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Approximate Expected Utility Rationalization

Federico Echenique Taisuke Imai Kota Saito ⇤

Abstract

We propose a new measure of deviations from expected utility, given data on eco-

nomic choices under risk and uncertainty. In a revealed preference setup, and given a

positive number e, we provide a characterization of the datasets whose deviation (in

beliefs, utility, or perceived prices) is within e of expected utility theory. The number e

can then be used as a distance to the theory.

We apply our methodology to three recent large-scale experiments. Many subjects

in those experiments are consistent with utility maximization, but not expected utility

maximization. The correlation of our measure with demographics is also interesting,

and provides new and intuitive findings on expected utility.
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1 Introduction

Revealed preference theory started out as an investigation into the empirical content of util-

ity maximization, but more recently has turned to the empirical content of specific utility

theories. The leading example is expected utility: recent theoretical work seeks to character-

ize the choice behaviors that are consistent with expected utility maximization. At the same

time, a number of empirical papers carry out revealed preference tests on data of choices

under risk and uncertainty. We seek to bridge the gap between the theoretical understanding

of expected utility theory, and the machinery needed to analyze experimental data on choices

under risk and uncertainty.1

Imagine an agent making economic decisions, choosing contingent consumption given

market prices and income. A long tradition in revealed preference theory studies the consis-

tency of such choices with utility maximization, and a more recent literature has investigated

consistency with expected utility theory (EU). 2 Consistency, however, is a black or white

question. The choices are either consistent with EU or they are not. Our contribution is to

describe the degree to which choices are consistent with EU.

Revealed preference theory has developed measures of how far choices are from being

compatible with general utility maximization. The most widely used measure is the Critical

Cost Efficiency Index (CCEI) proposed by Afriat (1972). Varian (1990) proposes a modi-

fication, and Echenique et al. (2011) propose an alternative measure. 3 Such measures are

designed to gauge the distance between choices that cannot be rationalized by any utility

function, and choices for which there exists some utility function that could explain them.

They are not designed to measure consistency with EU.

The CCEI has been widely used to analyze experimental data, including data that in-

volves choice under risk and uncertainty. See, for example, Ahn et al. (2014), Choi et al.

(2007), Choi et al. (2014), Carvalho et al. (2016), and Carvalho and Silverman (2017). These

studies involve agents making decisions under risk or uncertainty, but the authors have not

had tools to investigate consistency with EU, the most commonly used theory to explain

1We analyze objective expected utility theory for choice under risk and subjective expected utility theory

for choice under uncertainty.
2 The seminal papers include Samuelson (1938), Afriat (1967) and Varian (1982) (see Chambers and

Echenique (2016) for an exposition). The work on EU includes Green and Srivastava (1986), Kubler et al.

(2014), and Echenique and Saito (2015).
3Dziewulski (2018) provides a foundation for CCEI based on the model in Dziewulski (2016), which seeks

to rationalize violations of utility-maximizing behavior with a model of just-noticeable differences.
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choices under risk or uncertainty. The purpose of our paper is to provide such a tool.

Of course, there is nothing wrong with studying general utility maximization in environ-

ments with risk and uncertainty, but it is surely also of interest to use the same data to

look at EU. After a theoretical discussion of our measure (Sections 3 and 5), we carry out

an empirical implementation of our proposals to data from the last three of the cited papers

(Section 4). 4

Our empirical application has two purposes. The first is to illustrate how our method can

be applied. The second is to a give a new use to existing data. We use data from three large-

scale experiments (Choi et al., 2014; Carvalho et al., 2016; Carvalho and Silverman, 2017),

each with over 1,000 subjects, that involves choices under risk. Given our methodology, the

data can be used to test expected utility theory, not only general utility maximization. The

main take aways from our empirical application are as follows. a) The data confirm that

CCEI is not a good indication of compliance with EU. Among agents with high CCEI, who

seem to be close to consistent with utility maximization, our measure of closeness to EU

is very dispersed. b) Correlation between closeness to EU and demographic characteristics

yields interesting results. We find that younger subjects, those who have high cognitive

abilities, and those who are working, are closer to EU behavior than older, low ability, or

passive, subjects. For some of the three experiments, we also find that highly educated,

high-income subjects, and males, are closer to EU.

In the rest of the introduction, we lay out the argument for why CCEI is inadequate to

measure deviations from EU.

The CCEI is meant to test deviations from general utility maximization. If an agent’s

behavior is not consistent with utility maximization, then it cannot possibly be consistent

with expected utility maximization. It stands to reason that if an agent’s behavior is far

from being rationalizable with a general utility function, as measured by CCEI, then it is also

far from being rationalizable with an expected utility function. The problem is, of course,

that an agent may be rationalizable with a general utility function but not with an expected

utility function.

Broadly speaking, the CCEI proceeds by “amending” inconsistent choices through the

devise of changing income. This works for general utility maximization, but it is the wrong

way to amend choices that are inconsistent with EU: EU is about getting the marginal rates

of substitution right, so prices need to be changed, not incomes. The problem is illustrated

4These papers involve choices under risk, with given probabilities, and therefore represent a natural unit

of analysis.

3



xa

xb

x1

x2
A

xa

xb

x1

x2
B

MRS =
µ1
!
!
!

u0(xk
1
)

µ2
!
!
!

u0(xk
2
)
=

µ1

µ2

xa

xb

x1

x2
C

Figure 1: (A) A violation of WARP. (B) A violation of the expected utility theory: xa
2 > xa

1,

xb
1 > xb

2, and pb1/p
b
2 < pa1/p

a
2. (C) A pattern of choices consistent with EU.

with a simple example in Figure 1. Suppose that there are two states of the world, labeled 1

and 2. An agent purchases a state-contingent asset x = (x1, x2), given Arrow-Debreu prices

p = (p1, p2) and her income. Prices and incomes define a budget set. In panel A of Figure 1

we are given two choices for the agent, xa and xb, for two different budgets. The choices

in panel A of Figure 1 are inconsistent with utility maximization: they violate the weak

axiom of revealed preference (WARP). When xb (xa) was chosen, xa (xb, respectively) was

strictly inside of the budget set. This violation of WARP can be resolved by shifting down

the budget line associated with choice xb below the dotted green line passing through xa.

Alternatively, the violation can be resolved by shifting down the budget line associated with

choice xa below the dotted blue line passing through xb. Afriat’s CCEI is the smallest of the

two shifts that are needed: the smallest proportion of shifting down a budget line to resolve

WARP violation. Therefore, the CCEI of this dataset corresponds to the dotted green line

passing through xa. That is, the CCEI is (pb · xa)/(pb · xb).

Now consider the example in panel B of Figure 1. There are again two choices made by

a subject, xa and xb, for two different budgets. These choices do not violate WARP, and

CCEI indicates perfect compliance with the theory of utility maximization. The choices in

the panel are not, however, compatible with EU. To see why, assume that the dataset were

rationalized by an expected utility: µ1u(x
k
1) + µ2u(x

k
2), where (µ1, µ2) are the probabilities

of the two states, and u is a (smooth) concave utility function over money. Note that the

slope of a tangent line to the indifference curve at a point xk is equal to the marginal rate of

substitution (MRS): µ1u
0(xk

1)/µ2u
0(xk

2). Moreover, at the 45-degree line (i.e., when xk
1 = xk

2),

the slope must be equal to µ1
!
!
!!u0(xk
1)/µ2

!
!
!!u0(xk
2) = µ1/µ2. This is a contradiction because in
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Figure 1 panel B, the two tangent lines (green dotted lines) associated with xa and xb cross

each other. In contrast with panel B, the figure in panel C shows choices that are consistent

with EU. Tangent lines at the 45-degree line are parallel in this case.

Importantly, the violation in panel B cannot be resolved by shifting budget lines up or

down, or more generally by adjusting agents’ expenditures. The reason is that the empirical

content of expected utility is captured by the relation between prices and marginal rates of

substitution. The slope, not the level, of the budget line is what matters.

Our contribution is to propose a measure of how close a dataset is to being consistent

with expected utility maximization. Our measure is based on the idea that marginal rates of

substitution have to conform to expected utility maximization. If one “perturbs” marginal

utility enough, then a dataset is always consistent with expected utility. Our measure is sim-

ply a measure of how large of a perturbation is needed to rationalize a dataset. Perturbations

of marginal utility can be interpreted in three different, but equivalent, ways: as measure-

ment error on prices, as random shocks to marginal utility in the spirit of random utility

theory, or as perturbations to agents’ beliefs. For example, if the data in panel B of Figure 1

is e away from being consistent with expected utility, then one can find beliefs µa and µb,

one for each observation, so that expected utility is maximized for these observation-specific

beliefs, and such that the data is consistent with such perturbed beliefs.

Our measure can be applied in settings where probabilities are known and objective, for

which we develop a theory in Section 3, and an application to experimental data in Section 4.

It can also be applied to settings where probabilities are not known, and therefore subjective

(see Section 5).

Finally, we propose a statistical methodology for testing the null hypothesis of consistency

with EU. Our test relies on a set of auxiliary assumptions: the methodology is developed in

Section 4.3. The test indicates moderate levels of rejection of the EU hypothesis.

2 Model

Let S be a finite set of states. We occasionally use S to denote the number |S| of states. Let

∆++(S) = {µ 2 RS
++ |

PS
s=1 µs = 1} denote the set of strictly positive probability measures

on S. In our model, the objects of choice are state-contingent monetary payoffs, or monetary

acts. A monetary act is a vector in RS
+.

Definition 1. A dataset is a finite collection of pairs (x, p) 2 RS
+ ⇥RS

++.
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The interpretation of a dataset (xk, pk)Kk=1 is that it describes K purchases of a state-

contingent payoff xk at some given vector of prices pk, and income pk · xk.

For any prices p 2 RS
++ and positive number I > 0, the set

B(p, I) = {y 2 RS
+ | p · y  I}

is the budget set defined by p and I.

Expected utility theory requires a decision maker to solve the problem

max
x2B(p,I)

X

s2S

µsu(xs) (1)

when faced with prices p 2 RS
++ and income I > 0, where µ 2 ∆++(S) is a belief and u is

a concave utility function over money. We are interested in concave u; an assumption that

corresponds to risk aversion.

The belief µ will have two interpretations in our model. First, in Section 3, we shall focus

on decisions taken under risk. The belief µ will be a known “objective” probability measure

µ⇤ 2 ∆++(S). Then, in Section 5, we study choice under uncertainty. Consequently, The

belief µ will be a subjective beliefs, which is unobservable to us as outside observers.

When imposed on a dataset, expected utility maximization (1) may be too demanding.

We are interested in situations where the model in (1) holds approximately. As a result,

we shall relax (1) by “perturbing” some elements of the model. The exercise will be to

see if a dataset is consistent with the model in which some elements have been perturbed.

Specifically, we shall perturb beliefs, utilities or prices.

First, consider a perturbation of utility u. We allow u to depend on the choice problem

k and the realization of the state s. We suppose that the utility of consumption xs in state

s is given by εksu(xs), with εks being a (multiplicative) perturbation in utility. To sum up,

given price p and income I, a decision maker solves the problem

max
x2B(p,I)

X

s2S

µsε
k
su(xs) (2)

when faced with prices p 2 RS
++ and income I > 0. Here {εks} is a set of perturbations, and

u is, as before, a concave utility function over money.

In the second place, consider a perturbation of beliefs. We allow µ to be different for each

choice problem k. That is, given price p and income I, a decision maker solves the problem

max
x2B(p,I)

X

s2S

µk
su(xs) (3)
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when faced with prices p 2 RS
++ and income I > 0, where {µk} ⇢ ∆++(S) is a set of beliefs

and u is a concave utility function over money.

Finally, consider a perturbation of prices. Our consumer faces perturbed prices p̃ks = εksp
k
s ,

with a perturbation εks that depends on the choice problem k and the state s. Given price p

and income I, a decision maker solves the problem

max
x2B(p̃,I)

X

s2S

µsu(xs), (4)

when faced with income I > 0 and the perturbed prices p̃ks = εksp
k
s for each k 2 K and s 2 S.

Observe that our three sources of perturbations have different interpretations. Perturbed

prices can be thought of a prices subject to measurement error. Perturbed utility is an

instance of random utility models. Finally, perturbations of beliefs can be thought of as a

kind of random utility, or as an inability to exactly use probabilities.

3 Perturbed Objective Expected Utility

In this section we treat the problem under risk: there exists a known “objective” belief

µ⇤ 2 ∆++(S) that determines the realization of states.

As mentioned above, we go through each of the sources of perturbation: beliefs, utility

and prices. We seek to understand how large a perturbation has to be in order to rationalize

a dataset. It turns out that, for this purpose, all sources of perturbations are equivalent.

3.1 Belief Perturbation

We allow the decision maker to have a belief µk for each choice k. We seek to understand

how much the belief µk deviates from the objective belief µ⇤ by evaluating how far the ratio,

µk
s/µ

k
t

µ⇤
s/µ

⇤
t

,

where s 6= t, differs from 1. If the ratio is larger (smaller) than one, then it means that in

choice k, the decision maker believes the relative likelihood of state s with respect to state

t is larger (smaller, respectively) than what he should believe, given the objective belief µ⇤.

Given a nonnegative number e, we say that a dataset is e-belief-perturbed objective

expected utility (OEU) rational, if it can be rationalized using expected utility with per-

turbed beliefs for which the relative likelihood ratios do not differ by more than e from their

objective equivalents. Formally:
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Definition 2. Let e 2 R+. A dataset (xk, pk)Kk=1 is e-belief-perturbed OEU rational if there

exist µk 2 ∆++ for each k 2 K, and a concave and strictly increasing function u : R+ ! R,

such that, for all k,

y 2 B(pk, pk · xk) =)
X

s2S

µk
su(ys) 

X

s2S

µk
su(x

k
s). (5)

and for each k 2 K and s, t 2 S,

1

1 + e


µk
s/µ

k
t

µ⇤
s/µ

⇤
t

 1 + e. (6)

When e = 0, e-belief-perturbed OEU rationality requires that µk
s = µ⇤

s, so the case of

exact consistency with expected utility is obtained with a zero bound of belief perturbations.

Moreover, it is easy to see that by taking e to be large enough, any data set can be e-belief-

perturbed rationalized.

We should note that e bounds belief perturbations for all states and observations. As

such, it is sensitive to extreme observations and outliers (the CCEI is also subject to this

critique: see Echenique et al. (2011)). In our empirical results, we carry out a robustness

analysis to account for such sensitivity: see Appendix D.2.

Finally, we mention a potential relationship with models of nonexpected utility. One

could think of rank-dependent utility, for example, as a way of allowing agent’s beliefs to

adapt to his observed choices. However, unlike e-belief-perturbed OEU, the nonexpected

utility theory requires some consistencies on the dependency. For example, for the case of

rank dependent utility, the agent’s belief over the sates is affected by the ranking of the

outcomes across states.

3.2 Price Perturbation

We now turn to perturbed prices: think of them as prices measured with error. The pertur-

bation is a multiplicative noise term εks to the Arrow-Debreu state price pks . Thus, perturbed

state price are εksp
k
s . Note that if εks = εkt for all s, t, then introducing the noise does not

affect anything because it only changes the scale of prices. In other words, what matters is

how perturbations affect relative prices, that is εks/ε
k
t .

We can measure how much the noise εk perturbs relative prices by evaluating how much

the ratio,
εks
εkt
,

where s 6= t, differs from 1.
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Definition 3. Let e 2 R+. A dataset (xk, pk)Kk=1 is e-price-perturbed OEU rational if there

exists a concave and strictly increasing function u : R+ ! R, and εk 2 RS
+ for each k 2 K

such that, for all k,

y 2 B(p̃k, p̃k · xk) =)
X

s2S

µ⇤
su(ys) 

X

s2S

µ⇤
su(x

k
s), (7)

where for each k 2 K and s 2 S

p̃ks = pksε
k
s
5 (8)

and for each k 2 K and s, t 2 S

1

1 + e


εks
εkt

 1 + e. (9)

The idea is illustrated in Figure 2 (panels A-D). The figure shows how the perturbations

to relative prices affect budget lines, under the assumption that |S| = 2. For each value of

e 2 {0.1, 0.25, 0.5, 1} and k 2 K, the blue area is the set {x 2 RS
+ | x · p̃k = xk · p̃k and (9)}

of perturbed budget lines. The dataset in the figure is the same as in panel B of Figure 1,

which is not rationalizable with any expected utility function.
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Figure 2: (A-D) Illustration of perturbed budget sets with e 2 {0.1, 0.25, 0.5, 1}. (E) Exam-

ple of price-perturbed expected utility rationalization.

5It is without loss of generality to add an additional restriction that p̃k · xk = pk · xk for each k 2 K

because what matters are the relative prices.
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Figure 2, panel E illustrates how we rationalize the dataset in panel B of Figure 1. The

blue bold lines are perturbed budget lines and the green bold curves are (fixed) indifference

curves passing through each of the xk in the data. Note that the indifference curves have the

same slope at the 45-degree line. The blue shaded areas are the sets of perturbed budget lines

bounded by e = 1. Perturbed budget lines needed to rationalize the choices are indicated

with blue bold lines. Since these are inside the shaded areas, the dataset is price-perturbed

OEU rational with e = 1.

3.3 Utility Perturbation

Finally, we turn to perturbed utility. As explained above, perturbations are multiplicative

and take the form εksu(x
k
s). It is easy to see that this method is equivalent to belief pertur-

bation. As for price perturbations, we seek to measure how much the εk perturbs utilities

at choice problem k by evaluating how much the ratio,

εks
εkt
,

where s 6= t, differs from 1.

Definition 4. Let e 2 R+. A dataset (xk, pk)Kk=1 is e-utility-perturbed OEU rational if there

exists a concave and strictly increasing function u : R+ ! R and εk 2 RS
+ for each k 2 K

such that, for all k,

y 2 B(pk, pk · xk) =)
X

s2S

µ⇤
sε

k
su(ys) 

X

s2S

µ⇤
sε

k
su(x

k
s), (10)

and for each k 2 K and s, t 2 S

1

1 + e


εks
εkt

 1 + e. (11)

3.4 Equivalence of the Three Measures

The first observation we make is that the three sources of perturbations are equivalent, in the

sense that for any e a data set is e-perturbed rationalizable according to one of the sources

if and only if it is also rationalizable according to any of the other sources. By virtue of

this result, we can interpret our measure deviations from OEU in any of the ways we have

introduced.
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Theorem 1. Let e 2 R+, and D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational;

• D is e-price-perturbed OEU rational;

• D is e-utility-perturbed OEU rational.

In light of Theorem 1 we shall simply say that a data set is e-perturbed OEU rational if

it is e-belief-perturbed OEU rational, and this will be equivalent to being e-price-perturbed

OEU rational, and e-utility-perturbed OEU rational.

3.5 Characterizations

We proceed to give a characterization of the dataset that are e-perturbed OEU rational.

Specifically, given e 2 R+, we propose a revealed preference axiom and prove that a dataset

satisfies the axiom if and only if it is e-perturbed OEU rational.

Before we state the axiom, we need to introduce some additional notation. In the current

model, where µ⇤ is known and objective, what matters to an expected utility maximizer is

not the state price itself, but instead the risk-neutral price:

Definition 5. For any dataset (pk, xk)Kk=1, the risk neutral price ρks 2 RS
++ in choice problem

k at state s is defined by

ρks =
pks
µ⇤
s

.

As in Echenique and Saito (2015), the axiom we propose involves a sequence (xki
si
, x

k0i
s0i
)ni=1

of pairs satisfying certain conditions.

Definition 6. A sequence of pairs (xki
si
, x

k0i
s0i
)ni=1 ⌘ σ is called a test sequence if

(1) xki
si
> x

k0i
s0i

for all i;

(2) each k appears as ki (on the left of the pair) the same number of times it appears as

k0
i (on the right).

Echenique and Saito (2015) provide an axiom, termed the Strong Axiom for Revealed

Objective Expected Utility (SAROEU), which states for any test sequence (xki
si
, x

k0i
s0i
)ni=1, we

have
nY

i=1

ρkisi

ρ
k0i
s0i

 1. (12)

11



SAROEU is equivalent to the axiom provided by Kubler et al. (2014).

It is easy to see why SAROEU is necessary. Assuming (for simplicity of exposition)

that u is differentiable, the first order condition of the maximization problem (1) for choice

problem k

λkpks = µ⇤
su

0(xk
s), or equivalently, ρks =

u0(xk
s)

λk
,

where λk > 0 is a Lagrange multiplier.

By substituting this equation on the left hand side of (12), we have

nY

i=1

ρkisi

ρ
k0i
s0i

=
nY

i=1

λk0i

λki
·

nY

i=1

u0(xki
si
)

u0(x
k0i
s0i
)
 1.

To see that this term is smaller than 1, note that the first term of the product of the λ-ratios

is equal to one because of the condition (2) of the test sequence: all λk must cancel out. The

second term of the product of u0-ratio is less than one because of the concavity of u, and the

condition (1) of the test sequence (i.e., u0(xki
si
)/u0(x

k0i
s0i
)  1). Thus SAROEU is implied. It

is more complicated to show that SAROEU is sufficient (see Echenique and Saito (2015) for

details).

Now, e-perturbed OEU rationality allows the decision maker to use different beliefs µk 2

∆++(S) for each choice problem k. Consequently, SAROEU is not necessary for e-perturbed

OEU rationality. To see that SAROEU can be violated, note that the first order condition

of the maximization (3) for choice k is as follows: there exists a positive number (Lagrange

multiplier) λk such that for each s 2 S,

λkpks = µk
su

0(xk
s), or equivalently, ρks =

µk
s

µ⇤
s

u0(xk
s)

λk
.

Suppose that xk
s > xk

t . Then (xk
s , x

k
t ) is a test sequence (of length one). We have

ρks
ρkt

=

✓
µk
s

µ⇤
s

u0(xk
s)

λk

◆/✓
µk
t

µ⇤
t

u0(xk
t )

λk

◆
=

u0(xk
s)

u0(xk
t )

µk
s/µ

k
t

µ⇤
s/µ

⇤
t

.

Even though xk
s > xk

t implies the first term of the ratio of u0 is less than one, the second

term can be strictly larger than one. When xk
s is close enough to xk

t , the first term is almost

one; the second term is strictly larger than one. Consequently, SAROEU can be violated.

However, by (6), we know that the second term is bounded by 1 + e. So we must have

ρks
ρkt

 1 + e.
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In general, for a sequence (xki
si
, x

k0i
s0i
)ni=1 of pairs, one may suspect that the bound is calculated

as (1+ e)n. This is not true because if xk
s appears as both xki

si
for some i and as x

k0j
s0j

for some

j, then all µk
s can be canceled out. What matters is the number of times xk

s appears without

being canceled out. The number can be defined as follows.

Definition 7. Consider any sequence (xki
si
, x

k0i
s0i
)ni=1 of pairs. Let (xki

si
, x

k0i
s0i
)ni=1 ⌘ σ. For any

k 2 K ands 2 S,

d(σ, k, s) = #{i | xk
s = xki

si
} −#{i | xk

s = x
k0i
s0i
}.

and

m(σ) =
X

s2S

X

k2K:d(σ,k,s)>0

d(σ, k, s).

Note that, if d(σ, k, s) is positive, then d(σ, k, s) is the number of times µk
s appears as

a numerator without being canceled out. If it is negative, then d(σ, k, s) is the number

of times µk
s appears as a denominator without being canceled out. So m(σ) is the “net”

number of terms such as µk
s/µ

k
t that are present in the numerator. Thus the relevant bound

is (1 + e)m(σ).

Given the discussion above, it is easy to see that the following axiom is necessary for

e-perturbed OEU rationality.

Axiom 1 (e-Perturbed Strong Axiom for Revealed Objective Expected Utility (e-PSAROEU)).

For any test sequence of pairs (xki
si
, x

k0i
s0i
)ni=1 ⌘ σ, we have

nY

i=1

ρkisi

ρ
k0i
s0i

 (1 + e)m(σ).

The main result of this section is to show that the axiom is also sufficient.

Theorem 2. Given e 2 R+, and D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational.

• D satisfies e-PSAROEU.

Axioms like e-PSAROEU can be interpreted as a statement about downward sloping

demand (see Echenique et al., 2016). For example (xk
s , x

k
s0) with xk

s > xk
s0 is a test sequence.

If risk neutral prices satisfy ρks > ρks0 , then the data violate downward sloping demand. Now

e-PSAROEU measures the extent of the violation by controlling the size of ρks/ρ
k
s0 .
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In its connection to downward sloping demand, Theorem 2 formalizes the idea of testing

OEU through the correlation of risk-neutral prices and quantities: see Friedman et al. (2018)

and our discussion in Section 4.2. Theorem 2 and the axiom e-PSAROEU give the precise

form that the downward sloping demand property takes in order to characterize OEU, and

provides a non-parametric justification to the practice of analyzing the correlation of prices

and quantities.

As mentioned, 0-PSAROEU is equivalent to SAROEU. When e = 1, the e-PSAROEU

always holds because (1 + e)m(σ) = 1.

Given a dataset, we shall calculate the smallest e for which the dataset satisfies e-

PSAROEU. It is easy to see that such a minimal level of e exists. 6 We explain in Ap-

pendices B and C how it is calculated in practice.

Definition 8. Minimal e, denoted e⇤, is the smallest e0 ≥ 0 for which the data satisfies

e0-PSAROEU.

The number e⇤ is a crucial component of our empirical analysis. Importantly, it is the

basis of a statistical procedure for testing the null hypothesis of OEU rationality.

As mentioned above, e⇤ is a bound that has to hold across all observations, and therefore

may be sensitive to extreme outliers. It is, however, easy to check the sensitivity of the

calculated e⇤ to an extreme observation. One can re-calculate e⇤ after dropping one or two

observations, and look for large changes (Appendix D.2).

Finally, e⇤ depends on the prices and the objective probability which a decision maker

faces. In particular, it is clear from e-PSAROEU that 1 + e is bounded by the maximum

ratio of risk-neutral prices (i.e., maxk,k02K,s,s02S ρ
k
s/ρ

k0

s0 ).

4 Testing (Objective) Expected Utility

We use our methods to test for perturbed OEU on datasets from three experiments im-

plemented through large-scale online surveys. The datasets are taken from Choi et al.

(2014), hereafter CKMS, Carvalho et al. (2016), hereafter CMW, and Carvalho and Sil-

verman (2017), hereafter CS. All of these experiments followed the experimental structure

introduced originally by Choi et al. (2007). 7

6In Appendix B, we show that e⇤ can be obtained as a solution of minimization of a continuous function

on a compact space. So the minimum exists.
7We focused on CKMS, CMW, and CS because they have much larger samples than Choi et al. (2007),

and collect sociodemographic variables. Choi et al. (2007) estimate a two-parameter utility function based
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It is worth mentioning here that all three papers, CKMS, CMW, and CS, focus on CCEI

as a measure of violation of basic rationality. We shall instead look at the more narrow

model of OEU, and use e⇤ as our measure of violations of the model. Our procedure for

calculating e⇤ is explained in Appendices B and C.

4.1 Datasets

CKMS experiment Choi et al. (2014) used the CentERpanel, a stratified online weekly

survey of a sample of over 2,000 households and 5,000 individual members in the Nether-

lands. They implemented experimental tasks using the panel’s survey instrument, randomly

recruiting subjects from the entire CentERpanel sample. Their experiment was conducted

with 1,182 CentERpanel adult members.

The instrument allowed them to collect a wide variety of individual demographic and eco-

nomic information from the subjects. The main sociodemographic information they obtained

include gender, age, education level, household monthly income, occupation, and household

composition. 8

In the experiment, subjects were presented with a sequence of decision problems under

risk in a graphical illustration of a two-dimensional budget line on the (x, y)-plane. They

were then asked to select a point, an “allocation,” by clicking on the budget line. The

coordinates of the selected point represent an allocation of points between accounts x and

y. They received the points allocated to one of the accounts, x or y, determined at random

with equal chance. They were presented a total of 25 budgets, which were selected randomly

from the set of budget lines (see Figure 3). The selection of budget lines was independent

across subjects, meaning that the subjects were give different sets of budget lines.

We note some interpretations of the design that matter for our discussion later. First,

the points that lie on the 45-degree line correspond to equal allocations between the two

accounts, and therefore involve no risk. The 45-degree line is the “full insurance” line.

Second, we can interpret the slope of a budget line as a price, in the usual sense: if the

y-intercept is larger than the x-intercept, points in the y account are “cheaper” than those

in the x account.

CMW experiment Carvalho et al. (2016) studied the effect of financial resources on

on Gul’s (1991) model of disappointment aversion. We report an analysis of Choi et al.’s (2007) dataset in

Appendix D.
8Summary statistics of those key individual characteristics are reported in Table 1 in Choi et al. (2014).
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Figure 3: Sample budget lines. A set of 25 budgets from one real subject in Choi et al.

(2014).

Table 1: Sample size for each experiment.

Dataset CKMS CMW CS

Number of subjects 1,182 1,119 1,423

Number of budgets 25 25 25

decision making using two internet panel surveys. In their study 2, they administered a

portfolio choice task and Choi et al. (2014). They fixed the set of 25 budgets, i.e., all

subjects in the survey faced the same set of budgets. A total of 1,119 subjects participated

in this study.

CS experiment Carvalho and Silverman (2017) studied the effects of the complexity

of financial decision making using the University of Southern California’s Understanding

America Study (UAS) panel. A portfolio choice task with 25 budgets was induced in their

baseline survey. A total of 1,423 subjects participated in this study.

4.2 Results

Summary statistics. We exclude five subjects whose e⇤ is 0 (i.e., “exact” OEU rational).

We calculate e⇤ for the rest of the 3,719 subjects in the three experiments. The distributions

of e⇤ are displayed in panel A of Figure 4.
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Figure 4: Kernel density estimations of e⇤ for all subjects (panel A) and for the subsample

of subjects whose CCEI = 1 (panel B).

The CKMS sample has a mean e⇤ of 1.289, and a median of 1.316. The CMW subjects

have a mean of 1.189 and a median of 1.262, while the CS sample has a mean of 1.143 and

a median of 1.128. 9

Recall that the smaller a subject’s e⇤ is, the closer her choice data to OEU rationality.

Of course it is hard to exactly interpret the magnitude of e⇤, a problem that we turn to in

Section 4.3.

Downward sloping demand and e⇤ Perturbations in beliefs, prices, or utility, seek

to accommodate a dataset so that it is OEU rationalizable. The accommodation can be

seen as correcting a mismatch of relative prices and marginal rates of substitution: recall

our discussion in the Introduction. Another way to see the accommodation is through the

relation between prices and quantities. Our revealed preference axiom, e-PSAROEU, bounds

certain deviations from downward sloping demand. The minimal e is therefore a measure of

the kinds of deviations from downward sloping demand that are crucial to OEU rationality.

Figure 5 displays “typical” patterns of choices from subjects with large and small values

of e⇤. The figure represents two selected subjects from our data. Panels A and C plot

the observed choices from the different budget lines, and panels B and D plot the relation

between log(x2/x1) and log(p2/p1). The idea in the latter plots is that, if a subject properly

responds to price changes, then as log(p2/p1) becomes higher, log(x2/x1) should become

lower. This relation is also the idea in e-PSAROEU. Therefore, panels B and D in Figure 5

should have a negative slope for the subjects to be OEU rational.

Observe that both subjects in Figure 5 have CCEI = 1, and are therefore consistent with

utility maximization. The figure illustrates that the nature of OEU violations has little to

9Since e⇤ depends on the design of set(s) of budgets, comparing e⇤ across studies requires caution.
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Figure 5: Dataset with CCEI = 1 and low e⇤ (panels AB) and high e⇤ (panels CD).

do with CCEI.

The subject’s choices in panel C are close to the 45-degree line. At first glance, such

choices might seem to be rationalizable by a very risk-averse expected utility function. How-

ever, as panel D shows, the subject’s choices deviates from downward sloping demand, hence

cannot be rationalized by any expected utility function. One might be able to rationalize the

choices made in panel C with certain symmetric models of errors in choices (like, possibly,

“trembling hand” errors), but not with the types of errors captured by our model.

The observation in Figure 5 generalizes this idea. We calculate Pearson’s correlation

coefficient between log(x2/x1) and log(p2/p1) for each subject in the datasets. 10 Roughly

speaking, the correlation coefficient is negative if subjects exhibit downward sloping demand.

The correlation coefficient is close to zero if subjects’ are not responding to price changes.

Figure 6 illustrates the results. The top row of the figure confirms that e⇤ and the correlation

between price and quantity, are positively related. This means that as e⇤ becomes small,

subjects tend to exhibit downward sloping demand. As e⇤ becomes large, subjects become

10Note that log(x2/x1) is not defined at the corners. We thus adjust corner choices by small constant,

0.1% of the budget in each choice, in calculation of the correlation coefficient.
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insensitive to price changes. Across all datasets, CKMS, CMW and CS, e⇤ and downward

sloping demand are positively related.
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Figure 6: x-axis is Pearson’s correlation between log(x2/x1) and log(p2/p1). The vertical

dashed line indicates the critical value below which Pearson’s correlation is significantly

negative (one-tailed test, at 1% level). Solid curves represent LOESS smoothing. Dashed

lines in the second row represent LOESS smoothing excluding subjects with CCEI = 1.

Panels: (A) CKMS, (B) CMW, (C) CS.

We should mention the practice by some authors, notably Friedman et al. (2018), to

evaluate compliance with OEU by looking at the correlation between risk-neutral prices and

quantities. Our measure is clearly related to that idea, and the empirical results presented in

this section can be read as a validation of the correlational approach. Friedman et al. (2018)

use their approach to estimate a parametric functional form, using experimental data in

which they vary objective probabilities, not just prices. 11 Our approach is non-parametric,

and focused on testing OEU, not estimating any particular utility specification.

The bottom row of Figure 6 illustrates the relation between CCEI and the correlation

between price and quantity. The relation is not monotonic. Agents who are closer to com-

plying with utility maximization do not display a stronger correlation between prices and

quantities. The finding is consistent with our comment about CCEI and OEU rationality:

11For the datasets we use, where probabilities are always fixed, the results we report in Figure 5 are

analogous to what Friedman et al. (2018) report in their Figure 6. The regression coefficients in their

Table 2 are proportional to our estimated correlation coefficients (since beliefs are constant).
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Figure 7: Correlation between e⇤ and CCEI from (A) CKMS, (B) CMW, and (C) CS.

CCEI measures the distance from utility maximization, which is related to parallel shifts

in budget lines, while e⇤ and OEU are about the slope of the budget lines, and about a

negative relation between quantities and prices. Hence, e⇤ reflects better than CCEI the

characterizing properties of OEU.

We should mention that the non-monotonic relation between CCEI and the correlation

coefficient seems to be partially driven by subjects who have CCEI = 1. There are 270

(22.8%) subjects whose CCEI scores equal to 1 in CKMS sample, 210 (18.5%) in CMW

sample, and 315 (22.0%) in CS sample, respectively. Omitting such subjects weakens the

non-monotone relationship. The dotted curves in the bottom row of Figure 6 look at the

relation between CCEI and the correlation coefficient excluding subjects with CCEI = 1.

These curves also have non-monotonic relation, but they (i) exhibit negative relation on

a wider range of the x-axis, and (ii) have wider confidence bands when the correlation

coefficient is positive (fewer observations).

We next turn to a direct comparison of e⇤ and CCEI in our data.

Relationship between e⇤ and CCEI. Comparing e⇤ and CCEI, we find that CCEI is not

a good indication of the distance to OEU rationality. To reiterate a point we have already

made, this should not be surprising as CCEI is meant to test general utility maximization,

and not OEU. Nevertheless, it is interesting to see and quantify the relation between these

measures in the data.

In panel B of Figure 4, we show the distribution of e⇤ among subjects whose CCEI is

equal to one, which varies as much as in panel A. Many subjects have CCEI equal to one, but

their e⇤’s are far from zero. This means that consistency with general utility maximization

is not necessarily a good indication of consistency with OEU.

That said, the measures are clearly correlated. Figure 7 plots the relation between CCEI

and e⇤. As we expect from their definitions (larger CCEI and smaller e⇤ correspond to
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higher consistency), there is a negative and significant relation between them (Pearson’s

correlation coefficient: r = −0.2573, p < 10−15 for CKMS; r = −0.2419, p < 10−15 for

CMW; r = −0.3458, p < 10−15 for CS).

Notice that the variability of the CCEI scores widens as the e⇤ becomes larger. Obviously,

subjects with a small e⇤ are close to being consistent with general utility maximization, and

therefore have a CCEI that is close to 1. However, subjects with large e⇤ seem to have

disperse values of CCEI.

Correlation with demographic variables. We investigate the correlation between our

measure of consistency with expected utility, e⇤, and various demographic variables available

in the data. The exercise is analogous to CKMS’s findings using CCEI.

We find that younger subjects, those who have high cognitive abilities, and those who are

working, are closer to being consistent with OEU than older, low ability, or passive, subjects.

For some of the three experiments we also find that highly educated, high-income subjects,

and males, are closer to OEU. Figure 8 summarizes the mean e⇤ along with 95% confidence

intervals across several socioeconomic categories. 12 We use the same categorization as in

Choi et al. (2014) to compare our results with their Figure 3.

We observe statistically significant (at a 5% level) gender differences in CMW (two-sample

t-test, t(1114) = −2.2074, p = 0.0275) and CS (two-sample t-test, t(1418) = −4.4620,

p = 8.76 ⇥ 10−6), but not in CKMS (two-sample t-test, t(1180) = −0.8703, p = 0.3843).

Male subjects were on average closer to OEU rationality than female subjects in the CMW

and CS samples (panel A).

We find significant age effects as well. Panel B shows that younger subjects are on average

closer to OEU rationality than older subjects (the comparison between age groups 16-34 and

65+ reveals statistically significant difference in all three datasets; all two-sample t-tests give

p < 10−5).

We observe weak effects of education on e⇤ (panel C). 13 Subjects with higher education

are on average closer to OEU rationality than those with lower education in CKMS (two-

sample t-test, t(829) = 4.1989, p < 10−4), but the difference is not significant in the CMW

and CS (t(374) = 1.6787, p = 0.0940 in CMW; t(739) = 1.4113, p = 0.1586 in CS).

12Figure D.13 in Appendix D shows correlation between CCEI and demographic variables.
13The low, medium, and high education levels correspond to primary or prevocational secondary educa-

tion, pre-university secondary education or senior vocational training, and vocational college or university

education, respectively. It is possible that we observe significant difference depending on how we categorize

education levels, but we used the present categorization for comparability across studies.
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Figure 8: e⇤ and demographic variables.

Panel D shows that subjects who were working at the time of the survey are on average

closer to OEU rationality than those who were not (t(1180) = 2.2431, p = 0.0251 in CKMS;

t(1114) = 2.4302, p = 0.0153 in CMW; t(1419) = 3.3470, p = 0.0008 in CS).

In panels E1 and E2, we classify subjects according to their Cognitive Reflection Test

score (CRT; Frederick, 2005) or average log reaction times in numerical Stroop task. CRT

consists of three questions, all of which have an intuitive and spontaneous, but incorrect,

answer, and a deliberative and correct answer. Frederick (2005) finds that CRT scores

(number of questions answered correctly) are correlated with other measures of cognitive

ability. In the numerical Stroop task, subjects are presented with a number, such as 888,

and are asked to identify the number of times the digit is repeated (in this example the

answer is 3, while more “intuitive” response is 8). It has been shown that response times in

this task capture the subject’s cognitive control ability.

The average e⇤ for those who correctly answered two questions or more of the CRT is

lower than the average for those who answered at most one question. Subjects with lower
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response times in the numerical Stroop task have significantly lower e⇤ (two-sample t-test,

t(1114) = −3.345, p = 0.0009).

One of the key findings in Choi et al. (2014) is that consistency with utility maximization

measured by CCEI was related with household wealth. When we look at the relation between

e⇤ and household income, there is a negative trend but the differences across income brackets

are not statistically significant (bracket “0-2.5k” vs. “5k+” two-sample t-test, t(533) =

1.6540, p = 0.0987; panel F1). Panel F2 presents similar non-significance between subjects

who earned more than 20 thousand USD annually or not in CMW sample (two-sample t-test,

t(1114) = −0.2301, p = 0.8180). When we compare poor households (annual income less

than 20 thousand USD) and wealthy households (annual income more than 100 thousand

USD) from the CS sample, average e⇤ is significantly smaller for the latter sample (two-

sample t-test, t(887) = −3.5657, p = 0.0004).

4.3 Minimum Perturbation Test

Our discussion so far has sidestepped one issue. How are we to interpret the absolute

magnitude of e⇤? When can we say that e⇤ is large enough to reject consistency with OEU

rationality?

To answer this question, we present a statistical test of the hypothesis that an agent is

OEU rational. The test needs some assumptions, but it gives us a threshold level (a critical

value) for e⇤. Any value of e⇤ that exceeds the threshold indicates inconsistency with OEU

at some statistical significance level.

Our approach follows, roughly, the methodology laid out in Echenique et al. (2011)

and Echenique et al. (2016). First, we adopt the price perturbation interpretation of e in

Section 3.2. The advantage of doing so is that we can use the observed variability in price

to get a handle on the assumptions we need to make on perturbed prices. To this end, let

Dtrue = (pk, xk)Kk=1 denote a dataset and Dpert = (p̃k, xk)Kk=1 denote an “perturbed” dataset.

Prices p̃k are prices pk measured with error, or misperceived:

p̃ks = pksε
k
s for all s 2 S and k 2 K

where εks > 0 is a random variable.

If the variance of ε is large, it will be easy to accommodate a dataset as OEU rational.

The larger is the variance of ε, the larger the magnitudes of e that can be rationalized as

consistent with OEU. So, our procedure is sensitive to the assumptions we make about the

variance of ε.
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Figure 9: Rejection rates under each combination of type I and type II error probabilities

(ηI , ηII ), from CKMS sample (A), CMW sample (B), and CS sample (C).

Our approach to get a handle on the variance of ε is to think of an agent who mistakes

true prices p with perturbed prices p̃. If the variance of ε is too large, the agent should not

mistake the distribution of p and p̃. In other words, the distributions of p and p̃ should be

similar enough that an agent might plausibly confuse the two. Specifically, we imagine an

agent who conducts a statistical test for the variance of prices. If the true variance of p is σ2
0

and the implied variance of p̃ is σ2
1 > σ2

0, then the agent would conduct a test for the null of

σ2 = σ2
0 against the alternative of σ2 = σ2

1. We want the variances to be close enough that

the agent might reasonably get inconclusive results from such a test. Specifically, we assume

the sum of type I and type II errors in this test is relatively large.14

The details of how we design our test are below, but we can advance the main results.

14The problem of variance is pervasive in statistical implementations of revealed preference tests, see

Varian (1990), Echenique et al. (2011), and Echenique et al. (2016) for example. The use of the sum of

type I and type II errors to calibrate a variance, is new to the present paper.
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See Figure 9. Each panel corresponds to our results for each of the datasets. The probability

of a type I error is ηI . The probability of a type II error is ηII . Recall that we focus on

situations when ηI + ηII is relatively large, as we want our consumer to plausibly mistake

the distributions of p and p̃. Consider, for example, our results for CKMS. The outermost

numbers assume that ηI + ηII = 0.7. For such numbers, the rejection rates range from 3%

to 41%. For the CS dataset, if we look at the second line of numbers, where ηI + ηII = 0.65,

we see that rejection rates range from 1% to 19%.

Overall, it is fair to say that rejection rates are modest. Smaller values of ηI + ηII

correspond to larger values of Var(ε), and therefore smaller rejection rates. The figure also

illustrates that the conclusions of the test are very sensitive to what one assumes about

Var(ε), through the assumptions about ηI and ηII . But if we look at the largest rejection

rates, for the largest values of ηI+ηII , we get 25% for CS, 27% for CMW, and 41% for CKMS.

Many subjects in the CS, CMW and CKMS experiments are inconsistent with OEU, but at

least according to our statistical test, for most subjects the rejections could be attributed to

mistakes.

Rationale behind the test. We now turn to a more detailed exposition of how we derive

our test. Let H0 and H1 denote the null hypothesis that the true dataset Dtrue is OEU

rational and the alternative hypothesis that Dtrue is not OEU rational. To construct our

test, consider a number E⇤, which is the result of the following optimization problem. Given

a dataset Dtrue = (pk, xk)Kk=1:

min
(vks ,λ

k,εks )s,k
max

k2K,s,t2S

εks
εkt

s.t. log µ⇤
s + log vks − log λk − log pks − log εks = 0

xk
s > xk0

s0 =) log vks  log vk
0

s0 .

(13)

Under H0, the true dataset Dtrue = (pk, xk)Kk=1 is OEU rational. A slight modification

of Lemma 7 in Echenique and Saito (2015) then implies that there exist strictly positive

numbers evks , and eλk for s 2 S and k 2 K such that

log µ⇤
s + log evks − log eλk − log pks = 0 and xk

s > xk0

s0 =) log evks  log evk0ts .

Substituting the relationship p̃ks = pksε
k
s for all s 2 S and k 2 K yields

log µ⇤
s + log evks − log eλk − log p̃ks = log εks and xk

s > xk0

s0 =) log evks  log evk0s0 ,

25



which implies that the tuple (evks , eλk, εks)s,k satisfies the constraint in problem (13).

Letting E⇤
(
(pk, xk)Kk=1

)
denote the optimal value of the problem (13), we have

E⇤
(
(pk, xk)Kk=1

)
 max

k2K,s,t2S

εks
εks

= bE

under the null hypothesis.

Then, we construct a test as follows:
8
><
>:

reject H0 if

Z 1

E⇤((pk,xk)K
k=1)

fbE(z)dz < α

accept H0 otherwise

,

where α is the size of the test and fbE is the density function of the distribution of bE =

maxk,s,t ε
k
s/ε

k
t . Given a nominal size α, we can find a critical value Cα satisfying Pr[bE >

Cα] = α; we set Cα = F−1
bE
(1 − α), where FbE denotes the cumulative distribution function

of bE . However, because E⇤
(
(pk, xk)Kk=1

)
 bE , the true size of the test is better than α.

Concretely,

size = Pr[E⇤ > Cα]  Pr[bE > Cα] = α.

Parameter tuning. In order to perform the test, we need to obtain the distribution of

bE and its critical value Cα given a significance level α. We obtain the distribution of bE by

assuming that ε follows a log-normal distribution ε ⇠ Λ(ν, ξ2). 15

The crucial step in our approach is the selection of parameters (ν, ξ2). It is natural to

choose these parameters so that there is no price perturbation on average (i.e., E[ε] = 1).

However, as we discussed above, there is no objective guide to choosing an appropriate level

of Var(ε). Therefore, we use variation in (relative) prices observed in the data.

We have assumed that p̃ks = pksε
k
s for all s 2 S, k 2 K, and the noise term ε is independent

of the random selection of budgets (pks)k,s. Hence,

Var(p̃) = Var(p) · Var(ε) + Var(p) · E[ε]2 + E[p]2 · Var(ε)

()
Var(p̃)

Var(p)
= E[ε]2 +

✓
1 +

E[p]2

Var(p)

◆
Var(ε).

Given the observed variation in (pks)k,s, Var(ε) determines how much larger (or smaller, in

ratio) the variation of perturbed prices (p̃ks)k,s is relative to actual prices.

15Note that parameters (ν, ξ2) correspond to the mean and the variance of the random variable in the

log-scale. In other words, log ε ⇠ N(ν, ξ2). The moments of the log-normal distribution ε ⇠ Λ(ν, ξ2) are

then calculated by E[ε] = exp(ν + ξ2/2) and Var(ε) = exp(2ν + ξ2)(exp(ξ2)− 1).
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Our agent has trouble telling the two variances apart. More generally, the agent has

trouble telling the distributions of prices apart, that is why she is confusing actual and

perceived prices, but the distribution depends only on the variance; so we focus on variance.

Consider a hypothesis test for the null hypothesis that the variance of a normal random

variable with known mean has variance σ2
0 against the alternative that σ2 ≥ σ2

0. Let σ̂2
n be

the sample variance.

The agent performs an upper-tailed chi-squared test defined as

H0 : σ2 = σ2
0

H1 : σ2 > σ2
0

The test statistic is:

Tn =
(n− 1)σ̂2

n

σ2
0

where n is the sample size (i.e., the number of budget sets). The sampling distribution of

the test statistic Tn under the null hypothesis follows a chi-squared distribution with n− 1

degrees of freedom.

We consider the probability ηI of rejecting the null hypothesis when it is true, a type I

error; and the probability ηII of failing to reject the null hypothesis when the alternative

σ2 = σ2
1 > σ2

0 is true, a type II error. The test rejects the null hypothesis that the variance

is σ2
0 if

Tn > χ2
1−α,n−1

where χ2
1−α,n−1 is the critical value of a chi-squared distribution with n−1 degree of freedom

at the significance level α, defined by Pr[χ2 < χ2
1−α,n−1] = 1− ηI . 16

Under the alternative hypothesis that σ2 = σ2
1 > σ2

0, the statistic (σ2
0/σ

2
1) · Tn follows a

chi-squared distribution (with n−1 degrees of freedom). Then, the probability ηII of making

a type II error is given by

ηII = Pr[Tn < χ2
1−α,n−1 | H1 : σ

2
1 > σ2

0 is true]

= Pr


σ2
0

σ2
1

· Tn <
σ2
0

σ2
1

· χ2
1−α,n−1

]

= Pr


χ2 <

σ2
0

σ2
1

· χ2
1−α,n−1

]
.

16An alternative approach, without assuming that a distribution for Tn, and based on a large sample

approximation to the distribution of Tn, yields very similar results. Calculations and empirical findings are

available from the authors upon request.
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Let χ2
β,n−1 be the value that satisfies Pr[χ2 < χ2

β,n−1] = ηII . Then, given ηI and ηII , we

obtain

Pr


χ2 <

σ2
0

σ2
1

· χ2
1−α,n−1

]
= ηII ()

σ2
0

σ2
1

· χ2
1−α,n−1 = χ2

β,n−1 ()
σ2
1

σ2
0

=
χ2
1−α,n−1

χ2
β,n−1

.

As a consequence, given a measured variance σ2
0, calculated from observed prices, and

assumed values for ηI and ηII , we can back out the minimum “detectable” value of the

variance σ2
1. From this variance of prices, we obtain Var(ε).

5 Perturbed Subjective Expected Utility

We now turn to the model of subjective expected utility, in which beliefs are not known.

Instead, beliefs are subjective and unobservable. The analysis will be analogous to what we

did for OEU, and therefore proceed at a faster pace. In particular, all the definitions and

results parallel those of the section on OEU. The proof of the main result (the axiomatic

characterization) is substantially more challenging here because both beliefs and utilities are

unknown: there is a classical problem in disentangling beliefs from utility. The technique

for solving this problem was introduced in Echenique and Saito (2015).

Definition 9. Let e 2 R+. A dataset (xk, pk)Kk=1 is e-belief-perturbed SEU rational if there

exist µk 2 ∆++ for each k 2 K and a concave and strictly increasing function u : R+ ! R

such that, for all k,

y 2 B(pk, pk · xk) =)
X

s2S

µk
su(ys) 

X

s2S

µk
su(x

k
s) (14)

and for each k, l 2 K and s, t 2 S

µk
s/µ

k
t

µl
s/µ

l
t

 1 + e. (15)

Note that the definition of e-belief-perturbed SEU rational differs from the definition of

belief-perturbed OEU rationality, only in condition (15); establishing bounds the perturba-

tions. Here there is no objective probability from which we can evaluate the deviation of the

set {µk} of beliefs. Thus we evaluate perturbations among beliefs, as in (15).

Remark 1. The constraint on the perturbation applies for each k, l 2 K and s, t 2 S, so it

implies for each k, l 2 K and s, t 2 S

1

1 + e


µk
s/µ

k
t

µl
s/µ

l
t

 1 + e.
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Hence, when e = 0, it must be that µk
s/µ

k
t = µl

s/µ
l
t. This implies that µk = µl for a dataset

that is 0-belief perturbed SEU rational.

Next, we propose perturbed SEU rationality with respect to prices.

Definition 10. Let e 2 R+. A dataset (xk, pk)Kk=1 is e-price-perturbed SEU rational if there

exist µ 2 ∆++ and a concave and strictly increasing function u : R+ ! R and εk 2 RS
+ for

each k 2 K such that, for all k,

y 2 B(p̃k, p̃k · xk) =)
X

s2S

µsu(ys) 
X

s2S

µsu(x
k
s), (16)

where for each k 2 K and s 2 S

p̃ks = pksε
k
s , (17)

and for each k, l 2 K and s, t 2 S
εks/ε

k
t

εls/ε
l
t

 1 + e. (18)

Again, the definition differs from the corresponding definition of price-perturbed OEU

rationality only in condition (18), establishing bounds on perturbations. In condition (18),

we measure the size of the perturbations by

εks/ε
k
t

εls/ε
l
t

,

not εks/ε
k
t as in (9). This change is necessary to accommodate the existence of subjective

beliefs. By choosing subjective beliefs appropriately, one can neutralize the perturbation in

prices if εks/ε
k
t = εls/ε

l
t for all k, l 2 K. That is, as long as εks/ε

k
t = εls/ε

l
t for all k, l 2 K, if

we can rationalize the dataset by introducing the noise with some subjective belief µ, then

without using the noise, we can rationalize the dataset with another subjective belief µ0 such

that εksµ
0
s/ε

k
tµ

0
t = µs/µt.

Finally, we define utility-perturbed SEU rationality.

Definition 11. Let e 2 R+. A dataset (xk, pk)Kk=1 is e-utility-perturbed SEU rational if

there exist µ 2 ∆++, a concave and strictly increasing function u : R+ ! R, and εk 2 RS
+

for each k 2 K such that, for all k,

y 2 B(pk, pk · xk) =)
X

s2S

µsε
k
su(ys) 

X

s2S

µsε
k
su(x

k
s), (19)

and for each k 2 K and s, t 2 S

1

1 + e


εks/ε
k
t

εls/ε
l
t

 1 + e. (20)
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As in the previous section, given e, we can show that these three concepts of rationality

are equivalent.

Theorem 3. Let e 2 R+ and D be a dataset. The following are equivalent:

• D is e-belief-perturbed SEU rational;

• D is e-price-perturbed SEU rational;

• D is e-utility-perturbed SEU rational.

In light of Theorem 3, we shall speak simply of e-perturbed SEU rationality to refer to

any of the above notions of perturbed SEU rationality.

Echenique and Saito (2015) prove that a dataset is SEU rational if and only if it satisfies

a revealed-preference axiom termed the Strong Axiom for Revealed Subjective Expected

Utility (SARSEU). SARSEU states that, for any test sequence (xki
si
, x

k0i
s0i
)ni=1, if each s appears

as si (on the left of the pair) the same number of times it appears as s0i (on the right), then

nY

i=1

pkisi

p
k0i
s0i

 1.

SARSEU is no longer necessary for perturbed SEU-rationality. This is easy to see, as

we allow the decision maker to have a different belief µk for each choice k, and reason as in

our discussion of SAROEU. Analogous to our analysis of OEU, we introduce a perturbed

version of SARSEU to capture perturbed SEU rationality. Let e 2 R+.

Axiom 2 (e-Perturbed SARSEU (e-PSARSEU)). For any test sequence (xki
si
, x

k0i
s0i
)ni=1 ⌘ σ, if

each s appears as si (on the left of the pair) the same number of times it appears as s0i (on

the right), then
nY

i=1

pkisi

p
k0i
s0i

 (1 + e)m(σ).

We can easily see the necessity of e-PSARSEU by reasoning from the first order con-

ditions, as in our discussion of e-PSAROEU. The main result of this section shows that

e-PSARSEU is not only necessary for e-perturbed SEU rationality, but also sufficient.

Theorem 4. Let e 2 R+ and D be a dataset. The following are equivalent:

• D is e-perturbed SEU rational;
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• D satisfies e-PSARSEU.

It is easy to see that 0-PSARSEU is equivalent to SARSEU, and that by choosing e to

be arbitrarily large it is possible to rationalize any dataset. As a consequence, we shall be

interested in finding a minimal value of e that rationalizes a dataset: such “minimal e” is

also denoted by e⇤.

We should mention, as in the case of OEU, that e⇤ depends on the prices which a decision

maker faces. It is clear from e-PSARSEU that 1 + e is bounded by the maximum ratio of

prices (i.e., maxk,k02K,s,s02S p
k
s/p

k0

s0 ).

6 Proofs

6.1 Proof of Theorems 1 and 2

First, we prove a lemma which shows Theorem 1 and is useful for the sufficiency part of

Theorem 2.

Lemma 1. Given e 2 R+, let (x
k, pk)Kk=1 be a dataset. The following statements are equiv-

alent:

1. (xk, pk)Kk=1 is e-belief-perturbed OEU rational.

2. There are strictly positive numbers vks , λ
k, µk

s , for s 2 S and k 2 K, such that

µk
sv

k
s = λkpks , xk

s > xk0

s0 =) vks  vk
0

s0 , (21)

and for all k 2 K and s, t 2 S

1

1 + e


µk
s/µ

k
t

µ⇤
s/µ

⇤
t

 1 + e. (22)

3. (xk, pk)Kk=1 is e-price-perturbed OEU rational.

4. There are strictly positive numbers v̂ks , λ̂
k, and εks for s 2 S and k 2 K, such that

µ⇤
sv̂

k
s = λ̂kεksp

k
s , xk

s > xk0

s0 =) v̂ks  v̂k
0

s0 ,

and for all k 2 K and s, t 2 S

1

1 + e


εks
εkt

 1 + e.
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5. (xk, pk)Kk=1 is e-utility-perturbed OEU rational.

6. There are strictly positive numbers v̂ks , λ̂
k, and ε̂ks for s 2 S and k 2 K, such that

µ⇤
sε̂

k
s v̂

k
s = λ̂kpks , xk

s > xk0

s0 =) v̂ks  v̂k
0

s0 ,

and for all k 2 K and s, t 2 S

1

1 + e


ε̂ks
ε̂kt

 1 + e.

Proof. By the standard way, the equivalence between 1 and 2, the equivalence between 3

and 4, and the equivalence between 5 and 6 hold. Moreover, it is easy to see the equivalence

between 4 and 6 with εks = 1/ε̂ks for each k 2 K and s 2 S. So to show the result, it suffices

to show that 2 and 4 are equivalent.

To show 4 implies 2, define v = v̂ and

µk
s =

µ⇤
s

εks

, 
X

s2S

µ⇤
s

εks

!

for each k 2 K and s 2 S and

λk = λ̂k

, 
X

s2S

µ⇤
s

εks

!

for each k 2 K. Then, µk 2 ∆++(S). Since µ⇤
sv̂

k
s = λ̂kεksp

k
s , we have

µk
sv

k
s = λkpks .

Moreover, for each k 2 K and s, t 2 S

εks
εkt

=
µk
s/µ

k
t

µ⇤
s/µ

⇤
t

.

Hence,
1

1 + e


εks
εkt

 1 + e.

To show that 2 implies 4, for all s 2 S define v̂ = v and for all k 2 K, λ̂k = λk. For all

k 2 K and s 2 S, define

εks =
µ⇤
s

µk
s

.

For each k 2 K and s 2 S, since µk
su

k
s = λkpks ,

µ⇤
sv

k
s = λ̂kεksp

k
s .
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Finally, for each k 2 K and s, t 2 S,

εks
εkt

=
µ⇤
s/µ

k
s

µ⇤
t/µ

k
t

=
µk
t /µ

k
s

µ⇤
t/µ

⇤
s

.

Therefore, we obtain
1

1 + e


εks
εkt

 1 + e.

6.1.1 Necessity of Theorem 2

Lemma 2. Given e 2 R+, if a data set is e-belief-perturbed OEU rational, then the data set

satisfies e-PSAROEU.

Proof. Fix any sequence (xki
si
, x

k0i
s0i
)ni=1 ⌘ σ of pairs satisfies conditions (1) and (2). Assuming

differentiability of u and interior solution for simplicity, we have for each k 2 K and s 2 S,

µk
su

0(xk
s) = λkpks , or

µk
s

µ⇤
s

u0(xk
s) = λkρks .

Then,
nY

i=1

ρkisi

ρ
k0i
s0i

=
nY

i=1

λk0i(µki
si
/µ⇤

si
)u0(xki

si
)

λki(µ
k0i
s0i
//µ⇤

s0i
)u0(x

k0i
s0i
)
=

nY

i=1

u0(xki
si
)

u0(x
k0i
s0i
)

nY

i=1

µki
si
/µ⇤

si

µ
k0i
s0i
/µ⇤

s0i

.

The second equality holds by condition (2). By condition (1), the first term is less than

one because of the concavity of u. In the following, we evaluate the second term. First, for

each (k, s) cancel out the same µk
s as much as possible both from the denominator and the

numerator. Then, the number of µk
s remained in the numerator is d(σ, k, s). Since the number

of numerator and the denominator must be the same. The number of remaining fraction

is m(σ) ⌘
P

s2S

P
k2K:d(σ,k,s)>0 d(σ, k, s). So by relabeling the index i to j if necessary, we

obtain
nY

i=1

µki
si
/µ⇤

si

µ
k0i
s0i
/µ⇤

s0i

=

m(σ)Y

j=1

µ
kj
sj /µ

⇤
sj

µ
k0j
s0j
/µ⇤

s0j

.

Consider the corresponding sequence (x
kj
sj , x

k0j
s0j
)
m(σ)
j=1 . Since the sequence is obtained by can-

celing out xk
s from the first element and the second element of the pairs the same number

of times; and since the original sequence (xki
si
, x

k0i
s0i
)ni=1 satisfies condition (2), it follows that

(x
kj
sj , x

k0j
s0j
)
m(σ)
j=1 satisfies condition (2).
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By condition (2), we can assume without loss of generality that kj = k0
j for each j.

Therefore, by the condition on the perturbation,

m(σ)Y

j=1

µ
kj
sj /µ

⇤
sj

µ
k0j
s0j
/µ⇤

s0j

 (1 + e)m(σ).

Hence,
nY

i=1

ρkisi

ρ
k0i
s0i

 (1 + e)m(σ).

6.1.2 Sufficiency of Theorem 2

We need three more lemmas to prove the sufficiency.

Lemma 3. Given e 2 R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU. Suppose that

log(pks) 2 Q for all k 2 K and s 2 S, log(µ⇤
s) 2 Q for all s 2 S, and log(1 + e) 2 Q.

Then there are numbers vks , λk, µk
s , for s 2 S and k 2 K satisfying (21) and (22) in

Lemma 1.

Proof of Lemma 3 The proof is similar to the case in which e = 0. By log-linearizing

conditions (21) and (22) in Lemma 1, we have for all s 2 S and k 2 K, such that

log µk
s + log vks = log λk + log pks , (23)

xk
s > xk0

s0 =) log vks  log vk
0

s0 , (24)

and for all k 2 K and s, t 2 S

− log(1 + e) + log µ⇤
s − log µ⇤

t  log µk
s − log µk

t  log(1 + e) + log µ⇤
s − log µ⇤

t . (25)

Matrix A looks as follows:

2
66666666664

··· vks vkt vls vlt ··· ··· µk
s µk

t µl
s µl

t ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − log pks

(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − log pks

(l,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − log pls

(l,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − log pls
...

...
...

...
...

...
...

...
...

...
...

3
77777777775

.
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Matrix B has additional rows as follows in addition to the rows in Echenique and Saito

(2015):

2
66666666664

··· vks vkt vls vlt ··· ··· µk
s µk

t µl
s µl

t ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

· · · 0 0 0 0 · · · · · · −1 1 0 0 · · · · · · 0 0 · · · log(1 + e)− log µ⇤
s + log µ⇤

t

· · · 0 0 0 0 · · · · · · 1 −1 0 0 · · · · · · 0 0 · · · log(1 + e) + log µ⇤
s − log µ⇤

t

· · · 0 0 0 0 · · · · · · 0 0 1 −1 · · · · · · 0 0 · · · log(1 + e) + log µ⇤
s − log µ⇤

t

· · · 0 0 0 0 · · · · · · 0 0 −1 1 · · · · · · 0 0 · · · log(1 + e)− log µ⇤
s + log µ⇤

t
...

...
...

...
...

...
...

...
...

...
...

3
77777777775

.

Matrix E is the same as in Echenique and Saito (2015).

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column of

A. Under the hypotheses of the lemma we are proving, the last column consists of rational

numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and only if there

is no rational vector (θ, η, π) that solves the system of equations and linear inequalities

S2 :

8
>>><
>>>:

θ · A+ η · B + π · E = 0,

η ≥ 0,

π > 0.

Claim There exists a sequence (xki
si
, x

k0i
s0i
)n

⇤

i=1 ⌘ σ of pairs that satisfies conditions (1) and (2)

in e-PSAROEU.

Proof. Denote the weight on the rows capturing log µk
s − log µk

t  log(1+ e)+ log µ⇤
s − log µ⇤

t

by θ(k, s, t). Then, notice that the corresponding constraint − log(1 + e) + log µ⇤
s − log µ⇤

t 

log µk
s − log µk

t is denoted by θ(k, t, s). So for each k 2 K and s 2 S,

n(xk
s)− n0(xk

s) +
X

t 6=s

h
− θ(k, s, t) + θ(k, t, s)

i
= 0

Hence X

s2S

h
n(xk

s)− n0(xk
s)
i
=
X

s2S

X

t 6=s

h
θ(k, s, t)− θ(k, t, s)

i
= 0

Claim
Qn⇤

i=1

ρ
ki
si

ρ
k0
i

s0
i

> (1 + e)m(σ⇤).
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Proof. By the fact that the last column must sum up to zero and E has one at the last

column, we have

n⇤X

i=1

log
p
k0i
s0i

pkisi
+ log(1 + e)

X

k2K

X

s2S

X

t 6=s

θ(k, s, t) +
X

k2K

X

s2S

X

t 6=s

(θ(k, s, t)− θ(k, t, s)) log µ⇤
s = −π < 0.

Remember that for all k 2 K and s 2 S,

n(xk
s)− n0(xk

s) =
X

t 6=s

h
θ(k, s, t)− θ(k, t, s)

i
.

So for each s 2 S

X

k2K

X

s2S

X

t 6=s

h
θ(k, s, t)− θ(k, t, s)

i
log µ⇤

s =
n⇤X

i=1

log
µ⇤
si

µ⇤
s0i

.

Hence,

0 > −π

=
n⇤X

i=1

log
p
k0i
s0i

pkisi
−

n⇤X

i=1

log
µ⇤
si

µ⇤
s0i

+ log(1 + e)
X

k2K

X

s2S

X

t 6=s

θ(k, s, t)

=
n⇤X

i=1

log
ρ
k0i
s0i

ρkisi
+ log(1 + e)

X

k2K

X

s2S

X

t 6=s

θ(k, s, t).

Since d(σ⇤, k, s) = n(xk
s)− n0(xk

s) =
X

t 6=s

h
θ(k, s, t)− θ(k, t, s)

i

X

t 6=s

θ(k, s, t), we have

m(σ⇤) ⌘
X

s2S

X

k2K:d(σ⇤,k,s)>0

d(σ⇤, k, s) =
X

s2S

X

k2K

min{n(xk
s)− n0(xk

s), 0} 
X

s2S

X

k2K

X

t 6=s

θ(k, s, t).

Therefore

0 >

n⇤X

i=1

log
ρ
k0i
s0i

ρkisi
+ log(1 + e)

X

k2K

X

s2S

X

t 6=s

θ(k, s, t) ≥
n⇤X

i=1

log
ρ
k0i
s0i

ρkisi
+ log(1 + e)m(σ⇤).

That is,
n⇤X

i=1

log
ρkisi

ρ
k0i
s0i

> m(σ⇤) log(1 + e). This is a contradiction.

Lemma 4. Given e 2 R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU with respect to

µ⇤. Then for all positive numbers ε, there exist a positive real numbers e0 2 [e, e + ε],

µ0
s 2 [µ⇤

s − ε, µ⇤
s + ε], and qks 2 [pks − ε, pks ] for all s 2 S and k 2 K such that log qks 2 Q for

all s 2 S and k 2 K, log(µ0
s) 2 Q for all s 2 S, and log(1 + e0) 2 Q, µ0 2 ∆++(S), and the

dataset (xk, qk)kk=1 satisfy e0-PSAROEU with respect to µ0.
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Proof of Lemma 4 Consider the set of sequences that satisfy Conditions (1) and (2) in

PSAROEU(e):

Σ =

(
(xki

si
, x

k0i
s0i
)ni=1 ⇢ X 2

∣∣∣∣∣
(xki

si
, x

k0i
s0i
)ni=1 satisfies conditions (1) and (2)

in e-PSAROEU for some n

)
.

For each sequence σ 2 Σ, we define a vector tσ 2 NK2S2

as in Lemma 9.

Define δ as in Lemma 9. Then, δ is a K2S2-dimensional real-valued vector. If σ =

(xki
si
, x

k0i
s0i
)ni=1, then

δ · tσ =
X

((k,s),(k0,s0))2(KS)2

δ((k, s), (k0, s0))tσ((k, s), (k
0, s0)) = log

0
@

nY

i=1

ρkisi

ρ
k0i
s0i

1
A .

So the dataset satisfies e-PSAROEU with respect to µ if and only if δ · tσ  m(σ) log(1 + e)

for all σ 2 Σ.

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN . And fix an

arbitrary ξ 2 (0, 1). We shall construct by induction a sequence {(εks(n))}
N
n=1, where εks(n)

is defined for all (k, s) with xk
s = yn.

By the denseness of the rational numbers, and the continuity of the exponential function,

for each (k, s) such that xk
s = y1, there exists a positive number εks(1) such that log(ρksε

k
s(1)) 2

Q and ξ < εks(1) < 1. Let ε(1) = min{εks(1) | x
k
s = y1}.

In second place, for each (k, s) such that xk
s = y2, there exists a positive εks(2) such that

log(ρksε
k
s(2)) 2 Q and ξ < εks(2) < ε(1). Let ε(2) = min{εks(2) | x

k
s = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been defined and that

ξ < ε(n). For each (k, s) such that xk
s = yn+1, let ε

k
s(n+1) > 0 be such that log(ρksε

k
s(n+1)) 2

Q, and ξ < εks(n+ 1) < ε(n). Let ε(n+ 1) = min{εks(n+ 1) | xk
s = yn}.

This defines the sequence (εks(n)) by induction. Note that εks(n + 1)/ε(n) < 1 for all n.

Let ξ̄ < 1 be such that εks(n+ 1)/ε(n) < ξ̄.

For each k 2 K and s 2 S, let ρ̂ks = ρksε
k
s(n), where n is such that xk

s = yn. Choose

µ0 2 ∆++(S) such that for all s 2 S log µ0
s 2 Q and µ0

s 2 [ξ̄µs, µs/ξ̄] for all s 2 S. Such µ0

exists by the denseness of the rational numbers. Now for each k 2 K and s 2 S, define

qks =
ρ̂ks
µ0
s

. (26)

Then, log qks = log ρ̂ks − log µ0
s 2 Q.

We claim that the dataset (xk, qk)Kk=1 satisfies e0-PSAROEU with respect to µ0. Let δ⇤

be defined from (qk)Kk=1 in the same manner as δ was defined from (ρk)Kk=1.
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For each pair ((k, s), (k0, s0)) with xk
s > xk0

s0 , if n andm are such that xk
s = yn and xk0

s0 = ym,

then n > m. By definition of ε,

εks(n)

εk
0

s0 (m)
<

εks(n)

ε(m)
< ξ̄ < 1.

Hence,

δ⇤((k, s), (k0, s0)) = log
ρksε

k
s(n)

ρk
0

s0 ε
k0
s0 (m)

< log
ρks
ρk

0

s0
+ log ξ̄ < log

ρks
ρk

0

s0
= δ((k, s), (k0, s0)).

Now, we choose e0 such that e0 ≥ e and log(1 + e0) 2 Q.

Thus, for all σ 2 Σ, δ⇤ · tσ  δ · tσ  m(σ) log(1 + e)  m(σ) log(1 + e0) as t· ≥ 0 and the

dataset (xk, pk)Kk=1 satisfies e-PSAROEU with respect to µ.

Thus the dataset (xk, qk)Kk=1 satisfies e
0-PSAROEU with respect to µ0. Finally, note that

ξ < εks(n) < 1 for all n and each k 2 K, s 2 S. So that by choosing ξ close enough to 1, we

can take ρ̂ to be as close to ρ as desired. By the definition, we also can take µ0 to be as close

to µ as desired. Consequently, by (26), we can take (qk) to be as close to (pk) as desired.

We also can take e0 to be as close to e as desired. ⌅

Lemma 5. Given e 2 R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU with respect to

µ. Then there are numbers vks , λ
k, µk

s , for s 2 S and k 2 K satisfying (21) and (22) in

Lemma 1.

Proof of Lemma 5 Consider the system comprised by (23), (24), and (25) in the proof of

Lemma 3. Let A, B, and E be constructed from the dataset as in the proof of Lemma 3.

The difference with respect to Lemma 3 is that now the entries of A4 may not be rational.

Note that the entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (23), (24), and (25). Then, by the argument in the proof of Lemma 3 there is no solution

to System S1. Lemma 1 with F = R implies that there is a real vector (θ, η, π) such that

θ ·A+ η ·B + π ·E = 0 and η ≥ 0, π > 0. Recall that B4 = 0 and E4 = 1, so we obtain that

θ · A4 + π = 0.

Consider (qk)Kk=1, µ
0, and e0 be such that the dataset (xk, qk)Kk=1 satisfies e0-PSAROEU

with respect to µ0, and log qks 2 Q for all k and s, log µ0
s for all s 2 S, and log(1 + e0) 2 Q.

(Such (qk)Kk=1, µ
0, and e0 exists by Lemma 4.) Construct matrices A0, B0, and E 0 from this

dataset in the same way as A, B, and E is constructed in the proof of Lemma 3. Note that
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only the prices, the objective probabilities, and the bounds are different. So E 0 = E, B0 = B

and A0
i = Ai for i = 1, 2, 3. Only A0

4 may be different from A4.

By Lemma 4, we can choose qk, µ0, and e0 such that |θ · A0
4 − θ · A4| < π/2. We have

shown that θ · A4 = −π, so the choice of qk, µ0, and e0 guarantees that θ · A0
4 < 0. Let

π0 = −θ · A0
4 > 0.

Note that θ · A0
i + η · B0

i + π0Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for

matrices A, B and E, and A0
i = Ai, B

0
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0 so

θ ·A0
4 + η ·B0

4 + π0E4 = θ ·A0
4 + π0 = 0. We also have that η ≥ 0 and π0 > 0. Therefore θ, η,

and π0 constitute a solution to S2 for matrices A0, B0, and E 0.

Lemma 1 then implies that there is no solution to S1 for matrices A0, B0, and E 0. So

there is no solution to the system comprised by (23), (24), and (25) in the proof of Lemma 3.

However, this contradicts Lemma 3 because the dataset (xk, qk) satisfies e0-PSAROEU with

µ0, log(1 + e) 2 Q, log µ0
s 2 Q for all s 2 S, and log qks 2 Q for all k 2 K and s 2 S. ⌅

6.2 Proof of Theorems 3 and 4

First, we prove a lemma which proves Theorem 3 and is useful for the sufficiency part of

Theorem 4.

Lemma 6. Given e 2 R+, let (x
k, pk)Kk=1 be a dataset. The following statements are equiv-

alent:

1. (xk, pk)Kk=1 is e-belief-perturbed SEU rational.

2. There are strictly positive numbers vks , λ
k, µk

s , for s 2 S and k 2 K, such that

µk
sv

k
s = λkpks , xk

s > xk0

s0 =) vks  vk
0

s0 , (27)

and for each k, l 2 K and s, t 2 S

µk
s/µ

k
t

µl
s/µ

l
t

 1 + e. (28)

3. (xk, pk)Kk=1 is e-price-perturbed SEU rational.

4. There are strictly positive numbers v̂ks , λ̂
k, µs, and εks for s 2 S and k 2 K, such that

µsv̂
k
s = λ̂kεksp

k
s , xk

s > xk0

s0 =) v̂ks  v̂k
0

s0 ,
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and for all k, l 2 K and s, t 2 S

εks/ε
k
t

εls/ε
l
t

 1 + e.

5. (xk, pk)Kk=1 is e-utility-perturbed SEU rational.

6. There are strictly positive numbers v̂ks , λ̂
k, µs, and ε̂ks for s 2 S and k 2 K, such that

µsε̂
k
s v̂

k
s = λ̂kpks , xk

s > xk0

s0 =) v̂ks  v̂k
0

s0 ,

and for all k, l 2 K and s, t 2 S

ε̂ks/ε̂
k
t

ε̂ls/ε̂
l
t

 1 + e.

Proof. By the standard way, the equivalence between 1 and 2, the equivalence between 3

and 4, and the equivalence between 5 and 6 hold. Moreover, it is easy to see the equivalence

between 4 and 6 with εks = 1/ε̂ks for each k 2 K and s 2 S. So to show the result, it suffices

to show that 2 and 4 are equivalent.

To show 4 implies 2, define v = v̂ and

µk
s =

µs

εks

, 
X

s2S

µs

εks

!

for each k 2 K and s 2 S and

λk = λ̂k

, 
X

s2S

µs

εks

!

for each k 2 K. Then, µk 2 ∆++(S). Since µsv̂
k
s = λ̂kεksp

k
s , we have

µk
sv

k
s = λkpks .

Moreover, for each k, l 2 K and s, t 2 S

µk
s/µ

k
t

µl
s/µ

l
t

=
εkt /ε

k
s

εlt/ε
l
s

 1 + e.

To show 2 implies 4, for all s 2 S define v̂ = v and

µs =
X

k2K

µk
s

|K|
.
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Then, µ 2 ∆++(S). For all k 2 K, λ̂k = λk. For all k 2 K and s 2 S, define

εks =
µs

µk
s

.

For each k 2 K and s 2 S, since µk
sv

k
s = λkpks ,

µsv
k
s = λ̂kεksp

k
s .

Finally, for each k, l 2 K and s, t 2 S,

εks/ε
k
t

εls/ε
l
t

=
µk
t /µ

k
s

µl
t/µ

l
s

 1 + e.

6.2.1 Necessity of Theorem 4

Lemma 7. Given e 2 R+, if a data set is e-belief-perturbed SEU rational then the data set

satisfies e-PSARSEU.

Proof. Fix any sequence (xki
si
, x

k0i
s0i
)ni=1 ⌘ σ of pairs satisfies conditions (1)–(3). Assuming

differentiability of u and interior solution for simplicity, we have for each k 2 K and s 2 S

µk
su

0(xk
s) = λkpks .

Then,
nY

i=1

pkisi

p
k0i
s0i

=
nY

i=1

λk0iµki
si
u0(xki

si
)

λkiµ
k0i
s0i
u0(x

k0i
s0i
)
=

nY

i=1

u0(xki
si
)

u0(x
k0i
s0i
)

nY

i=1

µki
si

µ
k0i
s0i

.

The second equality holds by condition (3). By condition (1), the first term is less than

one because of the concavity of u. In the following, we evaluate the second term. First, for

each (k, s) cancel out the same µk
s as much as possible both from the denominator and the

numerator. Then, the number of µk
s remained in the numerator is d(σ, k, s). Since the number

of numerator and the denominator must be the same, the number of remaining fraction is

m(σ) ⌘
P

s2S

P
k2K:d(σ,k,s)>0 d(σ, k, s). So by relabeling the index i to j if necessary, we

obtain
nY

i=1

µki
si

µ
k0i
s0i

=

m(σ)Y

j=1

µ
kj
sj

µ
k0j
s0j

.

Consider the corresponding sequence (x
kj
sj , x

k0j
s0j
)
m(σ)
j=1 . Since the sequence is obtained by can-

celing out xk
s from the first element and the second element of the pairs the same number of
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times; and since the original sequence (xki
si
, x

k0i
s0i
)ni=1 satisfies condition (2) and (3), it follows

that (x
kj
sj , x

k0j
s0j
)
m(σ)
j=1 satisfies condition (2) and (3).

By condition (2), we can assume without loss of generality that sj = s0j for each j. Fix

s⇤ 2 S. Then by the robustness condition, for each j 2 {1, . . . ,m(σ)},

µ
kj
sj

µ
k0j
s0j

=
µ
kj
sj

µ
k0j
sj

 (1 + e)
µ
k0j
s⇤

µ
kj
s⇤

.

Moreover by condition (3),
m(σ)Y

j=1

µ
k0j
s⇤

µ
kj
s⇤

= 1.

Therefore,
m(σ)Y

j=1

µ
kj
si

µ
k0j
s0j

 (1 + e)m(σ)

nY

j=1

µ
k0j
s⇤

µ
kj
s⇤

= (1 + e)m(σ),

and hence,
nY

i=1

pkisi

p
k0i
s0i

 (1 + e)m(σ).

Remark 2. We need to show the lemma because in the proof of sufficiency we weaken the

dual of the rationality condition.

6.2.2 Sufficiency of Theorem 4

We need three more lemmas to prove the theorem.

Lemma 8. Given e 2 R+, let a dataset (xk, pk)kk=1 satisfy e-PSARSEU. Suppose that

log(pks) 2 Q for all k and s and log(1 + e) 2 Q. Then there are numbers vks , λk, µk
s ,

for s 2 S and k 2 K satisfying (27) and (28) in Lemma 6.

Proof of Lemma 8 The proof is similar to the case in which e = 0. By log-linearizing

conditions (27) and (28) in Lemma 6, we have for all s 2 S and k 2 K, such that

log µk
s + log vks = log λk + log pks , (29)

xk
s > xk0

s0 =) log vks  log vk
0

s0 , (30)
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and for all k, l 2 K and s, t 2 S

log µk
s − log µk

t − log µl
s + log µl

t  log(1 + e). (31)

Matrix A looks as follows:

2
66666666664

··· vks vkt vls vlt ··· ··· µk
s µk

t µl
s µl

t ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − log pks

(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − log pks

(l,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − log pls

(l,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − log pls
...

...
...

...
...

...
...

...
...

...
...

3
77777777775

.

Matrix B has additional rows as follows in addition to the rows in Echenique and Saito

(2015).

2
666664

··· vks vkt vls vlt ··· ··· µk
s µk

t µl
s µl

t ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

· · · 0 0 0 0 · · · · · · −1 1 1 −1 · · · · · · 0 0 · · · log(1 + e)

· · · 0 0 0 0 · · · · · · 1 −1 −1 1 · · · · · · 0 0 · · · log(1 + e)
...

...
...

...
...

...
...

...
...

...
...

3
777775
.

Matrix E is the same as in Echenique and Saito (2015).

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column of

A. Under the hypotheses of the lemma we are proving, the last column consists of rational

numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and only if there

is no rational vector (θ, η, π) that solves the system of equations and linear inequalities

S2 :

8
>>><
>>>:

θ · A+ η · B + π · E = 0,

η ≥ 0,

π > 0.

Claim There exists a sequence (xki
si
, x

k0i
s0i
)n

⇤

i=1 of pairs that satisfies conditions (1) and (3) in

e-PSARSEU.

Proof. The same as the case in which e = 0. From matrix B, we obtain a chain z > · · · > z0.

Define xk1
s1

= z and x
k0
1

s0
1

= z0. By (30), we have −1 in the column of vk1s1 and 1 in the column

v
k0
1

s0
1

. So these −1 and 1 are canceled out in A1. By repeating this, we obtain a sequence

(xki
si
, x

k0i
s0i
)n

⇤

i=1 of pairs that satisfies Condition (1).
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Claim The sequence (xki
si
, x

k0i
s0i
)n

⇤

i=1 ⌘ σ⇤ satisfies condition (2) in e-PSARSEU.

Proof. Denote the weight on the rows capturing
µk
s/µ

k
t

µl
s/µ

l
t

 1 + e by θ(k, l, s, t). Note that
µl
t/µ

l
s

µk
t /µ

k
s
=

µk
s/µ

k
t

µl
s/µ

l
t

, so we only have the constraint
µk
s/µ

k
t

µl
s/µ

l
t

 1 + e but not
µl
t/µ

l
s

µk
t /µ

k
s
 1 + e; hence we

will not have θ(l, k, t, s). On the other hand, we need to have the constraint
µl
s/µ

l
t

µk
s/µ

k
t

 1 + e

which is equivalent to
µk
s/µ

k
t

µl
s/µ

l
t

≥ 1/(1 + e). This constraint corresponds to θ(l, k, s, t).

Let n(xk
s) ⌘ #{i | xk

s = xki
si
} and n0(xk

s) ⌘ #{i | xk
s = x

k0i
s0i
}.

For each k 2 K and s 2 S, in the column corresponding to µk
s , remember that we have

1 if we have xk
s = xki

si
for some i and −1 if we have xk

s = x
k0i
s0i

for some i. This is because a

row in A must have 1 (−1) in the column vks if and only if it has 1 (−1, respectively) in the

column µk
s . So in the column in matrix A, we have n(xk

s)− n0(xk
s).

Now we consider matrix B. In the column of µk
s , we have −1 in the row multiplied by

θ(k, l, s, t) and 1 in the row multiplied by θ(l, k, s, t). So we also have−
P

l 6=k

P
t 6=s θ(k, l, s, t)+P

l 6=k

P
t 6=s θ(l, k, s, t).

For each k 2 K and s 2 S, the column corresponding to µk
s of matrices A and B must

sum up to zero; so we have

n(xk
s)− n0(xk

s)−
X

l 6=k

X

t 6=s

θ(k, l, s, t) +
X

l 6=k

X

t 6=s

θ(l, k, s, t) = 0.

Therefore, for each s,

X

k2K

⇣
n(xk

s)− n0(xk
s)
⌘
=
X

k2K

"
X

l 6=k

X

t 6=s

θ(k, l, s, t)−
X

l 6=k

X

t 6=s

θ(l, k, s, t)

#
= 0.

Claim
Qn⇤

i=1

p
ki
si

p
k0
i

s0
i

> (1 + e)m(σ⇤).

Proof. By the fact that the last column must sum up to zero and E has one at the last

column, we have

n⇤X

i=1

log
p
k0i
s0i

pkisi
+

 
X

k2K

X

l 6=k

X

s2S

X

t 6=s

θ(k, l, s, t)

!
log(1 + e) = −π < 0.

Hence, by multiplying −1, we have

n⇤X

i=1

log
pkisi

p
k0i
s0i

−

 
X

k2K

X

l 6=k

X

s2S

X

t 6=s

θ(k, l, s, t)

!
log(1 + e) > 0.
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Remember that for all k 2 K and s 2 S,

n(xk
s)− n0(xk

s) = +
X

l 6=k

X

t 6=s

θ(k, l, s, t)−
X

l 6=k

X

t 6=s

θ(l, k, s, t) 
X

l 6=k

X

t 6=s

θ(k, l, s, t).

Since d(σ⇤, k, s) = n(xk
s)− n0(xk

s), we have

m(σ⇤) ⌘
X

s2S

X

k2K:d(σ⇤,k,s)>0

d(σ⇤, k, s)

=
X

s2S

X

k2K

max{n(xk
s)− n0(xk

s), 0}


X

s2S

X

k2K

X

l 6=k

X

t 6=s

θ(k, l, s, t).

Therefore

n⇤X

i=1

log
pkisi

p
k0i
s0i

>

 
X

k2K

X

l 6=k

X

s2S

X

t 6=s

θ(k, l, s, t)

!
log(1 + e)

≥ m(σ⇤) log(1 + e).

This is a contradiction.

Let X = {xk
s | k 2 K, s 2 S}.

Lemma 9. Given e 2 R+, let a dataset (xk, pk)kk=1 satisfy e-PSARSEU. Then for all positive

numbers ε, there exist a positive real number e0 2 [e, e+ ε] and qks 2 [pks − ε, pks ] for all s 2 S

and k 2 K such that log qks 2 Q and the dataset (xk, qk)kk=1 satisfy e0-PSARSEU.

Proof of Lemma 9 Consider the set of sequences that satisfy Conditions (1), (2), and (3)

in e-PSARSEU:

Σ =

(
(xki

si
, x

k0i
s0i
)ni=1 ⇢ X 2

∣∣∣∣∣
(xki

si
, x

k0i
s0i
)ni=1 satisfies conditions (1), (2), and (3)

in e-PSARSEU for some n

)
.

For each sequence σ 2 Σ, we define a vector tσ 2 NK2S2

. For each pair (xki
si
, x

k0i
s0i
), we shall

identify the pair with ((ki, si), (k
0
i, s

0
i)). Let tσ((k, s), (k

0, s0)) be the number of times that

the pair (xk
s , x

k0

s0 ) appears in the sequence σ. One can then describe the satisfaction of e-

PSARSEU by means of the vectors tσ. Observe that t depends only on (xk)Kk=1 in the dataset

(xk, pk)Kk=1. It does not depend on prices.
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For each ((k, s), (k0, s0)) such that xk
s > xk0

s0 , define δ((k, s), (k0, s0)) = log(pks/p
k0

s0 ). And

define δ((k, s), (k0, s0)) = 0 when xk
s  xk0

s0 . Then, δ is a K2S2-dimensional real-valued vector.

If σ = (xki
si
, x

k0i
s0i
)ni=1, then

δ · tσ =
X

((k,s),(k0,s0))2(KS)2

δ((k, s), (k0, s0))tσ((k, s), (k
0, s0)) = log

0
@

nY

i=1

pkisi

p
k0i
s0i

1
A .

So the dataset satisfies e-PSARSEU if and only if δ · tσ  m(σ) log(1 + e) for all σ 2 Σ.

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN . And fix an

arbitrary ξ 2 (0, 1). We shall construct by induction a sequence {(εks(n))}
N
n=1, where εks(n)

is defined for all (k, s) with xk
s = yn.

By the denseness of the rational numbers, and the continuity of the exponential function,

for each (k, s) such that xk
s = y1, there exists a positive number εks(1) such that log(pksε

k
s(1)) 2

Q and ξ < εks(1) < 1. Let ε(1) = min{εks(1) | x
k
s = y1}.

In second place, for each (k, s) such that xk
s = y2, there exists a positive εks(2) such that

log(pksε
k
s(2)) 2 Q and ξ < εks(2) < ε(1). Let ε(2) = min{εks(2) | x

k
s = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been defined and that

ξ < ε(n). For each (k, s) such that xk
s = yn+1, let ε

k
s(n+1) > 0 be such that log(pksε

k
s(n+1)) 2

Q, and ξ < εks(n+ 1) < ε(n). Let ε(n+ 1) = min{εks(n+ 1) | xk
s = yn}.

This defines the sequence (εks(n)) by induction. Note that εks(n + 1)/ε(n) < 1 for all n.

Let ξ̄ < 1 be such that εks(n+ 1)/ε(n) < ξ̄.

For each k 2 K and s 2 S, let qks = pksε
k
s(n), where n is such that xk

s = yn. We claim

that the dataset (xk, qk)Kk=1 satisfies e-PSARSEU. Let δ
⇤ be defined from (qk)Kk=1 in the same

manner as δ was defined from (pk)Kk=1.

For each pair ((k, s), (k0, s0)) with xk
s > xk0

s0 , if n andm are such that xk
s = yn and xk0

s0 = ym,

then n > m. By definition of ε,

εks(n)

εk
0

s0 (m)
<

εks(n)

ε(m)
< ξ̄ < 1.

Hence,

δ⇤((k, s), (k0, s0)) = log
pksε

k
s(n)

pk
0

s0 ε
k0
s0 (m)

< log
pks
pk

0

s0
+ log ξ̄ < log

pks
pk

0

s0
= δ((k, s), (k0, s0)).

Now we choose e0 such that e0 ≥ e and log(1 + e0) 2 Q.

Thus, for all σ 2 Σ, δ⇤ · tσ  δ · tσ  m(σ) log(1 + e)  m(σ) log(1 + e0) as t· ≥ 0 and the

dataset (xk, pk)Kk=1 satisfies e-PSARSEU.
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Thus the dataset (xk, qk)Kk=1 satisfies e0-PSARSEU. Finally, note that ξ < εks(n) < 1 for

all n and each k 2 K, s 2 S. So that by choosing ξ close enough to 1 we can take (qk) to be

as close to (pk) as desired. We also can take e0 to be as close to e as desired. ⌅

Lemma 10. Given e 2 R+, let a dataset (xk, pk)kk=1 satisfy e-PSARSEU. Then there are

numbers vks , λ
k, µk

s , for s 2 S and k 2 K satisfying (27) and (28) in Lemma 6.

Proof of Lemma 10 Consider the system comprised by (29), (30), and (31) in the proof

of Lemma 8. Let A, B, and E be constructed from the dataset as in the proof of Lemma 8.

The difference with respect to Lemma 8 is that now the entries of A4 may not be rational.

Note that the entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (29), (30), and (31). Then, by the argument in the proof of Lemma 8 there is no solution

to System S1. Lemma 1 with F = R implies that there is a real vector (θ, η, π) such that

θ ·A+ η ·B + π ·E = 0 and η ≥ 0, π > 0. Recall that B4 = 0 and E4 = 1, so we obtain that

θ · A4 + π = 0.

Let (qk)Kk=1 vectors of prices and a positive real number e0 be such that the dataset

(xk, qk)Kk=1 satisfies e0-PSARSEU and log qks 2 Q for all k and s and log(1 + e0) 2 Q. (Such

(qk)Kk=1 and e0 exists by Lemma 9.) Construct matrices A0, B0, and E 0 from this dataset in

the same way as A, B, and E is constructed in the proof of Lemma 8. Since only prices qk

and the bound e0 are different in this dataset, only A0
4 may be different from A4. So E 0 = E,

B0 = B and A0
i = Ai for i = 1, 2, 3.

By Lemma 9, we can choose prices qk such that |θ · A0
4 − θ · A4| < π/2. We have shown

that θ ·A4 = −π, so the choice of prices qk guarantees that θ ·A0
4 < 0. Let π0 = −θ ·A0

4 > 0.

Note that θ · A0
i + η · B0

i + π0Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for

matrices A, B and E, and A0
i = Ai, B

0
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0 so

θ ·A0
4 + η ·B0

4 + π0E4 = θ ·A0
4 + π0 = 0. We also have that η ≥ 0 and π0 > 0. Therefore θ, η,

and π0 constitute a solution to S2 for matrices A0, B0, and E 0.

Lemma 1 then implies that there is no solution to S1 for matrices A0, B0, and E 0.

So there is no solution to the system comprised by (29), (30), and (31) in the proof of

Lemma 8. However, this contradicts Lemma 8 because the dataset (xk, qk) satisfies e0-

PSARSEU, log(1 + e) 2 Q, and log qks 2 Q for all k 2 K and s 2 S. ⌅
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A Theorem of the Alternative

We shall use the following lemma, which is a version of the Theorem of the Alternative. This

is Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in the cases where F is

either the real or the rational number field.

Lemma 1. Let A be an m ⇥ n matrix, B be an l ⇥ n matrix, and E be an r ⇥ n matrix.

Suppose that the entries of the matrices A, B, and E belong to a commutative ordered field

F. Exactly one of the following alternatives is true.

1. There is u 2 Fn such that A · u = 0, B · u ≥ 0, E · u $ 0.

2. There is θ 2 Fr, η 2 Fl, and π 2 Fm such that θ · A + η · B + π · E = 0; π > 0 and

η ≥ 0.

The next lemma is a direct consequence of Lemma 1: see Lemma 12 in Chambers and

Echenique (2014) for a proof.

Lemma 2. Let A be an m ⇥ n matrix, B be an l ⇥ n matrix, and E be an r ⇥ n matrix.

Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one of

the following alternatives is true.

1. There is u 2 Rn such that A · u = 0, B · u ≥ 0, and E · u $ 0.

2. There is θ 2 Qr, η 2 Ql, and π 2 Qm such that θ · A + η · B + π · E = 0; π > 0 and

η ≥ 0.
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B Computing the Minimal e

We demonstrate how to calculate e⇤ given dataset of choice under risk. To calculate the

value, it is easier to use price-perturbed OEU rationality, rather than belief-perturbed OEU

rationality. Formally, for a given data set (xk, pk)Kk=1, we want to compute e⇤ such that the

data set is price perturbed OEU rational given the number e. We can transform this problem

into an easier problem with the following remark.

Remark 1. Given e 2 R+, a data set (xk, pk)Kk=1 is e-price-perturbed OEU rational if and

only if there are strictly positive numbers vks , λ
k, µs, and "ks for s 2 S and k 2 K, such that

µ⇤

sv
k
s = λk"ksp

k
s , xk

s > xk0

s0 =) vks  vk
0

s0 , (1)

and for all k 2 K and s, t 2 S
1

1 + e


"ks
"kt

 1 + e.

By the remark, the e⇤ can be obtained by solving the following problem:

min
(µs,vks ,λ

k,εks )k,s
max

k2K,s,t2S

"ks
"kt

s.t. (1).

We then substitute "ks in the objective function by using the equality constraint in (1).

By canceling out λk and log-linearizing, we obtain the following:

min
(vks )k,s

max
k2K,s,t2S

(log µ⇤

s + log vks − log pks)− (log µ⇤

t + log vkt − log pkt )

s.t. xk
s > xk0

s0 =) log vks  log vk
0

s0 .

(?)

By the discussion above, we have the following result:

Remark 2. For any data set (xk, pk)Kk=1, the e⇤ is the solution of the problem (?). Hence,

the e⇤ always exists.

By using (?) and the peculiarities of the experiments, we can simplify the problem: we

have |S| = 2 and µ⇤

s = 1/2 for all s 2 S. Hence, the problem simplifies to the following:

min
(vks )k,s

max
k2K,s,t2S

(log vks − log pks)− (log vkt − log pkt )

s.t. xk
s > xk0

s0 =) log vks  log vk
0

s0 .

(⇧)
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C Implementation Details

In order to calculate e⇤ for each subject’s data, we solve problem (?) using Matlab R2017a

(MathWorks).

For each subject, the decision in every trial is characterized by a tuple (a1, a2, x1, x2) where

ai represents the intercept of the budget line on each axis (here we call the x-axis “account 1”

and the y-axis “account 2”), and xi represents the subject’s allocation to account i. In order

to rewrite the choice data in a price-consumption format as in the theory, we set prices

p1 = 1 (normalization) and p2 = a1/a2. This gives us a dataset (xk, pk)Kk=1.

Remember that the problem we are going to solve is:

min
(vks )k,s

max
k2K,s,t2S

(log µ⇤

s + log vks − log pks)− (log µ⇤

t + log vkt − log pkt )

s.t. xk
s > xk0

s0 =⇒ log vks ≤ log vk
0

s0 .

(?)

Our main task is to express this problem in a matrix notation.

Let z be a vector of length K × S +K × S + S, whose first K × S entries correspond to

each of (log vks )s,k and the last K × S + S entries are all 1. This vector corresponds to the

control variables of the problem. The reason why we have K ×S additional rows of 1 in the

vector will become clear shortly.

We construct two matrices A and B. The first matrix A has K × S rows and K × S +

K × S + S columns, and looks as follows:

























··· vks vkt vls vlt ··· ··· pks pkt pls plt ··· ··· µ⇤

s µ⇤

t ···

...
...

...
...

...
...

...
...

...
...

...

(k,s,t) · · · 1 −1 0 0 · · · · · · − log pks log pkt 0 0 · · · · · · 1 −1 · · ·

(k,t,s) · · · −1 1 0 0 · · · · · · log pks − log pkt 0 0 · · · · · · −1 1 · · ·

(l,s,t) · · · 0 0 1 −1 · · · · · · 0 0 − log pls log plt · · · · · · 1 −1 · · ·

(l,t,s) · · · 0 0 −1 1 · · · · · · 0 0 log pls − log plt · · · · · · −1 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

























.

Similarly, the second matrix B has K × S +K × S + S columns. There is one row for every

pair (k, s) and (k0, s0) with xk
s > xk0

s0 . In the row corresponding to (k, s) and (k0, s0) we have

zeroes everywhere with the exception of a −1 in the column for vks and a 1 in the column

for vk
0

s0 .

We use the function fmincon to find a solution z
⇤ and the value of the problem (i.e., e⇤),

with maxA · z being the objective function we are going to minimize and B · z ≥ 0 being

the constraint.
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D Supplementary Empirical Analysis

D.1 Properties of e∗

Observed vs. simulated e⇤. The statistical approach described in Section 4.3 is one way

to assess “how big” the observed e⇤’s are. Another way is to simulate choice data assuming

some behavioral model and calculate e⇤ on the simulated dataset. Following Bronars (1987),

we randomly select an allocation from each budget line. Since subjects in CKMS and CS

faced randomly selected set of budgets, we first randomly select one set of budgets (from the

observed sets of budgets) and then randomly choose allocations on these budgets. We then

calculate e⇤, as well as CCEI, using the simulated choices. We repeat this 10,000 times for

each of the three datasets.

Figure D.1 compares the observed and simulated e⇤. The distribution of observed e⇤

locates left of simulated e⇤ (all differences are statistically significant, according to two-sample

Kolmogorov-Smirnov test). The actual subjects’ behavior is thus closer to OEU rationality

compared to completely random behavior (even though complete random is unrestrictive

and may not be the best benchmark).
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Figure D.1: Comparison between observed and simulated e⇤ (top row) and CCEI (bottom

row). (A) CKMS sample, (B) CMW sample, (C) CS sample.

Figure D.2 looks at the correlation between e⇤ and CCEI and compares the pattern in

observed and simulated datasets (panels A-C in the top row are same as Figure 7).
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Figure D.2: Comparison between observed (top row) and simulated (bottom row) e⇤ and

CCEI. (A) CKMS sample, (B) CMW sample, (C) CS sample.
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Bound of e⇤. The value of e⇤ depends on the structure of the budgets an agent faces.

In particular, it is clear from e-PSAROEU that 1 + e is bounded by the maximum ratio of

risk-neutral prices (i.e., maxk,k02K,s,s02S ρ
k
s/ρ

k0

s0 ). Since CKMS, CMW, and CS experiments all

used two equally-likely states, the ratio of risk-neutral prices is equal to the ratio of prices.

Figure D.3 shows the observed e⇤ and (participant-specific) upper bound. (Since all subjects

faced the same set of budgets in CMW study, there is only one vertical line.) About 13% of

the subjects (475/3719 in merged data; 221/1182 in CKMS; 114/1116 in CMW; 140/1421

in CS) have their e⇤ at the upper bound.
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Figure D.3: Bound. x-axis in each plot is log(maxk,s,t p
k
s/p

k
t ). There is no variation in the

CMW data (panels B and E) since all subjects faced the same set of budgets.

7



D.2 Sensitivity

As is clear from the definition, e⇤ is a bound that has to hold across all observations. In

order to see how sensitive it is to one or two extreme outliers (mistakes), we recalculate e⇤

using subsets of observed choices.

More precisely, for each subject, we calculate e⇤ for all combinations of 25 −m budgets

and pick the smallest one. Figure D.4 below shows how dropping m = 1, 2 budgets affects

the distribution of e⇤ (and CCEI).

This way of calculating e⇤ does not change the patterns of correlations between e⇤ and

demographic variables. See Figures D.5 and D.6 below and Figure 8 in Section 4.2.
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Figure D.5: Robustness of demographic correlations in Figure 8. For each subject, e⇤ is

recalculated by dropping one of the 25 budgets.
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Figure D.6: Robustness of demographic correlations in Figure 8. For each subject, e⇤ is

recalculated by dropping two of the 25 budgets.
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D.3 e∗ and Demographic Variables
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Figure D.7: Gender. Panels: (A) CKMS, (B) CMW, (C) CS.
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Figure D.8: Age. Panels: (A) CKMS, (B) CMW, (C) CS.
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Figure D.9: Education. Panels: (A) CKMS, (B) CMW, (C) CS.
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Figure D.10: Employed. Panels: (A) CKMS, (B) CMW, (C) CS.
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Figure D.11: Cognitive ability. Panels: (A) CKMS, (B) CMW.
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Figure D.12: Household income. Panels: (A) CKMS, (B) CMW, (C) CS.
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D.4 CCEI and Demographic Variables
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Figure D.13: CCEI and demographic variables.
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D.5 Data from Choi et al. (2007)

Choi et al. (2007) introduced a graphical representation of simple portfolio choice problems,

on which the experiments by Choi et al. (2014), Carvalho et al. (2016), and Carvalho and

Silverman (2017) are based. Although those two experiments share the basic design features

described in Section 4.1, there are several key differences. First, subjects in Choi et al. (2007)

were UC Berkeley students, not representative households on the panel survey. Second,

each subject completed 50 rounds of questions, not 25. Third, and most importantly, Choi

et al. (2007) conducted two treatments, a symmetric treatment with an objective probability

µ⇤

1 = 1/2 and an asymmetric treatment with an objective probability µ⇤

1 2 {1/3, 2/3}. The

total of 93 subjects participated in the study, 47 in the symmetric treatment and the rest in

the asymmetric treatment.

Results. We calculate e⇤ for each of the 93 subjects. The calculated e⇤’s exhibits sig-

nificantly different distributions across treatments (Figure D.14A; two-sample Kolmogorov-

Smirnov test, p = 0.023), but the averages are not significantly different (Figure D.15A; the

average is 1.062 in the symmetric treatment and 0.916 in the asymmetric treatment; two-

sample t-test, p = 0.1095). For comparison we also plot the distribution and mean CCEI in

each treatment (panel B in Figures D.14 and D.15).
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Figure D.14: Distribution of e⇤ and CCEI.

As we observe in the other datasets, there is a negative and significant correlation between

CCEI and e⇤ (Figure D.16; Pearson’s correlation coefficient r = −0.3785, p < 0.001).

Choi et al. (2007) then consider the theory of disappointment aversion proposed by Gul

(1991). In the model, the utility function over portfolios (x1, x2) takes the form

min{αu(x1) + u(x2), u(x1) + αu(x2)},
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Figure D.15: Mean e⇤ and CCEI from two treatments. Bars denote the standard error of
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Figure D.16: Relationship between e⇤ and CCEI.

where α ≥ 1 is a parameter measuring disappointment aversion. They consider CRRA

u(x) = x1−ρ/(1−ρ) as well as CARA u(x) = − exp(−Ax) and estimate the sets of parameters

(α, ρ) and (α, A) using nonlinear least squares (NLLS). Figure D.17 displays relationships

between e∗ and estimated parameters.
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Figure D.17: e∗ and estimated parameters under CRRA specification (panels A and B) and

CARA specification (panels C and D).
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