

2n
‖y−

M∑
m=1

X(m)β(m)‖22 + (1− α)λ
M∑
m=1

√
pm‖β(m)‖2 + αλ‖β‖1

β−→ min (5)

where ‖.‖1 and ‖.‖2 are the L1 and L2 norms, pm is the length of modality m,

λ > 0 is a scalar and α ∈ [0, 1]. The factor α controls the emphasis of model

sparsity on the group versus the covariate level. With α = 1, the model turns into

the standard Lasso model and with α = 0 it becomes the group Lasso model.

2.3 Separate models for each modality

There are various further options to integrate the heterogeneous group structure of

multi-omics data into the model building process. One could simply build separate

models for each modality and then combine these into an overall model [Zhao

et al., 2014]. Another approach includes some pre-knowledge about the prediction

capabilities of certain modalities into the estimation process. Especially clinical

data is often already known to impact an outcome like cancer prognosis. This

part of the data is usually very small compared to molecular measurements like

gene expression data and therefore, important clinical covariates might get lost in

a model which treats all modalities the same way. In a penalized model, the so

called ”favoring” approach would only penalize the molecular part of the covariates

and leave the clinical covariates un-penalized. The favoring approach and some

alternatives are discussed in a paper by Boulesteix and Sauerbrei [2011].

This study follows the naive method by running separate Lasso models for each

modality and combining the coefficient estimates into a final model. The model

serves as a direct competitor to the new two-step IPF-Lasso and is also used as

optional first step model in the new method.
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2.4 IPF-Lasso

Like the separate Lasso models approach, the ”integrative Lasso with penalty fac-

tors” (IPF-Lasso) penalizes each modality individually. The parameter estimation

is done by

‖y −
M∑
m=1

X(m)β(m)‖22 +
M∑
m=1

λm‖β(m)‖1
β−→ min (6)

where X(m) is the matrix of covariates in modality m (m=1,...,M) and β(m) the

corresponding model parameter vector. The scalar λm > 0 is the individual penalty

for modality m. IPF-Lasso can use the existing Lasso algorithms and estimates

β̂j
(m)∗

are obtained by using the same penalty parameter λ1 for all covariates

on the transformed data xij
(m)∗ = xij

(m)/(λm/λ1) (i=1,...,n and j=1,...,p). The

final IPF-Lasso estimates β̂j
(m)

are then calculated by re-scaling β̂j
(m)∗

as β̂j
(m)

=

β̂j
(m)∗

/(λm/λ1) [Boulesteix et al., 2017a]. In their paper, Boulesteix et al. [2017a]

compared IPF-Lasso to the original Lasso, the separate Lasso models approach and

to spares group Lasso. They demonstrated that IPF-Lasso has a better prediction

performance than its competitors when the modalities are different in terms of

their relevance for prediction. The performance turned out to be slightly worse for

similar modalities.

However, from a practical point of view there is an issue related to computation

time: In order to get the M penalties λm, a certain number C of candidate vectors

of penalty factors s(c) = (1, λ2/λ1, ..., λM/λ1) with c=1,...,C has to be defined.

Candidate vector s(1) is usually defined as s(1) = (1, ..., 1) and stands for the original

Lasso. Therefore, IPF-Lasso includes the original Lasso and returns original Lasso

results whenever an equal penalization for all modalities makes sense.

Cross validation (CV) is applied for each candidate vector to determine the λ1

which gives the best prediction performance. Finally the vector s(copt) is selected

which gives the best fit according to a selected performance metric. With standard

computer hardware, these calculation steps limit the practical use of IPF-Lasso in

terms of computation time. Eliminating this bottle-neck by a modification of the

method could help to extend its practical applicability to more than two or three

modalities.
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2.5 Two-step IPF-Lasso

The idea of the two-step IPF-Lasso is to determine first a single candidate vector

of penalty factors based on the data and thus avoid to manually defining candidate

vectors and most of the above mentioned calculations. This vector is then used in

a second step to calculate the penalty factor λ1 which gives the optimal prediction

performance of the model. A well-known two-step Lasso model is the adaptive

Lasso of Zou [2006]. Coefficient estimates are determined by ordinary least squares

in a first step. These pilot estimates are then used as weights in the penalty term

of the second-step Lasso. However, the approach only works for p < n and thus

is not applicable for multi-omics data. Huang et al. [2008] extended the model to

p� n data by using univariate regression in the first step.

In contrast to the adaptive Lasso, the two-step IPF-Lasso model uses the means of

the absolute values of the first-step coefficient estimates of each modality as weights

in the penalty term of the second step. A similar procedure has been applied by

Ternès et al. [2017] in the context of estimating interactions in randomized clinical

trials and the idea has been mentioned by Tai and Pan [2007] in an earlier paper.

Several versions for the first step of the two-step IPF-Lasso can be set and have

been evaluated in this study (see Table 1). The parameter estimates might be

calculated by a Ridge or a Lasso model either on the whole data set or separately

for each modality. The logic behind trying separate models in Step 1 is due to

the fact that variables from separate modalities can be correlated. A combined

Lasso model usually picks one of these correlated variables and ignores the others.

Running separate models in Step 1 could therefore save some relevant variables

for Step 2. The output of Step 1 is a set of M means of the respective parameter

estimates β̂j
(m)

of each modality calculated as arithmetic means by

¯̂
β
(m)
arith =

1

pm

pm∑
j=1

|β̂j
(m)
| (7)

and as geometric means by

¯̂
β(m)
geom = pm

√√√√ pm∏
j=1

|β̂j
(m)
| (8)

with m=1,...,M and pm the length of modality m.
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Version Modalities Model Mean

TSIPF1 combined Ridge arithmetic

TSIPF2 combined Ridge geometric

TSIPF3 combined Lasso arithmetic

TSIPF4 separate Ridge arithmetic

TSIPF5 separate Ridge geometric

TSIPF6 separate Lasso arithmetic

Table 1: Six versions of the two-step IPF-Lasso, which are defined by the model

type of Step 1, applied to combined or separate modalities and the arithmetic or

geometric mean of the resulting coefficient estimates for each modality.

Some or even all of the coefficient means can become zero if a Lasso model is

used in Step 1. In these cases, the respective modalities are either excluded from

the calculations of Step 2 or the modeling process stops after Step 1. The recip-

rocal values of the non-zero coefficient means of Step 1 are combined into a single

candidate vector of penalty factors pf = (1/
¯̂
β(1), 1/

¯̂
β(2), ..., 1/

¯̂
β(M)). Alternatively,

one could use pf ∗ = (1,
¯̂
β(1)/

¯̂
β(2), ...,

¯̂
β(1)/

¯̂
β(M)), inspired by the original IPF-Lasso

paper. But this is an equivalent option, because multiplying the penalty vector by

a scalar has no influence on the final modeling result [Boulesteix et al., 2017a].

Taking the reciprocal means of the coefficient estimates as candidate penalty fac-

tors assigns the lowest penalty factor to the modality with the highest mean of

coefficient estimates. Likewise, the modality with the lowest coefficient estimate

mean gets the highest penalty factor assigned. Thus, the results of Step 1 will be

supported in the second step in a sense that covariates which survived the first

step and seem to have an impact on the response are less penalized in the second

step than covariates which almost failed. In contrast, one could also enter the

coefficient means directly into the candidate vector and achieve a relatively high

penalty for the modality with the highest mean of coefficient estimates and a rel-

atively low penalty for the modality with the lowest mean of coefficient estimates

from Step 1. However, these statements become less valid, the more the means of

the coefficient estimates are similar so that the penalty factors in Step 2 are also

similar and the modalities are penalized equally. It is also important to realize

that the size of the Step 1 means of coefficient estimates depends not only on the
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estimates, but also on the size of the modalities. Larger modalities tend to achieve

smaller means compared to small modalities if the sums of the absolute coefficient

estimates per modality are of similar size.

This study follows the reciprocal approach and thus modalities with high absolute

coefficient estimates or low modality size get a ”penalization bonus” in Step 2. The

actual parameter estimates of the two-step IPF-Lasso model are then determined

in the second step by

‖y −
M∑
m=1

X(m)β(m)‖22 + λ

M∑
m=1

1
¯̂
β(m)
‖β(m)‖1

β−→ min (9)

where
¯̂
β(m) is the arithmetic or geometric mean of the Step 1 coefficient estimates

of modality m.
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3 Data

The new two-step IPF-Lasso model and its competitors have been evaluated with

various simulated multi-omics data scenarios and with four real data sets from

TCGA.

3.1 Simulated data

The approach for creating simulated multi-omics data has been adopted from

Boulesteix et al. [2017a]. The data consists of a binary response variable (prob-

ability for success π = 0.5) and two modalities of varying sizes p1 and p2. The

modalities contain a certain number of truly relevant variables pr1 < p1 and pr2 < p2.

The entire set of covariates is drawn from a multivariate normal distribution with

mean µ = (β
(1)
1 , ..., β

(pr1)
1 , 0, ..., 0, β

(p1+1)
2 , ..., β

(p1+pr2)
2 , 0, ..., 0) where β1 and β2 are the

effects of the pr1 and pr2 relevant covariates of the first and second modality. The

covariance matrix Σ = I(p1+p2)×(p1+p2) is the identity matrix which means the data

is uncorrelated with unit variance.

Six scenarios with uncorrelated data are shown in Table 2. The modality sizes vary

from being equal (scenario A) to extremely different (scenarios E and F). Scenarios

E and F simulate a case where low-dimensional clinical data is combined with a

molecular data set, like gene expression data.

Scenario p1 p2 pr1 pr2 β1 β2

A 1000 1000 10 10 0.5 0.5

B 100 1000 3 30 0.5 0.5

C 100 1000 10 10 0.5 0.5

D 100 1000 20 0 0.3 -

E 20 1000 3 10 1 0.3

F 20 1000 15 3 0.5 0.5

Table 2: Simulation scenarios A to F for uncorrelated data, p1 and p2 are the

modality sizes, pr1 and pr2 the numbers of relevant covariates in each modality and

β1 and β2 their impact.
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Scenario A is less realistic, but could be thought of as a combination of two

molecular data sets. The number of relevant variables in the two modalities and

their impacts are varied in a similar way from equal to very different.

In reality, multi-omics data sets are correlated within and between modalities.

Therefore, an additional set of six scenarios A’ to F’ has been defined by using

the same parameters of scenario A to F and only changing the covariance matrix

accordingly. The assumption is that b=10 groups of correlated variables exist in

each modality and group j of the first modality is correlated with group j of the

second modality where the correlation is set to ρ = 0.4. The resulting covariance

matrix 10 consists of matrices Ap1/b(ρ) and Ap2/b(ρ) which have ones on the diag-

onal and ρ off-diagonal. The matrices Bp1/b,p2/b(ρ) and Bp2/b,p1/b(ρ) represent the

correlation between the modalities and all their elements are equal to ρ. All other

elements of the covariance matrix Σ are zero.

Σ =



Ap1/b(ρ) Bp1/b,p2/b(ρ)

Ap1/b(ρ)

. . . . . .

Ap1/b(ρ) Bp1/b,p2/b(ρ)

Bp2/b,p1/b(ρ) Ap2/b(ρ)

. . . . . .

Bp2/b,p1/b(ρ) Ap2/b(ρ)


(10)

For each scenario 100 data sets of size n=100 have been created. On top of the

two times six scenarios there are 33 more scenarios with further modifications of

the simulation parameters (Appendix B, Table 10).
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3.2 Real data

The Cancer Genome Atlas (TCGA) was founded in 2005 by the US-American

National Institute of Health (NIH) and aims at improving our ability to diagnose,

treat and prevent cancer. Currently, genome profiles of 33 cancer types are on-

line available. Among these are gene expression, miRNA expression, copy number

variation (CNV) or DNA methylation data [Tomczak et al., 2015].

TCGA data sets on acute myeloid leukemia (AML), breast invasive carcinoma

(BRCA), esophageal carcinoma (ESCA) and kidney renal papillary cell carcinoma

(KIRP) are used to evaluate the prediction performance of the new two-step IPF-

Lasso. Each data set contains gene expression, CNV and clinical data. The AML

data set has methylation and miRNA data as additional modalities with the latter

also being part of the ESCA and KIRP data sets.

The original data contains a reasonable number of duplicate covariates positioned

next or close to each other i.e. different covariates have completely identical ob-

servations (Table 3). This seems to be caused by the sequencing procedures and

as a consequence of the identical columns in the data matrix, these covariates are

100% correlated. Penalized models can deal with such data by selecting one of the

correlated covariates and ignoring the other. Nevertheless, in each case only one of

the duplicates has been left in the final data sets in order to save computation time.

Data Unique Duplicate %Duplicate

AML 414162 17222 4

BRCA 42639 4326 9

ESCA 70692 45266 39

KIRP 61820 18360 23

Table 3: Absolute number of unique and duplicate covariates and percentage of

duplicates in TCGA datasets.

Each molecular modality has been checked for missing values and combined

according to patient labels. Only clinical covariates with no or at least a mini-

mum number of missing values have been selected to avoid a further reduction of

observations and merged with the molecular data. The covariates of the clinical
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modalities are summarized in Table 11 of Appendix B. Some of them are factors

and need to be converted into numerical dummy variables as the used software

Data mRNA miRNA CNV Methylation Clinical n p Response

AML 19204 550 1140 393264 4 173 414162 surv

BRCA 23287 - 19339 - 13 1006 (501) 42639 surv

ESCA 55410 1441 13834 - 7 129 70692 surv

KIRP 53441 1380 6993 - 6 121 61820 bin

Table 4: Structure of TCGA datasets: Number of covariates per modality, overall

number of covariates p and sample size n for each data set and type of response

variable (surv=survival, bin=binary).

packages only accept a numerical data matrix as input. The response variables are

right-censored survival times for the AML, BRCA and ESCA data and tumor type,

a binomial variable for the KIRP data. Table 4 shows the structure of the final

data sets in terms of modalities, their respective number of covariates, sample sizes,

overall number of covariates and the response types. Because of software issues

(see Section4.4), only 501 observations of the BRCA data could be analyzed.
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4 Analysis

This section gives an overview about the performed data analysis, how the results

have been evaluated and reports some issues related to software.

4.1 Simulation

The simulation data has been analyzed with the adapted R-scripts of Boulesteix

et al. [2017a] using version 3.4.1 of the R-software [R Core Team, 2017]. The scripts

work with R-packages ipflasso [Boulesteix and Fuchs, 2015], glmnet [Friedman

et al., 2010, Simon et al., 2011], SGL [Simon et al., 2013a], psych [Revelle, 2017]

and mvtnorm [Genz et al., 2017]. The six optional versions of the two-step IPF-

Lasso model have been included into the original script so that in summary ten

different models have been run for each of the niter = 100 data sets in each

scenario. Apart from SGL, each model uses a 5-fold cross validation (CV) with

ncv = 10 repeats based on misclassification rates for tuning the λ penalty. The

SGL package doesn’t allow repeated CV and therefore the SGL models have been

estimated with a single CV.

The prediction performance of all models has been evaluated by calculating the

misclassification rates and the areas under the curve (AUC) based on an additional

test data set of size n = 5000. The complete R-scripts for the simulation analysis

can be found in Appendix C.

4.2 Real data analysis

Version 3.4.1 of the R-software [R Core Team, 2017] has been also used for analyz-

ing the real data sets. Applying the R-script of the two-step IPF-Lasso model to

the TCGA data requires the R-packages caret [from Jed Wing et al., 2017], survival

[Therneau, 2015] and pec [Mogensen et al., 2012] on top of the already mentioned

R-packages ipflasso, glmnet, SGL and psych. Similar to the ipflasso package, it

allows right-censored survival times (Cox-PH model), binomial (logistic model)

and continuous variables as responses. The AML, the BRCA and the ESCA data

have right-censored survival times as responses and the KIRP data has a binomial

response. The data has to be formatted as single numerical matrix combining all
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modalities with the first column containing a binomial or continuous response or

survival times and the event indicator in the first two columns. The parameters to

be entered before running the script are the length of each modality (p1, ..., pM),

the model type (in this case ”cox” or ”binomial”), the type of loss measure for CV

(”deviance” for the Cox models and ”class” for the logistic models), the size of the

CV folds (nfolds) and the number of CV repetitions (ncv). The CV default values

have been set to nfolds = 5 and ncv = 10 for all models (apart from SGL, which

only allows single CV), whereas the modality lengths had to be changed according

to the respective data sets.

Again, the purpose of the 5-fold cross validation is the tuning of the λ penalty.

However, in contrast to the simulation data analysis, there was the need to fol-

low the approach of randomly splitting the given data sets into a training and a

test set in order to properly estimate the prediction error [Boulesteix et al., 2008].

These splits have been repeated 100 times per data set and average performance

measures reported as final results.

Right after each data split, the training and test sets are checked for covariates

with near zero variance and these are removed from both data sets. Training and

test data are then standardized and fed into nine models (standard Lasso, separate

models, SGL and the six two-step IPF-Lasso versions). The original IPF-Lasso

model was not included into the analysis because of the computation time issue.

During the analysis, it also turned out that the SGL package doesn’t deliver stable

results and therefore the SGL model had to be excluded from studying the real

data applications. The complete R-script for the real data analysis can be found

in Appendix C.

4.3 Evaluation of results

The model performance has been evaluated into several directions.

The computation times for analyzing the simulated and the real data sets have

been determined and compared to each other. However, this comparison could

not be done for all models. For example the IPF model could only be tested with

simulated data because it cannot handle large data sets in a reasonable time.

Another aspect is the capability of a model to discover relevant covariates and
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enter them into the final model. Of course, the proportion of discovered relevant

covariates can only be determined in situations where these are known in advance.

This could be the case in some real data applications, but is definitely possible for

simulated data and therefore the proportions of discovered relevant covariates has

been determined for the simulation scenarios.

The chance to capture relevant covariates increases with the size of a model, but

from a practical point of view one would like to have sparse models. Model sparsity

has been visualized by the distribution of the number of covariates with non-zero

coefficients for each model.

Finally a prediction error for each model has been estimated. There are many

options to measure the prediction error in which the type of regression model

plays a certain role. In this study the misclassification rate and the AUC (area

under the curve) are used for the logistic regression models and prediction error

curves based on the Brier score are determined for the Cox regression models.

The misclassification rate is estimated for the simulation scenarios based on test

data which has been generated independently of the training data. It is defined

by dividing the sum of misclassifications by the number of all model predictions

[Boulesteix et al., 2008], ranges from 0 to 1 and smaller values are better.

The AUC as described for example in Gerds et al. [2008] is derived from the receiver

operating characteristic (ROC). The ROC curve is a plot of the true positive

classification rates of a binary model against the false positive rates at different

classification thresholds and the AUC is the area under the ROC curve. The AUC

ranges from 0.5 to 1 with 0.5 as useless and 1 as perfect prediction capability. Like

for the misclassification rate, the AUC for the simulation scenarios is estimated

on randomly generated test data and for the real data models, it is based on the

repeated random splits into training and test data.

The Brier score [Mogensen et al., 2012] can be used to measure the prediction error

of Cox survival models. If one interprets the estimated probabilities for an event

at a certain time t∗ as predictions of the event status, the Brier score is the mean

square error of the predictions [Graf et al., 1999]. Brier scores can be calculated

for time points over the entire time axis and visualized as prediction error curves.

For comparing the prediction performance of several models via prediction error
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curves, usually the prediction errors of a null model are added to the graph as

a reference. The null model corresponds to the Kaplan-Meier survival estimates.

The prediction error curves can be further summarized by the integrated Brier

score (IBS), which is defined as

IBS(BS, τ) =
1

τ

∫ τ

0

BS(u, Ŝ)du (11)

where BS stands for Brier score, Ŝ is the predicted survival probability calculated

on test data and τ is any point on the time axis smaller than or equal to the

minimum of the lengths of all the available time axis in the 100 repetitions of

the random data splits. In order to get a single graph representing the overall

prediction performance of the 100 model estimations, the time axis of each split

has been divided into equally spaced time points, the IBS has been calculated for

each of these time points in each split and averaged over all splits. The resulting

IBS averages for all models have been plotted over time in order to compare the

prediction performance of the models.

However, it is important to realize that statements about one method being better

than the other because one has a lower prediction error than the other are based

on the limited number of data sets at hand and thus can hardly be generalized.

Comparing figures in graphs and tables without formal statistical test procedure

also has a subjective element in it and therefore any conclusions should be drawn

with caution.

4.4 Software issues

During the analysis process several issues related to software occurred. It turned

out that the SGL package cannot handle very large data sets in a stable manner.

The AML data matrix has 173 rows and 414162 columns. In many attempts,

the SGL package managed only two times to actually return model estimates

for this data set. The computation time for getting these results was extremely

long with 17 hours at the computer of the Leibniz-Rechenzentrum (LRZ) and

12 hours on the laptop. The measured time for the LRZ computer might be

biased, because it can vary depending on the number of users and the size of their

jobs running at the time of the evaluation. However, these two instances have
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been anyhow rare exceptions. Usually, R-Studio crashed issuing the message ”R

session aborted/R encountered a fatal error/The session was terminated/Start new

session”. Changing the computer, the operating system, the R-version or running

SGL without R-Studio via the R graphical user interface still returned the same

message after a couple of minutes run time. A similar behavior was observed with

the other three real data sets, although these are smaller than the AML data set.

There have been no problems running the SGL package with the simulation data.

Therefore it was decided to analyze the real data without the SGL model and only

include it into the simulation analysis.

Another issue was related to convergence in the glmnet function. The maxit

parameter defines the maximum number of passes over the data for all lambda

values and per default is set to 105. For some data sets (simulated and real) the

default value was too low and glmnet issued a message like ”... Convergence for

1st lambda value not reached after maxit=100000 iterations; solutions for larger

lambda returned”. The problem could be solved for most of the cases by setting

the maxit parameter to 106, without a noticeable increase of computation time.

However, the maxit parameter is not accepted by the cvr.ipflasso function which

is used in the second step of the TSIPF-Lasso models. Therefore, depending on

the data, the IPF-Lasso and the TSIPF-Lasso models sometimes deliver too large

lambda values.

The glmnet function also issued an error message during the analysis of the BRCA

data: ”In getcoef(fit,nvars,nx,vnames): an empty model has been returned; probably

a convergence issue”. These problems did not completely disappear after randomly

reducing the sample size from n=1006 to n=501 as 13 of the 100 runs still returned

a NULL result. In the original data set, the binary response variable for the

events was quite imbalanced (904 times ”0” and 102 times ”1”) and therefore it

was decided to modify the random sampling by drawing only from the ”0” rows.

Thus the response of the resulting data set contains 102 times the event ”1” and

399 times the event ”0”. Running the analysis with this reduced data set hasn’t

generated any more error messages.

Finally there was a problem in the second step of the two-step IPF-Lasso script.

The program uses the cvr.ipflasso function from the ipflasso package to estimate
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the final model coefficients. The cvr.ipflasso function calls the cvr.glmnet function

which uses the cv.glmnet function of the glmnet package to generate a first set of

lambda values. These lambda values are then fed into a for-loop to go through the

ncv cross validation steps. Sometimes, instead of generating a set of first lambda

values, there is only a single lambda value returned. However, as the cv.glmnet

function doesn’t accept single lambda values as input, the program generates an

error message and stops. This problem can be avoided by changing the default

value of the minimum number of lambdas generated by the cv.glmnet function.

The default value for this parameter is mnlam = 5 and setting it to mnlam = 10

in the glmnet.control function eliminates the problem.
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5 Results

This section gives an overview about the main analysis results summarized by

the various measures described in Section 4. Further results can be found in the

Appendix.

5.1 Computation times

A major reason to look for alternatives of the IPF-Lasso model is the computation

time which increases exponentially with the number of modalities. In general,

computation time for a statistical model depends on various factors like the size of

the data set to be analyzed, the model type, the software algorithm, the available

hardware and the option of parallel vs. linear computing for certain tasks. Com-

putation times have been measured on a standard laptop with a 2.7 GHz CPU

and 8 GB RAM and a workstation with a CPU running at 4.2 GHz and 128 GB

RAM.

Model Computation time Computation time

(average in seconds) (% of IPF-Lasso)

Standard Lasso 2.6 12.0

Separate models 3.7 17.0

SGL 30.2 138.8

TSIPF1 3.2 14.7

TSIPF2 3.2 14.7

TSIPF3 2.5 11.5

TSIPF4 3.1 14.3

TSIPF5 3.1 14.3

TSIPF6 2.6 11.8

IPF-Lasso 21.8 100.0

Table 5: Average computation times in seconds and percent computation times

of IPF-Lasso over 100 runs for all studied models under simulation scenarios A-F

(uncorrelated data), measured at an 8 GB RAM laptop with a 2.7 GHz CPU.
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Table 5 shows the average computation times of the models for simulation sce-

narios A-F (uncorrelated data), calculated on the laptop. For each investigated

model and each scenario, the absolute computation time has been measured and

the average calculated over the 100 repetitions of the analysis. Finally the means

of all scenarios A-F have been averaged to get the values in the table. Relative

times in % of the IPF-Lasso computation time are shown as well.

All the two-step IPF-Lasso models need less than 15% of the IPF-lasso run time.

The Lasso-Lasso versions run faster than the Ridge-Lasso versions and have prac-

tically the same computation times as the standard Lasso. The SGL model has

the longest computation time and on average runs almost 40% longer than the

IPF-Lasso. The average computation times for the scenarios A’-F’ (correlated

data) can be found in Table12 of Appendix B. There is practically no difference

between the results of the correlated and uncorrelated scenarios.

Model Computation time (hours)

Standard Lasso 1.27

Separate models 1.25

SGL 12.03

TSIPF1 1.41

TSIPF2 1.41

TSIPF3 1.21

TSIPF4 1.29

TSIPF5 1.29

TSIPF6 1.27

IPF-Lasso -

Table 6: Computation times for AML data: Single runs on a 4.2 GHz CPU/128

GB RAM workstation with 5-fold CV and 10 repetitions for each model.

Comparisons of computation times for real data could only be made for the

six versions of the two-step IPF-Lasso model, the standard Lasso and the separate

models approach. The result for the SGL model could not be verified by a second

run and therefore needs to be interpreted with care. The IPF-Lasso model had to
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be completely excluded because of the exponentially increasing run time as soon

as there are more than two modalities to be analyzed. Table 6 shows the actual

computation times for a single run of the AML data. The run includes 5-fold CV

with 10 repetitions for each model and has been done on the workstation.

The relative computation times for the two-step IPF-models are similar to the

simulation scenarios, with the Ridge-Lasso models having a slightly higher result

than the Lasso-Lasso models. Again, the times are not far away from the standard

Lasso model and the separate models approach and the SGL model has by far the

longest time. Table 13 in Appendix B shows computation times for a single run of

the ESCA data on the workstation. The ESCA data set is much smaller compared

to the AML data and therefore the run times are relatively short. The times vary

a bit more than the AML results, but the Ridge-Lasso models again need more

time than the Lasso-Lasso models and overall, the timing is comparable to the

standard Lasso and the separate models approach.

5.2 Prediction performance on simulated data

For each simulation scenario A-F, A’-F’ and each model, the distributions of the

misclassification rate, the AUC and the number of non-zero coefficients (model

sparsity) are displayed by box plots (Figures 1 and 2). The model performance

varies between and within the different scenarios.

Scenario A is a case which is rather unrealistic in practice as the two modalities

have the same size and the same number of relevant covariates with identical

impact. Here the performance of models TSIPF1 and TSIPF2 is better than the

performance of the IPF-Lasso model in terms of misclassification rate and AUC

and similar to the result of the standard Lasso. The TSIPF3 model which is the

Lasso-Lasso type with a combined first step analysis and arithmetic mean performs

similar to the separated models approach. The performance of the models TSIPF3

to TSIPF6 is slightly below the IPF-Lasso model with the TSIPF6 model having

the worst result.

In terms of model sparsity, all two-step IPF-Lasso models contain approximately a

similar number of non-zero coefficients compared to the IPF-Lasso and also show

some increased variation.

23



●

●
●
●●●●

●

●

●

●

● ● ●
●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
is

cl
as

si
fic

at
io

n 
ra

te

●

●

●●●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

p1 = 1000, p2 = 1000, p1
r = 10, p2

r = 10, β1 = 0.5, β2 = 0.5

●●●●●

●
●

●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0

50

100

150

200

250

nu
m

be
r 

of
 s

el
ec

te
d 

co
va

ria
te

s

●
●

●

●

●

●
●●

●

●
● ●

●

●
●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
is

cl
as

si
fic

at
io

n 
ra

te

●

●●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●
●

●●

●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

p1 = 100, p2 = 1000, p1
r = 3, p2

r = 30, β1 = 0.5, β2 = 0.5

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0

50

100

150

200

nu
m

be
r 

of
 s

el
ec

te
d 

co
va

ria
te

s

●●●

●

●

●

● ●

●

● ●

●

● ●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
is

cl
as

si
fic

at
io

n 
ra

te

●●

●

●

●●
●●

●

● ●

●

● ●

●

● ●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6
0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

p1 = 100, p2 = 1000, p1
r = 10, p2

r = 10, β1 = 0.5, β2 = 0.5
●
●

●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0

50

100

150

nu
m

be
r 

of
 s

el
ec

te
d 

co
va

ria
te

s

●●
●

●●●
●
●●
●

●
●●
●

●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
is

cl
as

si
fic

at
io

n 
ra

te

●
●●

●

●

●● ●
●●

●

●
●
● ●●●●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

p1 = 100, p2 = 1000, p1
r = 20, p2

r = 0, β1 = 0.3

●

●●

●

●

●
●

●●●●

●

●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0

50

100

150

nu
m

be
r 

of
 s

el
ec

te
d 

co
va

ria
te

s

●

●
●●

●

●

●
●

●● ●●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
is

cl
as

si
fic

at
io

n 
ra

te

●

●

●

●

●● ●●
●

●

●

●

●

● ●● ●● ●

●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

p1 = 20, p2 = 1000, p1
r = 3, p2

r = 10, β1 = 1, β2 = 0.3

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●
●
●●

●●●
●
●●●

●●●
●
●●●

●
●●

●

●
●
●

●

●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0

50

100

150

nu
m

be
r 

of
 s

el
ec

te
d 

co
va

ria
te

s

●

●

●

●

●

●

●

●

●
●●
● ●

●
●

●

●

●
●

●

●
●

●
●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
is

cl
as

si
fic

at
io

n 
ra

te

●

●

●

●

●

●

●
●●
● ●

●
●

●

●

●

●
●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

p1 = 20, p2 = 1000, p1
r = 15, p2

r = 3, β1 = 0.5, β2 = 0.5
●
●

●●●

●
●

●●●●
●
●●

●●
●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

●

●● ●

●

●●

La
ss

o

S
ep

S
G

L

IP
F

T
S

IP
F

1

T
S

IP
F

2

T
S

IP
F

3

T
S

IP
F

4

T
S

IP
F

5

T
S

IP
F

6

0

50

100

150

nu
m

be
r 

of
 s

el
ec

te
d 

co
va

ria
te

s

Figure 1: Misclassification rate (left), AUC (center) and number of selected co-

variates (right) for simulation scenarios A-F (uncorrelated data).
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The standard Lasso model contains the lowest number and the SGL model by

far the highest number of non-zero coefficients. The high number of non-zero co-

efficients in the SGL model might contribute to its better prediction performance

relative to the other models. Also for correlated data the models TSIPF1 and

TSIPF2 have both a better prediction performance than the IPF-Lasso model.

The misclassification rate and AUC for the three model types with a separated

Step 1 analysis (TSIPF3 to TSIPF6) are practically the same and not as good as

the results of the other competitors. The standard Lasso and the SGL model show

the best misclassification rate and AUC, but in terms of model sparsity they have

the lowest and highest values.

Scenario C has the same number and same impact of relevant covariates like sce-

nario A, but the two modality sizes are different. The results of the IPF-Lasso

model and the six two-step IPF-Lasso versions are approximately similar and also

in line with the standard Lasso model. For correlated data, the TSIPF1 and

TSIPF2 models perform slightly better than the IPF-Lasso model, which might

be due to the higher number of non-zero coefficients in the two models.

Scenario B further generalizes the data structure by introducing different numbers

of relevant covariates into the two modalities. In this scenario the models TSIPF1

and TSIPF2 have the same results as the IPF-Lasso model, whereas the models

TSIPF3 to TSIPF6 perform worse with model TSIPF6 having the highest mis-

classification rate and the lowest AUC and model sparsity. These results are quite

similar for the uncorrelated and the correlated data.

Scenarios E and F have extremely different modality sizes which simulates the

case of combining clinical data with genetic covariates. The numbers of relevant

covariates are different as well with the same impact in each modality in scenario

F and a different impact in scenario E. The performance of the IPF-Lasso model

and the six two-step IPF-Lasso versions are the same for scenario E and TSIPF1

and TSIPF2 two are slightly below in scenario F for both the uncorrelated and the

correlated data. In scenario F the results of the SGL model are even below the

IPF-Lasso model and models TSIPF1 to TSIPF6. However, such a comparison is

not really fair, because the SGL model has been run with the tuning parameter α

at its default value.
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Figure 2: Misclassification rate (left), AUC (center) and number of selected co-

variates (right) for simulation scenarios A’-F’ (correlated data).
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Modifying this parameter might have improved the results for the SGL model

under scenario F and perhaps also in general. In both scenarios, the results of the

separate models approach show the highest variation and in scenario E the worst

result.

Finally, scenario D has different modality sizes and no relevant covariates in the

bigger modality. This scenario simulates a real data scenario where a number of

clinical covariates and almost no omics-covariates are found to be relevant. In

the correlated and uncorrelated version of this scenario, the models TSIPF3 to

TSIPF6 show the same AUC and misclassification rate as the IPF-Lasso model

and these five models perform better than the other competitors.

On top of the basic simulation scenarios A-F and A’-F’, 33 additional scenarios

have been run (Table 10) each for correlated and uncorrelated data. For each

scenario the median of the misclassification rate, the AUC and the number of non-

zero model coefficients of the 100 repetitions has been determined. The boxplots

in Figures 9 and 10 display these medians for uncorrelated and correlated data,

including the respective medians of the basic scenarios.

The IPF-Lasso model and the TSIPF3 model have similar median misclassifica-

tion rates and AUCs in the uncorrelated data case. The misclassification rates

for TSIPF1, TSIPF2 and TSIPF4 to TSIPF6 are slightly above the IPF-Lasso

model with the TSIPF6 model at the highest position. These results are reflected

on the AUC boxplots as well. In terms of the number of non-zero coefficients,

the TSIPF3 model has the lowest position, TSIPF1 and TSIPF2 are similar to the

IPF-Lasso model and the TSIPF4 to TSIPF6 models are less sparse than the other

two-step versions of the IPF-Lasso model. The results for the correlated data are

similar. Only the model sparsities for the IPF-Lasso model and the TSIPF-Lasso

models have a wider range and the SGL model contains less non-zero coefficients

compared to the uncorrelated data scenarios.

With simulated data the number of relevant covariates is known and therefore one

can determine how many of these variables end up in the final model equation.

The proportions of relevant covariates discovered by the models for scenarios A to

F (uncorrelated data) are shown in Table 7 and for scenarios A’ to F’ (correlated

data) in Table 14 of Appendix B.
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Scenario IPF TSIPF1 TSIPF2 TSIPF3 TSIPF4 TSIPF5 TSIPF6

Modality 1 A 0.34 0.42 0.41 0.33 0.33 0.33 0.30

B 0.26 0.43 0.44 0.37 0.52 0.53 0.60

C 0.68 0.57 0.55 0.72 0.72 0.72 0.74

D 0.48 0.27 0.26 0.42 0.46 0.46 0.44

E 0.99 1.00 0.98 1.00 1.00 1.00 1.00

F 0.88 0.80 0.83 0.88 0.89 0.89 0.88

Modality 2 A 0.25 0.35 0.35 0.29 0.26 0.26 0.24

B 0.44 0.44 0.44 0.39 0.31 0.31 0.16

C 0.21 0.38 0.40 0.09 0.12 0.13 0.03

D - - - - - - -

E 0.03 0.04 0.06 0.0 0.0 0.0 0.01

F 0.10 0.23 0.21 0.01 0.02 0.01 0.0

Table 7: Proportions of discovered relevant covariates for simulation scenarios A-F

(uncorrelated data).

Scenario A simulates equal numbers of relevant covariates for the two modal-

ities. In this case all models apart from the TSIPF1 and TSIPF2 model contain

about the same proportion of relevant covariates within the two modalities with

lower proportions for Modality 2. In both modalities the TSIPF1 and TSIPF 2

models have higher proportions compared to the other models. Scenario C has the

same number of relevant covariates in the two modalities, but Modality 1 has a

smaller size than Modality 2. For Modality 1 the models TSIPF3 to TSIPF6 have

higher proportions and the models TSIPF1 and TSIPF2 have lower proportions

compared to the IPF-Lasso. Modality 2 has here the bigger size and the propor-

tions for each model are just the opposites of Modality 1: The models TSIPF1 and

TSIPF2 have higher proportions and the models TSIPF3 to TSIPF6 have lower

proportions compared to the IPF-Lasso. Scenario B has 3 relevant covariates in

Modality 1 and 30 in Modality 2. All TSIPF-Lasso models have higher propor-

tions than the IPF-Lasso model in Modality 1 and in Modality 2 the IPF-Lasso

has the same result than the TSIPF1 and TSIPF2 models. The models TSIPF3 to

TSIPF6 have lower proportions. Scenario E has 3 relevant covariates in the small
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modality and 10 in the big modality. Almost all models achieve a proportion of

1 in Modality 1 and close to 0 in Modality 2. Scenario F has a high number of

relevant covariates in the small Modality 1 and a low number in the big Modality

2. Again all the models achieve high proportions in Modality 1 and low ones in

Modality 2 although the models TSIPF1 and TSIPF2 perform better than the

others. Scenario D has no relevant covariates in Modality 2 and 20 in the smaller

Modality 1. In this scenario the IPF-Lasso model achieves the same results as the

models TSIPF3 to TSIPF6 whereas the models TSIPF1 and TSIPF2 have lower

proportions. The outcome for the correlated simulation data is similar to the out-

come of the uncorrelated data.

5.3 Prediction performance on real data

The prediction results of modeling the AML, the ESCA and the KIRP data are

presented in this section and the results for the BRCA data can be found in the

Appendix (Figure 11 and Table 15). The responses for the AML, the BRCA and

the ESCA data are censored survival times and therefore Cox PH models have

been applied. The KIRP data has a binary response and thus the models have

been estimated via logistic regression.

As already explained in Section 4.3, the integrated Brier scores (IBS) have been

calculated for each survival model at equally spaced time points and averaged over

the 100 runs. Figure 3 shows the results plotted against time for the AML data.

The Kaplan-Meier (K-M) curve represents the IBS averages based on the estima-

tion of the Kaplan-Meier survival curve, which is calculated from the survival times

only, without considering any covariates. Therefore it can be used as a reference

against which the other models are compared.

For times above approximately month 18, the curves for all models are below the

Kaplan-Meier reference, indicating a better prediction performance and thus the

usefulness of the models. In this range the separate models approach achieves the

best results and the standard Lasso model the worst, but still better than the

reference. The curves of the six two-step IPF-Lasso model versions lie between the

curves of the standard Lasso and the separate models approach.
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Figure 3: AML data: Integrated Brier score (averages over 100 runs at equally

spaced time points) for standard Lasso, separate models and the six versions of

the TSIPF-Lasso model. The Kaplan-Meier curve serves as reference.

Model K-M Lasso Sep TSIPF1 TSIPF2 TSIPF3 TSIPF4 TSIPF5 TSIPF6

IBS20 0.198 0.196 0.182 0.185 0.188 0.189 0.183 0.183 0.182

IBS40 0.215 0.208 0.193 0.198 0.201 0.204 0.198 0.198 0.198

IBS60 0.211 0.203 0.189 0.194 0.197 0.200 0.194 0.194 0.194

Table 8: AML data: Average integrated Brier score at 20, 40 and 60 months

The TSIPF4, TSIPF5 and TSIPF6 models have identical curves indicating that

for separated first step models it seems to make no difference whether this step
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is done with Ridge or Lasso regression and whether the weights for the second

step are estimated by the arithmetic or the geometric means. Before month 30,

the TSIPF1 model curve is above the curves for the models TSIPF4, TSIPF5

and TSIPF6, becoming equal after month 30. Using the geometric mean (model

TSIPF2) instead of the arithmetic mean (model TSIPF1) results in a higher av-

erage IBS across the entire time axis. The model with the Lasso Step 1 (TSIPF3)

achieves the highest IBS averages of all two-step IPF-Lasso models, which means

it has the lowest prediction performance. Table 8 shows the cross-section of the

IBS curves at 20, 40 and 60 months.

The relatively good performance of the separate models approach might be related

to the high number of covariates in the models (see Figure 4).
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Figure 4: AML data: Number of selected covariates (model sparsity).
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The two-step IPF-Lasso models with the separated Step 1 have very low numbers

of covariates compared to the TSIPF1 and TSIPF2 versions, but have achieved a

similar prediction performance represented by their respective average IBS curves

in Figure 3. The TSIPF3 model sparsity is close to the results of TSIPF4 to

TSIPF6, but with much higher variation and the highest average IBS curve of all

TSIPF-Lasso versions.
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Figure 5: ESCA data: Integrated Brier score (averages over 100 runs at equally

spaced time points) for standard Lasso, separate models and the six versions of

the TSIPF-Lasso model. The Kaplan-Meier curve serves as reference.
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Similar to the AML data, the ESCA data has been analyzed with the same set

of models. Again, random splits into a training and test set have been repeated

100 times and the IBS averages over these 100 results for each model have been

calculated and plotted against time (Figure 5).

Model K-M Lasso Sep TSIPF1 TSIPF2 TSIPF3 TSIPF4 TSIPF5 TSIPF6

IBS200 0.047 0.051 0.049 0.047 0.048 0.046 0.050 0.050 0.049

IBS400 0.108 0.113 0.113 0.113 0.113 0.107 0.115 0.115 0.112

IBS600 0.145 0.152 0.151 0.152 0.151 0.145 0.152 0.152 0.150

Table 9: Average integrated Brier score for ESCA data at 200, 400 and 600 days

The curve for the Kaplan-Maier reference is almost completely matching with

the TSIPF3 model curve which means that in terms of prediction performance,

these two approaches have similar results. However, all other models have IBS

curves which lie above the reference curve. Table 9 shows a cross-section of IBS

values at 200, 400 and 600 days.

Therefore one needs to conclude that choosing any of the studied models doesn’t

improve the prediction performance compared to a simple Kaplan-Meier estima-

tion. A possible reasons for this result could be related to the proportional hazards

(PH) assumption of the Cox model which is a pre-requisite of all the studied sur-

vival models. Tests done for some of the random data splits indicate, that the PH

assumption is hurt for some of the covariates and also overall for the respective

models. Therefore the Cox PH model might not be the best option for modeling

the ESCA data. Another reason could be the low number of covariates in the

various models (Figure 6). The median of the model sparsity of the original Lasso

model, of the TSIPF3 and of the TSIPF4 models is zero, meaning that 50 out of

the 100 models have no covariates. The other 50 models have a very low number

of non-zero coefficients, like the standard Lasso model which contains only 1 or

2 covariates. This extreme model sparsity could be a consequence of model mis-

specification, of failing convergence because of a still too low maxit parameter and

therefore higher lambda penalties or of the data itself.
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Figure 6: ESCA data: Number of selected covariates (model sparsity).

Similar results have been observed after analyzing the BRCA data. The average

IBS curves, a cross-section of specific IBS averages and the boxplots of the model

sparsities can be found in Figure 11, Table 15 and Figure 12 in the Appendix.

The response of the KIRP data set is the tumor type which is a binary variable and

therefore logistic regression has been applied for all models. Although this data set

is the smallest of the four real data sets, neither the SGL nor the IPF-Lasso model

could be included into the study because of the earlier mentioned reasons. The

prediction performance has been measured by the AUC and the model sparsity.

In terms of AUC the standard Lasso, the separated models approach, the TSIPF1

and the TSIPF2 model achieve similar results (Figure 7).
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Figure 7: KIRP data: AUC based on 100 runs with random splits into training

and test data.

The group of TSIPF-Lasso models with separated Step 1 shows the lowest

AUCs and the TSIPF3 model lies between the two groups. Figure 8 displays the

model sparsity. The separated models approach generates less sparse results than

the rest of the competitors. Among the TSIPF-Lasso models, the two groups with

a combined and a separated Step 1 achieve different results compared to each

other with the second group having less covariates in the models. The results

within each group are the same for the Ridge-Lasso versions and lower for the

Lasso-Lasso models. The sparsities of the standard lasso models lie in between the

two TSIPF-Lasso groups.
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Figure 8: KIRP data: Number of selected covariates (model sparsity).
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6 Conclusions

This study aimed at investigating two-step extensions of the IPF-Lasso model,

in particular related to computation time, prediction error and model sparsity.

Correlated and uncorrelated simulation data sets with different scenarios and four

real data sets have been analyzed. Six versions of the new two-step IPF-Lasso

model have been compared to the IPF-Lasso, the standard Lasso, separate models

for each modality and the SGL model. Comparisons have been done in terms of

computation time, prediction error, model sparsity and for the simulated data, the

proportion of identified relevant covariates has been calculated.

The six TSIPF-Lasso models need 12-15% of the computation time of the IPF-

Lasso model for analyzing the simulation data. A direct comparison with the

IPF-Lasso model based on real data couldn’t be done, but the TSIPF-Lasso mod-

els need approximately 20% more time than the standard Lasso model. Running

an IPF-Lasso model on four or five modalities would need much more time which

increases exponentially with each added modality.

A comparison of the prediction errors shows less obvious differences than computa-

tion time. Looking into the results for simulated data, one can see better or worse

performances of the TSIPF-Lasso models vs. the IPF-Lasso, depending on the

different scenarios. In scenario A, for example, the TSIPF1 and TSIPF2 models

have a higher AUC than the IPF-Lasso and in scenario D it is the exact opposite.

That is also reflected in the proportions of selected relevant covariates. In scenario

A, the TSIPF-Lasso models contain more relevant covariates than the IPF-Lasso

and in scenario D the IPF-Lasso model performs better. Considering all results

based on simulated data, one can conclude that at least the TSIPF1-, TSIPF2-

and TSIPF3-Lasso models show similar AUCs than the IPF-Lasso whereas the

other TSIPF-Lasso models have slightly lower results.

In the real data analysis, all TSIPF-Lasso models perform better than the standard

Lasso and worse than the separated models approach (for AML data) or slightly

below both competitors (for KIRP data). The ESCA and BRCA data analysis

show a bad performance for all models compared to the Kaplan-Meier reference,

probably due to a model misspecification.

In terms of model sparsity, the medians of the numbers of non-zero covariates

37



based on the analysis of simulated data are very close to each other for all models

apart from the results of the separated models approach and the SGL model which

are much higher.

The sparsities of the TSIPF1- and TSIPF2-lasso models are both the same, slightly

above the standard Lasso and below the separate models approach for the AML

and the KIRP data. The TSIPF3- to TSIPF6-Lasso models have lower sparsities

for the KIRP data and very low ones for the AML data.

It is difficult to decide which of the six TSIPF-Lasso models is the best. It seems

to make no difference whether the means for Step 2 are estimated by an arithmetic

mean or a geometric mean. The results also point rather to the models with the

combined Step 1 than to the separated Step 1 models and there especially to the

Ridge-Lasso combinations, although the group of separated Step 1 models has a

similar prediction performance as the TSIPF1-Lasso model in the AML data anal-

ysis.

All these statements about the prediction performance can hardly be generalized

and would require more research. The number of real data sets needs to be higher

in order to be able to apply powerful statistical tests for comparing the prediction

errors of the various candidate models and get statements which can be general-

ized. This approach would follow an idea of Boulesteix et al. [2017b] where research

in methodological computational statistics is compared with clinical trials and the

strict requirements in this area. Accordingly, data sets would play the role of pa-

tients and the investigated statistical methods correspond to different treatments.

Such a full-blown benchmark study would require a high number of omics data

sets which might not be easily available. Nevertheless one could calculate at least

the power of the applied statistical tests for a given number of data sets and get

an idea about the validity of such studies and the drawn conclusions [Boulesteix

et al., 2015].

For analyzing high numbers of multi-omics data sets one would need access to

appropriate hardware in order to reduce the overall computation time. Another

option for reducing the computation time would be the application of pre-selection

rules to the covariates. The so-called strong rules for discarding covariates are al-

ready implemented in the glmnet package [Tibshirani et al., 2010] and the new
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R-package biglasso contains a selection of several alternative rules [Zeng and Bre-

heny, 2017]. The biglasso package also enables the analysis of big data sets in a

situation where there is not sufficient RAM volume available. Using biglasso for

studying the performance of the two-step IPF-Lasso model vs. IPF-Lasso and its

competitors would require replacing the glmnet-functions in the original IPF-Lasso

script by the corresponding biglasso functions.

It would be also interesting to extend the study to alternatives of the Cox PH

model. Parametric survival models which don’t assume proportional hazard rates

might better fit to the data to be analyzed. One of the outcomes of this study

were the stability problems of the SGL package with big data sets. It is not clear

whether these stability problems could be reduced or avoided by changing the sec-

ond tuning parameter α, which was fixed at the default value during this study.

Nevertheless, the SGL package seems to work not as efficient as the glmnet package.

In their paper Wang and Ye [2014] mention that “...in large-scale applications, the

complexity of the regularizers entails great computational challenges.”(p.1) and

present a modification of the SGL model which “...improves the efficiency of SGL

by orders of magnitude.”(p.1). This approach could finally enable a comparison

of the two-step IPF-Lasso models to the SGL on big real data sets.

One could also modify the penalties in the second step of the two-step IPF-Lasso

model similar to the elastic net or fundamentally change the approach of assigning

individual penalties to multi-omics data like Velten [2017] did with their hierar-

chical Bayes model. Bayes models introduce subjective elements into the data

analysis through prior distributions. The IPF-Lasso model also contains a sub-

jective element, as a practitioner has to choose appropriate penalty factors. A

characteristic that has been lost by the completely data driven approach of the

two-step IPF-Lasso model.
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Figure 9: Median misclassification rate (left), median AUC (center) and median

number of selected covariates (right) of 39 simulation scenarios (uncorrelated data).
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Figure 10: Median misclassification rate (left), median AUC (center) and median

number of selected covariates (right) of 39 simulation scenarios (correlated data).
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Figure 11: BRCA data: Integrated Brier score (averages over 100 runs at equally

spaced time points) for standard Lasso, separate models and the six versions of

the TSIPF-Lasso model. The Kaplan-Meier curve serves as reference.
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Figure 12: BRCA data: Number of selected covariates (model sparsity) for stan-

dard Lasso, separate models (Sep) and the six versions of the TSIPF-Lasso model.
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B Tables

Setting p1 p2 pr1 pr2 β1 β2

1 500 500 10 10 0.5 0.5

2 500 500 20 0 0.5 -

3 500 500 10 10 0.3 0.8

4 100 1000 20 0 0.5 -

5 100 1000 0 20 - 0.5

6 100 100 10 10 0.5 0.5

7 500 500 3 3 1 1.5

8 500 500 20 20 1 0.3

9 500 500 20 0 1 -

10 500 500 40 0 0.3 -

11 500 500 40 0 0.5 -

12 500 500 20 10 0.5 0.5

13 500 500 10 10 0.3 1.5

14 500 500 10 10 0.4 0.7

15 20 2000 10 10 0.5 0.5

16 300 800 10 10 0.5 0.5

17 20 2000 10 10 1 0.3

Setting p1 p2 pr1 pr2 β1 β2

18 20 2000 1 100 0.5 0.5

19 300 800 3 8 0.8 0.8

20 100 1000 3 30 1 0.3

21 20 2000 20 0 0.5 -

22 300 800 20 0 0.5 -

23 100 1000 20 10 0.5 0.5

24 100 1000 40 0 0.5 -

25 100 1000 20 0 1 -

26 20 2000 0 20 - 0.5

27 300 800 0 20 - 0.5

28 100 1000 0 20 - 1

29 100 1000 0 40 - 0.5

30 100 1000 10 20 0.5 0.5

31 20 1000 5 0 1 -

32 20 1000 10 10 0.5 0.5

33 20 1000 3 3 1 1

Table 10: Additional simulation scenarios for correlated and uncorrelated data

Data Covariates Type

AML gender factor/2 levels

age integer

% bone marrow blast integer

white blood-cell count numerical

BRCA age integer

surgical procedure factor/5 levels

histological type factor/9 levels

ESCA gender factor/2 levels

age integer

primary pathology histological type factor/2 levels

primary pathology neoplasm histologic grade factor/4 levels

KIRP gender factor/2 levels

age integer

height numerical

weight numerical

laterality factor/3 levels

Table 11: Clinical covariates in TCGA datasets
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Model Computation time Computation time

(average in seconds) (% of IPF-Lasso)

Standard Lasso 2.6 11.9

Separate models 3.8 17.0

SGL 29.1 131.3

TSIPF1 3.2 14.6

TSIPF2 3.3 14.7

TSIPF3 2.5 11.2

TSIPF4 3.2 14.3

TSIPF5 3.2 14.3

TSIPF6 2.6 11.8

IPF-Lasso 22.2 100.0

Table 12: Average computation times in seconds and percent computation times

of IPF-Lasso over 100 runs for all studied models under simulation scenarios A’-F’

(correlated data), measured at an 8 GB RAM laptop with a 2.7 GHz CPU.

Model Computation time (minutes)

Standard Lasso 8.48

Separate models 6.39

SGL -

TSIPF1 9.26

TSIPF2 7.27

TSIPF3 5.16

TSIPF4 6.27

TSIPF5 6.06

TSIPF6 4.42

IPF-Lasso -

Table 13: Computation times for ESCA data: Single runs on a 4.2 GHz CPU/128

GB RAM workstation with 5-fold CV and 10 repetitions for each model.
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Scenario IPF TSIPF1 TSIPF2 TSIPF3 TSIPF4 TSIPF5 TSIPF6

Modality 1 A’ 0.40 0.45 0.46 0.39 0.30 0.30 0.32

B’ 0.33 0.45 0.45 0.36 0.60 0.60 0.62

C’ 0.69 0.60 0.58 0.74 0.74 0.73 0.73

D’ 0.52 0.29 0.30 0.46 0.48 0.48 0.50

E’ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F’ 0.89 0.80 0.82 0.90 0.90 0.90 0.90

Modality 2 A’ 0.36 0.43 0.44 0.34 0.32 0.32 0.30

B’ 0.48 0.47 0.48 0.44 0.32 0.32 0.20

C’ 0.21 0.41 0.43 0.08 0.08 0.08 0.02

D’ - - - - - - -

E’ 0.02 0.04 0.06 0.00 0.00 0.00 0.00

F’ 0.10 0.23 0.20 0.02 0.02 0.02 0.00

Table 14: Proportions of discovered relevant covariates for simulation scenarios

A’-F’ (correlated data).

Model K-M Lasso Sep TSIPF1 TSIPF2 TSIPF3 TSIPF4 TSIPF5 TSIPF6

IBS500 0.017 0.017 0.018 0.017 0.017 0.017 0.018 0.018 0.017

IBS1500 0.085 0.085 0.086 0.085 0.085 0.085 0.087 0.087 0.087

IBS2500 0.140 0.142 0.142 0.142 0.142 0.142 0.143 0.144 0.143

Table 15: Average integrated Brier score for BRCA data at 500, 1500 and 2500

days
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C Electronic appendix

The electronic appendix contains the major R-scripts and the real data analyzed

in this study. It consists of a Readme-file (this text), a folder Simulation and a

folder Real Data Analysis with the sub-folders AML data, BRCA data, ESCA data

and KIRP data. Table 16 shows the contents of each folder and subfolder.

Folders Simulation Real Data Analysis

Subfolders AML data BRCA data ESCA data KIRP data

R-scripts simu.function AML.parallel BRCA.parallel ESCA.parallel KIRP.analysis

simu.script AML.linear BRCA.linear ESCA.linear KIRP.plotfunctions

fig.function AML.plotfunctions BRCA.plotfunctions ESCA.plotfunctions KIRP.make.plots

fig.script AML.make.plots BRCA.make.plots ESCA.make.plots

tab.function

tab.script

Data sets xyfinal xyfinal xyfinal xyfinal

Table 16: Folder structure (Electronic appendix)

Simulation:

The R-script simu.function simulates data and runs a standard Lasso, separate

models, SGL, six versions of the two-step IPF-Lasso and the IPF-Lasso. It con-

tains the functions simulclassif, covMatrix and simulation.

The R-script simu.script defines the data scenarios A to F plus 33 additional

scenarios for uncorrelated data and A’ to F’ plus 33 additional scenarios for cor-

related data. It calls the function covMatrix to generate covariance matrices and

the function simulation which returns the file result and saves it in a folder re-

sults uncorrelated or results correlated.

The R-script fig.function defines the functions plotfunction, plotmedfunction and

perfmed. Plotfunction creates boxplots of misclassification rate, AUC and number

of non-zero coefficients for all tested models, using the result file as input. Perfmed

calculates medians of misclassification rate, AUC and number of non-zero coeffi-

cients of all tested models. Plotmedfunction generates boxplots of the 39 median

misclassification rates, median AUCs and median numbers of non-zero coefficients

from the analysis of each data type and for each tested model.
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The R-script fig.script generates the input to Figures 1 and 2 by using plotfunc-

tion, and the overall median results (Figures 9 and 10) for the 39 scenarios of

uncorrelated and correlated data by using plotmedfunction.

The function relcov (R-script tab.function) calculates the proportions of discovered

relevant covariates for each tested model, using the result files as input. Tab.script

generates the input for Table 10 (additional scenarios) and for Tables 7 and 14

(proportions of discovered relevant covariates).

Real Data Analysis/AML data:

The R-script AML.parallel generates a list of prediction errors and coefficients for

the standard Lasso, separate models, six versions of the two-step IPF-Lasso and

the IPF-Lasso. All models are Cox PH models and the calculations are done in

parallel by a pre-specified number of cores. The script contains also code for the

SGL model, but this hasn’t been included into the analysis. It uses the data file

xyfinal as input and returns a file called res.

The R-script AML.linear is the linear version of AML.parallel.

The R-script AML.plotfunction defines the functions ibsmeans, timeminmax and

spars. Timeminmax calculates the minimum of the maximum values of the time

axis of all model results based on the 100 random data splits. Ibsmeans calcu-

lates the IBS averages over the 100 repetitions and returns a matrix with these

averages for each model. The function spars determines the number of non-zero

coefficients for each model over all runs. Inputs for all functions are the results of

the AML.parallel script.

The R-script AML.make.plots generates Figure 3, Figure 4 and Table 8 by using

the functions of AML.plotfunction.

Real Data Analysis/BRCA data:

Similar to AML data for Figure 11, Figure 12 and Table 15.

Real Data Analysis/ESCA data:

Similar to AML data for Figure 5, Figure 6 and Table 9.
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Real Data Analysis/KIRP data:

The R-script KIRP.analysis generates lists of the AUC, the number of non-zero

coefficients and the actual coefficients for each random split of the data and each

tested model.

The R-script plot.functions contains the functions aucmat and spars. Aucmat

returns a matrix of AUC values for each model over all runs and the function

spars determines the number of non-zero coefficients for each model over all runs.

Inputs to these functions are the lists, created by KIRP.analysis.

The R-script KIRP.make.plots generates boxplots of the AUC and the number of

non-zero coefficients generated by the functions aucmat and spars.
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Picture credits

Source of image on title page: ”Master in Omics Data Analysis”, Universitat de

VIC/ Universitat Central de Catalunya, http://mon.uvic.cat/master-omics (last

time accessed on September 4, 2017).
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