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Abstract

Multinomial logit is the canonical model of discrete choice but widely criticized for

requiring functional form assumptions as foundation. The present paper shows that

logit is behaviorally founded without such assumptions. Logit’s functional form ob-

tains if relative choice probabilities are independent of irrelevant alternatives and

invariant to utility translation, to relabeling options (presentation independence),

and to changing utilities of third options (context independence). Reviewing behav-

ioral evidence, presentation and context independence seem to be violated in typical

experiments, though not IIA and translation invariance. Relaxing context indepen-

dence yields contextual logit (Wilcox, 2011), relaxing presentation independence

allows to capture “focality” of options.
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1 Introduction

Applied theoretical work typically rests on preference assumptions as part of their model

primitives. The resulting necessity to understand preferences inspired a large body of

work developing methods to infer preferences from choice. The main difficulty is that

choice is inherently stochastic, implying that we cannot directly infer preferences from

stated choice.1 Structural modeling attempts to control for stochastic mistakes in choice,

but proponents of non-structural approaches argue that structural modeling is impossi-

ble without making specific functional form assumptions to fix the distribution of noise,

which renders inference on preferences unreliable. Indeed, the structural literature dis-

tinguishes three approaches of defining the locus of noise (random behavior, random

preferences, and random utility),2 for each approach a plethora of possible specifications

of noise, and not a single model has been founded without specific functional form as-

sumptions. Thus, in response to the critique, Rust (2014, p. 820) writes that “there is

an identification problem that makes it impossible to decide between competing theories

without imposing ad hoc auxiliary assumptions” on say locus and distribution of noise.

This is troublesome, as both the assumed locus of noise and the distributional as-

sumption are known to affect the results on identified preferences (Hey, 2005; Heckman,

2010). Further, different analysts indeed make different assumptions and thus obtain dif-

ferent results, which prevents the emergence of agreement on adequate representations of

preferences. The plethora of approaches coexists exactly because no single approach has

been founded without assuming a specific functional form at some point in the derivation.

As a result, any comparison between alternative approaches boils down to judging dif-

ferent functional form assumptions made in different places in the choice process, which

appears to be impossible based solely on objective arguments (for related discussions,

see e.g. Keane, 2010a,b, and Rust, 2010). For this reason, the coexistence of approaches,

the diversity of contradicting results, and the general critique on structural analyses seem

persistent, suggesting the literature approached a stalemate.

The present paper establishes a behavioral foundation of multinomial logit3 solely

relying on invariance assumptions about choice, thus showing that even specific models

of stochastic choice may be founded without functional form assumptions. This ad-

dresses the above critique and allows me to discuss logit and related models at a more

1For example, choice is inconsistent across identical trials even after controlling for wealth and portfolio

effects (Camerer, 1989; Starmer and Sugden, 1991), it violates the axioms of revealed preference (Andreoni

and Miller, 2002; Fisman et al., 2007) and dominance relations (Birnbaum and Navarrete, 1998; Costa-

Gomes et al., 2001). For further discussion of stochastic choice, see e.g. Hey (1995) and Wilcox (2008).
2Let u(x|α) denote the decision maker’s utility given preference parameter α and x⋆(α) the utility max-

imizer. A decision maker with random behavior chooses x⋆(α)+ ε, with random preferences he chooses

x⋆(α+ ε), and with random utility he chooses argmaxx{u(x|α)+ εx} for random variables ε and (εx).
3Multinomial logit is the most widely used model of stochastic choice. The long list of studies analyzing

preferences using logit includes analyses of risk preferences (Holt and Laury, 2002; Goeree et al., 2003),

social preferences (Cappelen et al., 2007; Bellemare et al., 2008), and preferences and demand functions

of consumers (McFadden, 1980; Berry et al., 1995).
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fundamental level: the assumptions underlying logit in relation to behavioral evidence,

logit in relation to random behavior models and least squares analyses, and the intuition

of how logit “averages” noise during preference estimation. This analysis attempts to put

the subjective discussion of choice modeling in applied work on a more solid basis, by

clarifying the assumptions implicitly made, and to provide an axiomatic foundation to

enable generalizations of logit that better align with observed behavior.

The main results can be summarized as follows. Choice probabilities have the spe-

cific logit form if choice satisfies independence of irrelevant alternatives (IIA), invari-

ance to utility translation, invariance to relabeling (presentation independence), and in-

variance to changing utilities of third options (context independence). IIA implies that

choice probabilities are functions of propensities, translation invariance implies that log-

propensities are linear in utilities (a generalized logit form), presentation independence

implies that solely utility is choice relevant, and context independence implies that per-

turbations have constant variance across choice tasks. Combined, they yield multinomial

logit. Presentation independence and context independence are routinely violated in typ-

ical economic experiments, while IIA and translation invariance seem to be compatible

with behavior. In particular, evidence on choice violating IIA tends to resort to exper-

iments explicitly studying similarity effects, while evidence contradicting presentation

and context independence prevails across experiments.

Violations of context independence are comparably well-understood: choice is con-

sistent across tasks if the range of potential outcomes is the same. This has been estab-

lished econometrically (Wilcox, 2008, 2015) and explained neuro-physiologically (Padoa-

Schioppa and Rustichini, 2014; Rustichini and Padoa-Schioppa, 2015). To reflect this

evidence, I weaken the assumption of context independence and show that this yields,

in conjunction with a cardinality axiom, the contextual logit model of Wilcox (2011).

Experimental behavior appears to be largely compatible with both cardinality of util-

ity and weak context independence, implying that contextual logit may be preferable to

multinomial logit in applied work. Presentation effects are well-documented, though not

formally understood. Choice has been shown to be affected by ordering, labeling, col-

oring, and positioning of options, including round-number and default effects. Dropping

presentation independence shows that choice propensities then depend on two option

characteristics, utility and focality. This finding is discussed very briefly in Section 3 and

extensively in Breitmoser (2017).

Section 2 reviews the four existing foundations of logit, showing that all of them

require specific functional form assumptions in one place or another. Section 3 pro-

vides the behavioral foundations of multinomial logit and contextual logit avoiding such

assumptions, solely using axioms stating invariance properties of choice. Section 4 dis-

cusses these axioms in relation to behavioral evidence and the computational intuition

underlying logit. Section 5 concludes. The appendix contains all proofs.
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2 Existing foundations of logit

This section briefly reviews the existing foundations of logit to clarify how they rest on

functional form assumptions linking unobserved utility and observed choice probabili-

ties. The next section will rebuild logit based on a weaker invariance assumption (trans-

lation invariance). The notation is standard. Decision maker DM chooses option x ∈ B

from a finite budget B ⊆ X with probability Pr(x|B). DM’s utility u : X →R is unknown,

and DM’s choice exhibits stochastic noise with unknown distribution. The utility of op-

tion x is denoted as ux. The set of all finite subsets of X is denoted as P(X), and DM’s

choice profile Pr is a collection of probability distributions over all finite subsets of X ,

denoted as Pr = {∆(B)}B∈P(X).

2.1 Unconditional logit

The original definition of logit, Luce (1959), states that choice is logit if a value function

v : X →R exists such that Pr has a logit representation. This definition is “unconditional”

in that no condition about v’s relation to u is imposed, distinguishing it from conditional

logit defined by McFadden (1974) where v = u. Note that both conditional and uncondi-

tional models are called logit or multinomial logit in the literature.

Definition 1 (Unconditional logit). The choice profile Pr has an unconditional logit rep-

resentation if there exists v : X → R such that

Pr(x|B) =
exp{v(x)}

∑x′∈B exp{v(x′)}
for all x ∈ B ∈ P(X).

A scaling factor λ as it is used below can be skipped without loss of generality. Since

v post-hoc rationalizes DM’s choice, I refer to it as DM’s choice utility, thus distinguish-

ing it from the true utility u. For example, v(x) := logPr(x|X) is adequate. Note that v is

the choice utility specifically in relation to logit’s functional form and it is defined only

up to translation (addition of arbitrary constants).

Luce (1959) showed that Pr has an unconditional logit representation if and only if Pr

satisfies positivity and independence of irrelevant alternatives (IIA), the latter requiring

Pr(x|B)

Pr(y|B)
=

Pr(x|B′)

Pr(y|B′)
for all x,y ∈ B∩B′, (1)

for all B,B′ ∈ P(X). As a result, a propensity function V : X → R exists such that

Pr(x|B) =
V (x)

∑x′∈BV (x′)
for all x ∈ B ∈ P(X).

In this case, Pr is said to have a Luce representation. By positivity, Pr has a Luce repre-

sentation if and only if it has an unconditional logit representation, as v(x) = logV (x) =
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logPr(x|X) for all x ∈ X is then well-defined. That is, given positivity, choice proba-

bilities satisfy IIA if and only if they have an unconditional logit representation, and in

this sense, IIA and unconditional logit are equivalent. Fudenberg and Strzalecki (2015)

establish this equivalence (amongst others) in a general model of dynamic choice.

Logit is not special in this respect, IIA is equally equivalent to any representation

based on choice propensities. For example, fix any bijection g : M →R+ for some M ⊆R

and say that Pr has an unconditional g-representation if v : X → R exists such that

Pr(x|B) =
g(v(x))

∑x′∈B g(v(x′))
for all x ∈ B ∈ P(X). (2)

If choice satisfies IIA, then propensities V (x) exist and Pr has a g-representation for any

g, as v(x) := g−1(V (x)) is well-defined. Thus, IIA is equivalent to any g-representation,

rendering the equivalence of IIA and unconditional logit uninformative. As logit repre-

sents only one of many possible specifications of g, unconditional logit obtains only if

we make a specific functional form assumption (g = exp).

2.2 Conditional logit

DM’s choice profile is conditional logit if the logit representation obtains for the true

utility function u (McFadden, 1974).4 To define the conditional logit model, we therefore

need to extend the notation of choice probability by conditioning on u: Given u, DM

chooses option x ∈ B with probability Pr(x|u,B)> 0.

Definition 2 (Conditional logit). The choice profile Pr has a conditional logit represen-

tation if there exists λ ∈ R such that, given DM’s utility u : X → R,

Pr(x|u,B) =
exp{λ ·ux}

∑x′∈B exp{λ ·ux′}
for all x ∈ B ∈ P(X).

If Pr is conditional logit, then Pr also has an unconditional logit representation and

the choice utility satisfies v = λu+ r for some r ∈ R. Then, choice utility is an affine

transformation of true utility u and logit analyses allow us to infer DM’s utility.

In his derivation, McFadden (1974) first demonstrates that positivity and IIA imply

that DM’s choice probabilities can be represented as

Pr(x|u,B) =
exp{v(x,y|u)}

∑x′∈B exp{v(x′,y|u)}
for all x ∈ B,y ∈ X (3)

for some function v, given any benchmark option y ∈ X . That is, given IIA, all choice

4McFadden characterizes a logit model conditioning on individual attributes of DM. These individual

attributes may represent free parameters in a utility representation such as CRRA. Conditional on these

parameters, utility then is defined, and for the purpose of the current analysis, we may condition on the

utility function itself, as is standard practice in behavioral analyses (see below).
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probabilities are well-defined once we know the choice utility of any option x in a binary

choice problem against an arbitrary benchmark option y. Specifically, McFadden (1974)

derives Eq. (3) by defining v(x,y|u) to be the log-odds of the choice between x and y,

v(x,y|u) = log

(

Pr(x|u,{x,y})

Pr(y|u,{x,y})

)

. (4)

IIA then implies Eq. (3). Since Pr(x|u,{x,y}) and Pr(y|u,{x,y}) may depend only on

x,y,ux,uy, besides constants, this pins down the arguments of choice utility v, but it does

not impose a substantial restriction on how v relates to u. Eq. (4) is compatible with many

families of stochastic choice models, including strong utility, strict utility, and random

behavior (including least squares),5 implying that the relation of v to DM’s true utility u

is still undetermined. McFadden resolves this by Axiom 3 (page 110) assuming that the

relative choice utility v(x,y|u) is the difference of the utilities of x and benchmark y.

v(x,y|u) = ux −uy (5)

This is McFadden’s functional form assumption relating observed choice probabilities,

via Eq. (4), to unobserved utilities. Given the exponential formulation of choice utility,

the benchmark utility uy now cancels out and choice utility v(x) is implicitly assumed

to equate with true utility ux. Thus, Axiom 3 achieves the following: out of the vast set

of potential functional forms compatible with v(x,y,ux,uy), it selects v(x) = ux. Indeed,

using v’s definition Eq. (4), McFadden’s Axiom 3 is equivalent to assuming

Pr(x|u,{x,y})

Pr(y|u,{x,y})
= exp{ux −uy} ⇔

Pr(x|·)+Pr(y|·)

Pr(y|u,{x,y})
= 1+ exp{ux −uy}

⇔ Pr(x|u,{x,y}) =
exp{ux}

exp{ux}+ exp{uy}
,

noting that Pr(x|·) + Pr(y|·) = 1. The last equation is the definition of binomial logit

(omitting λ), i.e. Axiom 3 is equivalent to assuming that binomial choice is logit. In

turn, logit itself is not behaviorally founded; IIA merely extrapolates binomial logit to

multinomial choice. This implication of Axiom 3 does not seem to have been observed in

the existing literature, but it clearly shows that the existing foundation of conditional logit

makes a functional form assumption. Instead of assuming that binomial choice is logit,

we could assume any other structure of binomial choice and then would obtain any other

model compatible with IIA. For example, replacing Axiom 3 with v(x,y|u) = g(ux −uy)
for any monotone and positive g, we obtain any strong utility model.

5Random behavior has been defined in Footnote 2. Pr has a strong utility representation if Pr(x|u,B) =
f (ux − uy)/∑x′∈B f (ux′ − uy) for some f : R → R+ and y ∈ X . Pr has a strict utility representation if

Pr(x|u,B) = (ux)
λ/∑x′∈B(ux′)

λ for some λ ∈ R. See also Luce and Suppes (1965).
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2.3 Foundation as random utility model

Thurstone (1927) introduced the random utility model for binomial choice, focusing on

utility perturbations with normal distribution. Block and Marschak (1960) introduced

the multinomial random utility model allowing for arbitrary distributions of the utility

perturbations. Accordingly, choice profile Pr has a random utility representation if, given

utility u, there exists a collection of random variables (Rx)x∈X such that

Pr(x|u,B) = P
(

ux +Rx ≥ maxx′∈X ux′ +Rx′
)

(6)

for all x ∈ B and B ∈ P(X). McFadden (1974) shows that conditional logit results if

the utility perturbations (Rx) are i.i.d. with extreme value type 1 distribution, Yellott

(1977) shows that an i.i.d. random utility model satisfies IIA if and only if the utility

perturbations have this particular distribution, and Strauss (1979) generalizes the result to

the non-i.i.d. case. Thus, random utility models with any alternative distribution, whether

or not the perturbations are i.i.d., violate independence of irrelevant alternatives.6 In this

sense, the extreme value distribution is indeed specific: it is not one of many possible

choices, but the only possible choice compatible with IIA. Given IIA, in turn, the critical

assumption is not that the utility perturbations have an extreme value distribution, but

that the choice profile admits a random utility representation in the first place.

Considering the plethora of stochastic choice models that satisfy IIA, the assumed

adequacy of the random utility representation is obviously not innocuous. Alternative

models include random behavior models (see e.g. Harless and Camerer, 1995) and ran-

dom preference models (Falmagne, 1978; Barberà and Pattanaik, 1986), and within these

model families, there are countless functional forms of incorporating perturbations. In-

deed, given IIA, assuming that the choice probabilities have a random utility represen-

tation is equivalent to assuming that binomial choice is logit (see Adams and Messick,

1958)—given IIA, either assumption implies that multinomial choice is logit. This shows

that an assumption equivalent to McFadden’s Axiom 3 is implied by assuming the spe-

cific random utility model defined above, although it is less obvious.

2.4 Foundation in rational inattention

Matejka and McKay (2015) model choice assuming DM is rationally inattentive in the

sense of Sims (2003). DM has limited information about the state of the world, and

the state of the world defines DM’s mapping of options to utilities. DM may study the

state, at a cost, to reduce the uncertainty he faces. Implicitly, DM has to choose which

options to study and when to stop, trading off the knowledge he gains about his utility

function and his costs of studying it. After studying the state of the world, DM chooses

6Robertson and Strauss (1981) clarify the reason. Let Y denote the maximum of n random variables that

are i.i.d. aside from location shifts and let I denote the index of the variable attaining the maximum. Y and I

are independent if and only if the random variables have the extreme value distribution. This independence

ensures that the odds of choosing between two options are independent of the options otherwise available.
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the option with the highest expected utility. DM can buy information about the state at

costs proportional to the amount of uncertainty removed by the obtained information, and

here, uncertainty is measured using Shannon entropy.7

Matejka and McKay show that DM’s choice then has a generalized logit representa-

tion: given utility u, there exist a function w : X → R and some λ ∈ R such that

Pr(x|B) =
exp{λ ·ux +wx}

∑x′∈B exp{λ ·ux′ +wx′}
for all x ∈ B ∈ P(X).

Matejka and McKay show that wx reflects DM’s prior beliefs about the optimal option,

which in turn depends on the prior belief about the state and the set of possible states.

By knowing the set of possible states, DM detects similar options and implicitly adapts

his information strategy to similarity. Thus, wx captures similarity effects and allows for

violations of IIA as predicted by the red-bus/blue-bus example of Debreu (1960).

If DM’s prior belief is flat, then wx = const and cancel out, yielding conditional

logit. Matejka and McKay (2015) work with the standard model of rational inattention

and use the most widely adopted measure of entropy, but the Shannon entropy represents

only an instance of a large family of entropy measures (Rényi, 1960). Its assumption

is not behaviorally founded and thus it does not resolve the issue that functional form

assumptions must be made to characterize logit. For example, discussing Matejka and

McKay’s cost function based on Shannon entropy, Caplin and Dean (2015) “outline key

behavioral properties implied by this cost function, which are significantly more restric-

tive than NIAS and NIAC alone” (p. 2), referring to two general conditions (NIAS and

NIAC) characterizing rational information acquisition.

3 The axiomatic foundation of logit

3.1 Formal framework

As above, X denotes the set of options and decision maker DM has to choose an option

x ∈ B from a finite set B ⊆ X given utility u : X → R. The probability that DM chooses

x ∈ B is denoted as Pr(x|u,B).

The pair (u,B) is called choice task and from the perspective of the analyst, every

choice task is defined by a context, which defines the utility function u, and an option

set B. Since the context uniquely defines the utility function, I will treat these terms

synonymously when it does not cause confusion, speaking of the context u when adopting

the perspective of the analyst and of the utility u when adopting the perspective of DM.

Let me provide an example.

Example 1 (Choice under risk). There are four prizes, (π1,π2,π3,π4) and each option is

7The Shannon entropy of a random variable is defined as H =−∑i P(si) logP(si), with (si) as possible

realizations of the random variable and P(si) as their respective probabilities.
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a lottery L = (πi, p,π j) yielding πi with probability p and π j with probability 1− p. The

set of options is X = [0,2] and option x ∈ X is defined as

L(x) =

{

(π1,x,π2), if x ≤ 1

(π3,x−1,π4), if x > 1

The unknown utility ux is DM’s (expected) utility of lottery L(x), x ∈ X.

Different prize profiles (π1,π2,π3,π4) represent different contexts and induce dif-

ferent utility mappings u : X → R. In conjunction with the option set B ⊂ X , any prize

profile (or, context) defines a specific choice task (u,B).

The set of choice tasks available to the analyst is D = U ×P(X). U denotes the

set of utility functions u : X → R underlying DM’s choices in the contexts that may be

constructed by the analyst, and P(X) denotes the set of finite subsets of X . To be clear,

ux captures the welfare DM derives from option x in a given context. The utility function

is known to exist, but its values are unknown to the analyst and the object of his analysis.

I assume that the set of choice tasks D is “rich” in the following sense.8

Assumption 1 (Richness). The set of choice tasks D = U ×P(X) is rich if

1. Transformability: a+bu ∈ U for all u ∈ U and all a,b ∈ R : b > 0,

2. Convexity: X is a convex subset of R and |X |> 1,

3. Surjectivity: for all u ∈ U, the image u[X ] = {ux|x ∈ X} is a convex subset of R

and not a singleton, and

4. Choice variation: there exist (u,B) and x,x′ ∈ B such that Pr(x|u,B) 6= Pr(x′|u,B).

Transformability ensures that we may analyze affine transformations of utility func-

tions in the first place, ensuring that all affine transformations are well-defined objects.

Convexity and surjectivity rule out scarce choice environments where the sets of options

or realized utility levels (respectively) are finite or even singletons; but it will be notation-

ally convenient to know that both domain and image of DM’s utility are convex. Such

richness is required for uniqueness and satisfied in choice tasks typically of interest to ex-

perimentalists (such as choice under risk, using standard utility functions). Note that the

utility functions may still be fairly ill-behaved, violating smoothness or even continuity

for any number points. Finally, “Choice variation” rules out the trivial case that choice

probabilities are uniform in all choice tasks. In addition, I assume positivity.

Assumption 2 (Positivity). For all choice tasks (u,B) ∈ D and all x ∈ B, Pr(x|u,B)> 0.

8With slight abuse of notation, I identify all real numbers as constant functions such that addition and

multiplication of a function with a real are well-defined. Thus, for any u : X → R and any a,b ∈ R,

u′ = a+ bu is equivalent to u′x = a+ bux for all x ∈ X . Further, writing supu and infu, I refer to u’s

supremum and infimum, respectively, over its domain (X), i.e. supu = supx∈X ux and infu = infx∈X ux.
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Positivity allows that DM fails to maximize utility, however rarely, and captures

the widely documented phenomenon that individual choice fluctuates and involves domi-

nated options. This has been observed in many different contexts, including choice under

risk (Birnbaum and Navarrete, 1998), small normal-form games (Costa-Gomes et al.,

2001), and dictator games (Andreoni and Miller, 2002; Fisman et al., 2007), to name just

a few. Positivity does not imply restrictions on the locus of noise in the choice process,

i.e. it is compatible with random behavior, random utility and even random preferences.9

Positivity also is technically mild in the sense that empirically, an event occurring with

zero probability is indistinguishable from one occurring with positive but small probabil-

ity (McFadden, 1974).

3.2 Independence of irrelevant alternatives

IIA has been introduced in Eq. (1), but let me restate IIA for the more general choice

environment analyzed now, requiring IIA to hold in each context u ∈ U.

Axiom 1 (Independence of Irrelevant Alternatives, IIA). For all (u,B),(u,B′) ∈ D ,

Pr(x|u,B)

Pr(y|u,B)
=

Pr(x|u,B′)

Pr(y|u,B′)
for all x,y ∈ B∩B′.

Gul et al. (2014) show that if choice probabilities are countably additive, IIA obtains

if DM’s (stochastic) preference ordering is complete. As discussed above, IIA implies

that choice probabilities have a Luce representation, i.e. a propensity function V : X →R

exists such that Pr(x|B) = V (x)/∑x′∈BV (x′) (Luce, 1959). The Luce representation and

the equivalence to IIA straightforwardly generalizes to multiple contexts. The following

result further shows that propensities are functions solely of x and ux, thus tightening the

result of McFadden (1974) discussed above exploiting our richness assumption.

Definition 3 (Luce). The choice profile Pr is Luce if there exists a family of functions

{Vu : X ×R→ R}u∈U such that for all tasks (u,B) ∈ D and options x ∈ B,

Pr(x|u,B) =V (x|u)/ ∑
x′∈B

V (x′|u) with V (x|u) =Vu(x,ux). (7)

Lemma 1. Pr is Luce ⇔ Pr satisfies Axiom 1.

Choice propensities Vu may be context dependent, as IIA itself does not restrict

choice across contexts u. Even the functional forms of Vu may vary across contexts, and

9Random preference models (Falmagne, 1978; Barberà and Pattanaik, 1986) violate positivity in some

contexts, but in general they are ruled out only by IIA. Random behavior models will be ruled out by

presentation independence, as discussed below. Thus, for the purpose of interpretation, the reader may

assume that DM has a well-defined utility function but a perturbed perception of it, as in the random utility

model Eq. (6) or in the rational inattention model of Matejka and McKay (2015).
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expressed in terms of model primitives, V simply is a collection of functions {Vu}u∈U

mapping options x and utilities ux to real-valued propensities, for all u ∈ U. Applied to

any single context, this result is tighter than McFadden’s, as it shows that the reference

to a benchmark y and its utility uy are not required if the environment is rich.

IIA is compatible with a wide range of choice models. As a running example, con-

sider the following family of choice models satisfying IIA with choice propensities being

functions of x and ux. Below, I illustrate how subsequent axioms refine this family.

Pr(x|u,B) =
Vu(x,ux)

∑x′∈BVu(x′,ux′)
with Vu(x,ux) = c1|u+ fu

(

ux−c2|u

)

+gu

(

x−c3|u

)

(8)

with { fu,gu}u∈U being context-specific functions (R → R), and for the purpose of il-

lustration, they involve context-specific constants {c1|u,c2|u,c3|u}u∈U . Let for example

c2|u = supx∈X ux and (if existent) c3|u = argmaxx∈X ux, implying that the strong utility

and random behavior models are contained as special cases. This shows that the locus of

noise is virtually unrestricted by IIA, only similarity effects are ruled out. Implicitly, we

cannot infer any information on the relation of propensities V and utilities u from IIA. In

relation to this family of models, McFadden’s Axiom 3 assumes V (x|u) = exp{ux −uy}
for some y ∈ X , i.e. specifically fu = exp, c2|u = uy, and c1|u = gu = 0.

3.3 Translation invariance and cardinality

Invariance to translation of utilities implies that, if we assume that DM’s utility is the

sum of “background utility” and “experiment utility”, the background utility can be fac-

tored out and the choice pattern is invariant to the level of the background utility. Then,

DM approaches any single choice task independently of background utility and previous

tasks, which is generally assumed in behavioral analyses.

Axiom 2 (Translation invariance). Pr(·|u,B) = Pr(·|u+ r,B) for all r ∈ R, (u,B) ∈ D

The range of behavioral analyses supporting the assumption of translation invari-

ance is reviewed below. At this point, let me simply note that it is an assumption relating

observed choice probabilities and unobserved utilities, but contrary to the related func-

tional form assumptions made in the existing foundations reviewed above, it is a mere

invariance assumption which is testable and has been tested extensively.

Invariance of choice to scaling utilities is also robustly observed in experiments. A

detailed discussion follows below, but essentially, when experimental payoffs are scaled,

expected utilities of options scale proportionally under standard assumptions,10 but ob-

served choice probabilities are largely unaffected by such scaling. In conjunction with

translation invariance, this implies cardinality of utility.

10This applies if the utility function is homogeneous in the payoffs, which is satisfied for utility functions

used in behavioral analyses, such as CRRA, CES, inequity aversion or Prospect theoretic utilities.
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Axiom 3 (Cardinality). Pr(·|u,B) = Pr(·|a+bu,B) for all a,b ∈ R : b > 0, (u,B) ∈ D

Translation invariance obtains if choice propensities are functions of utility differ-

ences, as in strong utility models (Block and Marschak, 1960), and scale invariance ob-

tains if propensities are functions of utility ratios, as in strict utility models. While strong

utility models and strict utility models in the strict sense have an empty intersection,11 re-

quiring robustness to affine transformation is of course not prohibitive. Amongst others,

all models satisfying

Pr(x|u,B) = f

(

ux − infu

supu− infu

)

/ ∑
x′∈B

f

(

ux′ − infu

supu− infu

)

for any function f : R+ → R+ satisfy cardinality and IIA. With f (r) = exp(r) we obtain

contextual logit (Wilcox, 2011), and with f (r) = rλ we obtain a normalized strict utility

model (noting that the denominator cancels out). Similarly, all random behavior models

(including least squares) are consistent with both cardinality and IIA. The next result

establishes that in general, translation invariance implies what I call a “relative Luce”

representation of choice and cardinality implies a “standardized Luce” representation.

Definition 4 (Relative/Standardized Luce). The choice profile Pr is relative (standard-

ized) Luce if there exist functions {Vu : X ×R→ R+}u∈U such that for all choice tasks

(u,B) ∈ D and all options x ∈ B, Pr(x|u,B) =V (x|u)/∑x′∈BV (x′|u) with

V (x|u) =Vu(x,ux − infu), (Relative Luce)

V (x|u) =Vu

(

x, ux−infu
supu−infu

)

. (Standardized Luce)

Lemma 2.

1. Axioms 1 and 2 ⇔ Pr is relative Luce with Vu =Vu+r (∀r ∈ R)

2. Axioms 1 and 3 ⇔ Pr is standardized Luce with Vu =Va+bu (∀a,b ∈ R : b > 0)

This suggests that neither translation invariance nor cardinality are very restrictive.

To illustrate, the family of representations compatible with IIA and cardinality include

Pr(x|u,B) =
fu

(

ux−infu
supu−infu

)

+gu(x− x⋆)

∑x′∈B fu

( ux′−infu

supu−infu

)

+gu(x′− x⋆)
(9)

for functions { fu,gu : R → R+}u∈U , assuming fu = fa+bu,gu = ga+bu for a,b ∈ R :

b > 0 (reflecting the conditions in Lemma 2). Besides contextual logit and normalized

strict utility as discussed above, this still allows for general random behavior models,

using fu = 0 and x⋆ ∈ argmaxu (assuming it is defined), for least squares if additionally

11Recall the definition in Footnote 5 or see Luce and Suppes (1965).
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gu(y) = φ(y/σ) with φ as standard normal density, and for arbitrary combinations of

say strict utility and random behavior. Thus, neither IIA nor cardinality (or translation

invariance) seem to substantially restrict how choice propensities relate to utility u.

This impression is somewhat misleading. If choice is consistent across contexts, in

a sense to be made precise, then translation invariance and cardinality allow us to infer

that fu(r) = exp(λr) for all contexts u ∈U . This will imply that choice is represented by

generalized formulations of conditional logit and contextual logit, depending on whether

we require translation invariance or cardinality. Thus, on their own, translation invariance

and cardinality are fairly weak requirements, but they have further implications once we

know more about choice across contexts.

3.4 Presentation independence and context independence

Fix any utility function u and assume, for purpose of illustration, that ux = 2 and uy = 0,

for some x,y ∈ X . Now consider u′ = u+ 8, which implies u′x = 10 and u′y = 8. By

translation invariance, or cardinality, we know that the relative probability of choosing

x over y is equal in both contexts u and u′. Two seemingly related invariances are not

implied. On the one hand, assume there exist x′,y′ ∈ X with utilities 10 and 8 in the

original context u, i.e. ux′ = 10 and uy′ = 8. translation invariance does not imply that

the relative probability of choosing 10 (x′) over 8 (y′) in context u is equal to the one of

choosing 2 (x) over 0 (y) in context u—although we know that choosing between 2 and 0

under u is equivalent to choosing between 10 and 8 in a different context u′. I refer to this

phenomenon as “presentation effect”: The probability of choosing an option with a given

utility may depend on which option attains this utility. For example, presentation effects

may reflect labeling or ordering of options, and are even implied in random behavior

models. Random behavior assumes that choice probabilities depend on the distance to

the utility maximizer, implying that options with equal utilities have different choice

probabilities if utility is not symmetric around the maximizer. Formally, presentation

effects are compatible with relative Luce, as choice propensities are functions Vu(x,ux −
infu), i.e. option x itself is choice relevant. Presentation independence results if choice

satisfies permutation invariance: given context u ∈ U and any bijective function f : X →
X , permuting choice probabilities (via f ) is equivalent to permuting utilities (via f ),

Pr( f (x) |u, f (B)) = Pr
(

x |u◦ f ,B
)

for all x ∈ B ∈ P(X). (10)

Intuitively, given presentation independence, propensities can be expressed as functions

Vu(ux− infu) independently of x itself, but this is not formally implied, as u◦ f represents

a context different from u, i.e. we also need information on context dependence of choice.

On the other hand, assume there exists u′′ such that u′′x = 2 and u′′y = 0, but u 6= u′′.

Hence u′′ is neither a translation nor an affine transformation of u, and choice propen-

sities under u and u′′ may be entirely unrelated given Lemma 2. This captures “context

dependence”: The relative probabilities of choosing options with given utilities depend
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on context. Strict context independence obtains if for all u,u′ ∈ U and all x,y ∈ X ,

ux = u′x and uy = u′y ⇒ Pr(x|u,{x,y}) = Pr(x|u′,{x,y}). (11)

By IIA, this implies that the relative probability of choosing x over y is equal in u and

u′ for all budget sets B ∈ P(X). Given the behavioral evidence reviewed below, strict

context independence appears to be unrealistic, and for this reason, I introduce a notion

of weak context independence: Implication (11) applies only if the utility range in con-

texts u and u′ is equal, i.e. if supu− infu = supu′ − infu′. I say that choice exhibits

strict/weak utility relevance if it exhibits presentation independence and strict or weak

context independence, respectively.

Axiom 4 (Strict utility relevance, SUR). For all u,u′ ∈ U and all x,x′,y,y′ ∈ X ,

ux = u′x′ and uy = u′y′ ⇒ Pr(x|u,{x,y}) = Pr(x′|u′,{x′,y′}).

Axiom 5 (Weak utility relevance, WUR). For all u,u′ ∈ U : supu− infu = supu′− infu′,

ux = u′x′ and uy = u′y′ ⇒ Pr(x|u,{x,y}) = Pr(x′|u′,{x′,y′}).

As indicated, the behavioral evidence suggests that assumptions stronger than Ax-

iom 5 may be inadequate, but before I enter this discussion, let me state the main result.

Definition 5. The choice profile Pr is conditional logit or contextual logit (respectively)

if there exists λ ∈ R such that for all choice tasks (u,B) ∈ D and all options x ∈ B,

Pr(x|u,B) =V (x|u)/∑x′∈BV (x′|u) with

V (x|u) = exp
{

λ ·ux}, (Conditional logit)

V (x|u) = exp
{

λ ·ux/(supu− infu)
}

. (Contextual logit)

Theorem 1.

1. Pr is conditional logit ⇔ Pr satisfies Axioms 1, 2, 4

2. Pr is contextual logit ⇔ Pr satisfies Axioms 1, 3, 5

Briefly, let me discuss the relative contributions of the three axioms per representa-

tion. By IIA, Pr has a Luce representation, and by translation invariance, choice propen-

sities have the form Vu(x,ux− infu). Now, by WUR, options with equal utility must have

equal choice propensities, i.e. ux = uy implies Vu(x,ux − infu) = Vu(y,uy − infu), which

in turn implies Vu(x,ux − infu) = Vu(y,ux − infu). As a result, using any u−1 such that

u(u−1(ux)) = ux for all x, we can define a function Ṽu(ux) = Vu(u
−1(ux),ux − infu) rep-

resenting choice propensities solely as functions of utilities. This does not yet eliminate

presentation effects, but it restricts the functional form of choice probabilities. Again,

take u ∈ U such that ux = 2 and uy = 0. Fix u′ = u+ 8, implying u′x = 10 and u′y = 8.
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By translation invariance, we know that the relative probability of choosing x over y is

the same in both contexts. Now assume ux′ = 10 and uy′ = 8 for some x′,y′ ∈ X . Since

supu− infu = supu′− infu′, WUR (first equation), transitivity (middle equation), and

the simplified representation of choice propensities (last equation) yield

Pr(x|u′,B)

Pr(y|u′,B)
=

Pr(x′|u,B)

Pr(y′|u,B)
⇒

Pr(x|u,B)

Pr(y|u,B)
=

Pr(x′|u,B)

Pr(y′|u,B)
⇒

Ṽu(ux)

Ṽu(uy)
=

Ṽu(ux + r)

Ṽu(uy + r)

for all r ∈ R (in the example, r = 8 was assumed). The generalization to all B ∈ P(X)
obtains by IIA, which in turn yields the implication for propensities. Thus, Ṽu(ux + r) =
Ṽu(ux) · f (r), for some function f : R→ R, and differentiating with respect to r implies

dṼu(ux + r)/dr = Ṽu(ux) · f ′(r) ⇒ dṼu(ux)/dux = Ṽu(ux) · f ′(0)

at r = 0. The solution of this differential equation is Ṽ (ux) = exp{λ ·ux +wx}, with λ =
f ′(0) and wx as an integration constant that may depend on x. This yields, as intermediate

result, a generalized conditional logit representation of choice if we start with relative

Luce and use Axiom 4; similarly we obtain a generalized contextual logit representation

if we start with standardized Luce and use Axiom 5.

Thus, log-propensities are linear in utility, which is the main characteristic of logit

models, but choice may exhibit presentation effects (wx 6= const) and context effects (both

λ and w may depend on context u). To formally capture the context effects, let λu ∈ R

and wu : X → R be the respective terms in context u. By translation invariance, choice

propensities can be represented such that λu = λu+r and wu = wu+r for all r ∈ R. Now

fix any r < supu− infu and any x,y,x′,y′ such that ux = ux′ + r and uy = uy′ + r. By weak

utility relevance, using λu = λu+r and wu = wu+r,

Pr(x|u,{x,y})

Pr(y|u,{x,y})
=

Pr(x′|u+ r,{x′,y′})

Pr(y′|u+ r,{x′,y′})
⇒

exp{λu ·ux +wu(x)}

exp{λu ·uy +wu(y)}
=

exp{λu ·ux +wu(x
′)}

exp{λu ·uy +wu(y′)}

we obtain wu(x) = wu(x
′) · c(r) and wu(y) = wu(y

′) · c(r) for some function c : R →
R. Applying this to all x,y ∈ X and all r < supu− infu, we find that c(r) cancels out,

implying wu(x) = const in x and thus cancels out. Now, presentation effects and random

behavior are ruled out. It is then straightforward to rule out context effects using Axiom

4 in the case of conditional logit and Axiom 5 in the case of contextual logit.

4 Discussion

4.1 Behavioral evidence for the axioms

Cardinality and translation invariance Behavioral evidence seems to support both

scale invariance and translation invariance surprisingly clearly, suggesting the cardinality
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axiom is adequate. The most direct evidence comes from a comparably unusual source,

neuro-economics, and lies in the so-called “adaptive coding”: The neuronal representa-

tion of subjective values (“utilities”) adapts to the range of values in the context of the

choice. Specifically, the baseline activity of the cell encoding the value of a given object

generally represents the minimum of the utility range in a given context, and its peak

activity adapts the maximum of the utility range. Such adaptation to choice environ-

ments is efficient considering the physical limitations in neuronal firing rates and builds

on a wealth of evidence starting with Tremblay and Schultz (1999) and Padoa-Schioppa

(2009), which is reviewed in detail in Louie and De Martino (2014) and Camerer et al.

(2017). As a result, if the subjective values of options (i.e. their utilities) are translated by

some constant a ∈ R or scaled by some constant b ∈ R, the nervous cells adapt to these

manipulations and factor them out as described in the cardinality axiom.

There is additional evidence from choice data. On the one hand, experimental work

generally finds that after controlling for individual heterogeneity due to e.g. age, educa-

tion and gender, behavior in experiments is independent of socio-economic background

variables such as income or wealth (Gächter et al., 2004; Bellemare et al., 2008, 2011).

This suggests that background utility indeed factors out thus supports (translation invari-

ance) is adequate. Read et al. (1999) refer to this observation as narrow bracketing and

provide further evidence. On the other hand, across studies, experimental behavior is

independent of the amounts of money at stake in experiments. This is robustly reported

from meta-studies on dictator games (Engel, 2011), ultimatum games (Oosterbeek et al.,

2004; Cooper and Dutcher, 2011), and trust games (Johnson and Mislin, 2011). Holt and

Laury (2002) find that risk aversion increases as stakes are raised, but this may equally

represent an artifact of the choice model used (Wilcox, 2008). Since the utility functions

used in analysis of standard experiments are homogeneous of positive degree in the pay-

offs,12 scaling of payoffs induces scaling of utilities, and these results suggest that choice

behavior also is robust to scaling utilities.

Jointly, the existing evidence therefore suggests that the cardinality axiom indeed

is adequate. Since translation invariance is weaker than cardinality, it is of course not

inadequate in turn. Relying on the weaker assumption of translation invariance requires

a complementary stronger assumption on context independence, however.

Independence of irrelevant alternatives IIA had been introduced to analyses of stochas-

tic choice by Luce (1959) and was criticized immediately (Debreu, 1960). Inspired by

Debreu’s red-bus/blue-bus example, logit has been generalized in many studies to reflect

similarity effects, see for example nested logit (McFadden, 1976) and cross-nested logit

(Vovsha, 1997; Wen and Koppelman, 2001). Such generalizations are routinely used for

example in transportation research. In turn, models relaxing IIA are hardly used in indus-

trial economics and virtually never in experimental analyses. The reasons appear to be

that in demand estimation, similarity effects are not required to capture product differen-

12This is true for CRRA utilities and Prospect theoretic utilities as used in analyses of choice under risk,

for CES functions used in distribution experiments, and for inequity aversion used in ultimatum games.
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tiation (Nevo, 2000), though applications of nested logit in this context exist (Anderson

and de Palma, 1992). Economic experiments generally avoid redundant options to enable

clean inference (Davis and Holt, 1993), which limits similarity effects and thus models

relaxing IIA are not considered necessary (there does not appear to be a single published

paper using e.g. nested logit). Thus, IIA seems to be a reasonable assumption in applica-

tions relating to utility and demand estimation, but as all models derived here are random

utility models (see below), generalizations such as nested logit are straightforward.

Strict/Weak context independence Context independence clarifies in which circum-

stances equal utilities imply equal probabilities, while translation invariance and cardi-

nality clarify in which circumstances different utilities imply equal probabilities. Due to

this interrelation, these axioms are not independent. Specifically, cardinality is not com-

patible with strict context independence—if choice satisfies the former, it violates the

latter. As discussed before, empirical evidence supports the cardinality axiom and thus

leads us to reject strict context independence. Specifically, the previous observation that

choice is invariant to utility scaling implies that the “error variance” in choice adapts to

the utility range, which was labeled weak context independence above. Aside from the

neuro-economic and choice evidence on scale invariance discussed above, weak context

independence has been observed in a large number of studies and inspired choice models

with “heteroscedastic” errors, see e.g. Hey (1995) and Buschena and Zilberman (2000).

Contextual logit is a heteroscedastic model that additionally allows to define the relation

“more risk averse” between decision makers (Wilcox, 2011). Wilcox (2008, 2015) shows

that the notion of weak context independence fits behavior impressively across contexts.

Presentation independence There exists plenty of evidence suggesting that presenta-

tion independence in the strict form assumed above is inadequate. Most directly, reorder-

ing options does affect choice probabilities (Dean, 1980; Miller and Krosnick, 1998;

Feenberg et al., 2017). Similarly, relabeling options also affects choice probabilities, as

suggested by the left-most digit bias (Poltrock and Schwartz, 1984; Lacetera et al., 2012)

and round-number effects (Heitjan and Rubin, 1991; Manski and Molinari, 2010). Such

presentation effects are substantial in magnitude and analyzed in detail in Breitmoser

(2017).

4.2 Interpreting logit

Parameter estimates obtained using the so-called random behavior models have a straight-

forward interpretation, most obviously those obtained by least squares: loosely speaking,

one determines the average choice and computes the utility parameters rationalizing this

choice. This is computationally simple and transparent, which could be taken as sugges-

tion that the random behavior approach is natural and adequate. In contrast, estimates

obtained from random utility models such as logit do not seem to lend themselves to a
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simple interpretation, suggesting that logit modeling is a bit of a black box. The following

seeks to correct that impression by establishing a simple interpretation.

As defined above, the choice profile Pr is called “unconditional logit” if there exists

a family of functions {vu : X → R}u∈U such that for all choice tasks (u,B) ∈ D and

all options x ∈ B, Pr(x|u,B) = exp{vu(x)}/∑x′∈B exp{vu(x
′)}. For later reference, let us

define the choice utility vu in this definition as follows.

Definition 6. Choice utility vu in context u ∈ U is vu(x) = logPr(x|u,X) for all x ∈ X .

Any translation of vu will be equally admissible for our purpose. Now, if Pr has a

conditional logit presentation in context u, then it also has an unconditional logit repre-

sentation, and given the definition of choice utility, we know

Pr(x|u,B) =
exp{vu(x)}

∑x′∈B exp{vu(x′)}
=

exp{λ ·ux}

∑x′∈B exp{λ ·ux′}
(12)

for all x ∈ B and B ∈ P(X). Hence, vu(x) = a+λux for some a ∈ R, and using vu(x) =
logPr(x|u,X), we obtain

1 = ∑
x′∈X

exp{vu(x
′)}= ∑

x′∈B

exp{a+λ ·ux′} ⇔ a = 1/ log ∑
x′∈B

exp{λ ·ux′}.

Thus, choice utility is an affine transformation of true utility, and the additive constant

a depends on both λ and u (i.e. on DM’s precision and the context). The next result

establishes that choice utilities can be normalized, without using knowledge about u, to

guarantee that they are simply a scaled transformation of (normalized) true utilities.

Theorem 2. If Pr is conditional logit or contextual logit, then choice utility v is an affine

transformation of true utility u. Specifically:

1. Axioms 1, 2, 4 ⇔ Pr is conditional logit ⇔ vu − infvu = λ · (u− infu) ∀u ∈ U

2. Axioms 1, 3, 5 ⇔ Pr is contextual logit ⇔ vu − infvu = λ · u−infu
supu−infu

∀u ∈ U

with λ as obtained in the conditional/contextual logit presentation (respectively).

Theorem 2 provides a first interpretation: Using logit, utility parameters are esti-

mated such that the observed choice utilities of all options are proportional to their cal-

ibrated true utilities. The normalization of choice utility vu by subtracting its infimum

reflects that v is defined only up to adding arbitrary constants. In contextual logit, utility

is defined only up to affine transformation, which requires standardization to a specific

interval, here [0,1], for comparability. This interpretation highlights that logit captures

the empirical observation that the shape of the choice distribution contains information

about the shape of the utility function (see e.g. McKelvey and Palfrey, 1998, Battalio

et al., 2001, and Weizsäcker, 2003). This stands in contrast to, and implicitly falsifies,

random behavior models where only the average choice is considered informative.
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Given the above results, we can provide a second simple interpretation. Let u(x|α)
denote the utility of option x ∈ X given parameter α, and consider a set of observations O

where all elements are observations of choices x ∈ X . Given O, let (λ⋆,α⋆) denote logit’s

maximum likelihood estimates to be interpreted. Define cα = ∑x′∈X exp{λ⋆ ·u(x′|α)} for

all α and based on that the normalized utility ũ(·|α) = u(·|α) · cα⋆
/cα. Clearly, utility

parameters are not affected by normalizing utility in this way,

argmax
λ,α

∏
x∈O

exp{λu(x|α)}

∑x′∈X exp{λu(x′|α)}
= argmax

λ,α
∏
x∈O

exp{λ ũ(x|α)}

∑x′∈X exp{λ ũ(x′|α)}
= (λ⋆,α⋆).

but the normalization ensures that changing α does not affect the average log-propensity.

As a result, the “utility levels” are invariant to changing α in the sense that ∑x′∈X exp{λ⋆ ·
ũ(x′|α)} is constant in α. Thus, logit’s maximum likelihood estimate of α, taking λ = λ⋆

as given, satisfies

argmax
α

∏
x∈O

exp{λ ũ(x|α)}

∑x′∈X exp{λ ũ(x′|α)}
= argmax

α
∏
x∈O

exp{λ ũ(x|α)}

= argmax
α

∑
x∈O

λ ũ(x|α) = argmax
α

∑
x∈O

ũ(x|α). (13)

That is, the logit estimate of α maximizes DM’s total utility across choices, or in turn,

logit yields the utility parameters for which DM’s choices make the most sense in hind-

sight, portraying DM as close to utility maximization as possible.

5 Conclusion

Multinomial logit is widely used to capture stochastic choice when estimating utility and

demand functions. McFadden (2001) argues that its appeal relates to its “fully consis-

tent” axiomatic foundation linking individual characteristics (such as utilities) and choice

probabilities. Yet, logit analyses are persistently criticized for making functional form as-

sumptions and indeed, all existing foundations of logit require functional form assump-

tions. The present paper resolves this critique by providing a behavioral foundation of

logit without relying on functional form assumptions, building solely on invariance as-

sumptions: independence of irrelevant alternatives and invariance to utility translation, to

relabeling (presentation independence), and to changing utilities of third options (context

independence). Our representation result further establishes the existence of a precision

parameter λ and that λ is constant across contexts, as generally assumed in applications.

In addition to addressing the critique that structural modeling requires functional

form assumptions, establishing a behavioral foundation avoiding functional form as-

sumptions also facilitates an evidence-based discussion of choice modeling. For, as-

sumptions about the functional form linking unobserved utilities and observed choice

probabilities, as in the existing foundations of logit, are (currently) not testable, while
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assumptions about scale and translation invariance are testable and have been tested. Per-

haps most notably, replacing the functional form assumptions by translation invariance

reveals that two assumptions were implicitly made and these assumptions tend to be

violated in experimental studies: context independence and presentation independence.

Relaxing context independence yields the contextual logit model of Wilcox (2011). Con-

textual logit thus promises to enable utility estimation under comparably robust assump-

tions, while maintaining logit’s tractability. In turn, relaxing presentation independence

allows to capture presentation effects due to e.g. positioning or labeling of options. This

is analyzed in detail in Breitmoser (2017).
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Appendix

A Proofs of Lemmas 1 and 2

Proof of Lemma 1 Fix u ∈ U and define ux = ux for all x ∈ X . The claimed value

function V (x|u) is independent of B, which implies that the resulting choice representa-

tion satisfies IIA (establishing ⇒). To prove that IIA implies Luce (⇐), note first that

Pr(x|u,{x,y}) is in general a function of x,y,ux,uy. By positivity, it is possible to define

V (x,y,ux,uy) := Pr(x|u,{x,y})/Pr(y|u,{x,y}), and thus by IIA (see McFadden, 1974, p.

109, for details),

Pr(x|u,B) =
V (x,y,ux,uy)

∑x′∈BV (x′,y,ux′ ,uy)
for all x,y ∈ B and all B ∈ P(X). (14)

Since this holds true for all x,y ∈ B and all B ∈ P(X), and it does so for all y ∈ X . Hence,

the odds of choosing x over x′ are constant for any pair of benchmark options y,y′ ∈ X ,

Pr(x|u,B)

Pr(x′|u,B)
=

V (x,y,ux,uy)

V (x′,y,ux′ ,uy)
=

V (x,y′,ux,uy′)

V (x′,y′,ux′ ,uy′)
for all x,x′,y,y′ ∈B and all B∈P(X).

and by convexity of X in R (richness), this can be expressed as

d

dy

V (x,y,ux,uy)

V (x′,y,ux′ ,uy)
= 0.

As a result, functions f (y,uy) and V1(x,ux) exist such that V (x,y,ux,uy) = V1(x,ux) ·
f (y,uy) for all x,y ∈ X , and we can write, for all B ∈ P(X), x ∈ B and y ∈ X ,

Pr(x|u,B) =
V (x,y,ux,uy)

∑x′∈BV (x′,y,ux′ ,uy)
=

V1(x,ux)

∑x′∈BV1(x′,ux′)
.

Thus, the Luce representation obtains for any u ∈ U, establishing ⇐.

Proof of Lemma 2 If Pr is relative Luce with (λu,wu) = (λũ,wũ) for all u, ũ ∈ U with

ũ = u+ r (r ∈R), it satisfies Axioms 1 and 2, establishing ⇐ in point 1. If Pr is standard-

ized Luce with (λu,wu) = (λũ,wũ) for all affine u, ũ ∈ U satisfies Axioms 1 and 3, estab-

lishing ⇐ in point 2. In turn, by Lemma 1, Pr satisfies IIA (if and) only if there exists V

such that Pr(x|u,B) =V (x|u)/∑x′∈BV (x′|u) for all x ∈ B and all (u,B)∈ D . That is, there

exists a collection of functions (Vu)u∈U such that Pr(x|u,B) =Vu(x,ux)/∑x′∈BVu(x
′,ux′).

Now fix u ∈ U and note that, given this representation of Pr, by both Axiom 2 and Axiom

A-1



3 we obtain

Vu

(

x,ux

)

∑x′∈BVu

(

x′,ux′
) =

Vu+r

(

x,ux + r
)

∑x′∈BVu+r

(

x′,ux′ + r
) for all r ∈ R and (u,B) ∈ D. (15)

Next define the auxiliary functions (Ṽu)u∈U such that Ṽu(x,ux − infu) = Vu(x,ux) for all

x ∈ X and all u ∈ U. Hence, Pr(x|u,B) = Ṽu(x,ux − infu)/∑x′∈B Ṽu(x
′,ux′ − infu), and

given Eq. (15), this implies

Ṽu

(

x,ux − infu
)

∑x′∈B Ṽu

(

x′,ux′ − infu
) =

Ṽu+r

(

x,ux + r− inf(u+ r)
)

∑x′∈B Ṽu+r

(

x′,ux′ + r− inf(u+ r)
) =

Ṽu+r

(

x,ux − infu
)

∑x′∈B Ṽu+r

(

x′,ux′ − infu
)

for all r ∈ R, (u,B) ∈ D , x ∈ B. Hence, Pr has a relative Luce representation with Ṽu =
Ṽu+r for all u ∈ U and all r ∈ R, establishing ⇒ in point 1.

Based on that, fix u ∈ U such that supu − infu = 1 and note that by Axiom 3,

Pr(x|u,B) = Pr(x|u · r,B) for all r > 0, i.e.

Pr(x|u · r,B) = Pr(x|u,B) =
Ṽu

(

x,ux − infu
)

∑x′∈B Ṽu

(

x′,ux′ − infu
) =

Ṽu

(

x, rux−infru
supru−infru

)

∑x′∈B Ṽu

(

x′,
rux′−infru

supru−infru

)

for all r > 0, B ∈ P(X), x ∈ B; note that supru− infru = r, since supu− infu = 1. Hence,

Pr(x|u ·r,B) has a standardized Luce representation with Ṽru = Ṽu for all r > 0. By above,

we already know Ṽr+u = Ṽu for all r ∈R, implying Ṽu = Ṽa+bu for all a,b ∈R : b > 0 and

all u ∈ U, establishing ⇒ in point 2.

B Proof of Theorem 1

First, let me extend the domain the utility functions to budget sets, with corresponding

utility sets as value.

Definition 7. Pick any u ∈ U and B ∈ P(X). Define n := |B| and bi, i = 1, . . . ,n, such

that B = {bi}i=1,...,n. Then, u(B) := {u(bi)}i=1,...,n.

By IIA, Axiom 4 implies that for all u, ũ ∈ U, all B, B̃ ∈ P(X), and all x ∈ B,y ∈ B̃,

u(B) = ũ(B̃) and ux = ũy ⇔ Pr(x |u,B) = Pr(y | ũ, B̃) (16)

Correspondingly, Axiom 5 implies that (16) holds if supu− infu = supu′− infu′.

Proof of Point 1, ⇒: By Lemma 2, Pr satisfies Axioms 1 and 2 if and only if it has a

relative Luce representation. Logit satisfies Axiom 4, establishing ⇒.
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Proof of Point 1, ⇐: We have to show that, given Axioms 1 and 2, Axiom 4 implies

logit.

Step 1 (Representation independently of x):

Pick any u ∈ U and x,y ∈ X . By Axiom 4, if ux = uy, then Pr(x|u,B) = Pr(y|u,B) for any

B ∈ P(X) such that x,y ∈ B, and thus

ux = uy ⇒ Vu(x,ux − infu) =Vu(y,ux − infu). (17)

Thus, choice propensities in any given context u ∈U solely depend on utilities. For any

u ∈ U , fix an inverse u−1 such that u(u−1(r)) = r for all r in the image of u. Note that

this inverse is not generally unique, but by the previous observation, the propensities

Vu(u
−1(ux),ux − infu) are independent of which inverse is chosen. Hence, we can define

a function Ṽu : R→ R+ by Ṽu(ux) =Vu(u
−1(ux),ux − infu), such that

Pr(x|u,B) =
Ṽu(ux)

∑x′∈B Ṽu(ux′)
for all x ∈ B,(u,B) ∈ D, (18)

representing propensities solely as functions of utilities ux. Note that this does not rule

out presentation effects; Ṽu depends on context u ∈ U, and the result merely states that ux

contains the information required to implicitly represent presentation effects for any u.

Step 2 (Generalized logit representation):

Define x,y∈X and x′,y′ ∈X such that (1) uy−ux = r, (2) uy′−ux′ = r, and (3) ux′−ux = r,

for some r ∈ R. Hence, u′x = ux′ and u′y = uy′ . Thus, by Axiom 4 (first equality, note that

Axiom 5 actually suffices) and Axiom 2 (second equality)

Pr(x′|u,{x′,y′})

Pr(y′|u,{x′,y′})
=

Pr(x|u′,{x,y})

Pr(y|u′,{x,y})
=

Pr(x|u,{x,y})

Pr(y|u,{x,y})
. (19)

Using the representation from Eq. (18), for all r < (supu− infu)/2 and all B ∈ P(X),

Ṽu(ux)

∑x′∈B Ṽu(ux′)
=

Ṽu(ux + r)

∑x′∈B Ṽu(ux′ + r)
for all X ∈ B and (u,B) ∈ D. (20)

Hence, Ṽu(ux + r) = Ṽu(ux) · h(r) for r ≈ 0 (and some function h : R → R), implying

Ṽu(ux + r)/Ṽu(ux) = h(r), i.e. it is independent of ux and hence it is differentiable in ux,

hence logṼu(ux + r)− logṼu(ux) is differentiable in ux, and thus Ṽu(ux + r) and Ṽu(ux)
are differentiable in ux. Differentiating Ṽu(ux + r) = Ṽu(ux) ·h(r) at r = 0, we obtain

dṼu(ux)/dux = Ṽu(ux) ·h
′(0) ⇒ Ṽu(ux) = exp{λ ·ux + c(x)}

as the solution of this differential equation, for some integration constant c(x). Hence,

Vu(x,ux) = exp{λ · ux +w(x)} with w(x) := c(x) for all x ∈ X . As this holds separately
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for all u ∈ U, V (x|u) = exp{λu ·ux +wu(x)} obtains, i.e.

Pr(x|u,B) =
exp{λu ·ux +wu(x)}

∑x′∈B exp{λu ·ux′ +wu(x′)}
. (21)

Finally, by translation invariance, this implies that we can represent Pr using λu = λu+r

as well as wu = wu+r for all r ∈ R , as then

Pr(x|u+r,B)=
exp{λu · (ux + r)+wu(x)}

∑x′∈B exp{λu · (ux′ + r)+wu(x′)}
.=

exp{λu ·ux +wu(x)}

∑x′∈B exp{λu ·ux′ +wu(x′)}
=Pr(x|u,B).

Step 3:

Now, pick any u ∈ U and x,y ∈ X such that ux = uy. By Axiom 4, Pr(x|u,B) = Pr(y|u,B)
for any B ∈ P(X) such that x,y ∈ B. Given that Pr satisfies Eq. (21), we thus obtain that

ux = uy implies wu(x) = wu(y). Hence, it is possible to represent wu alternatively as a

function of ux, instead of x, showing that the representation Eq. (21) does not violate the

result of Step 1 (that propensities may be represented solely as a function of utilities).

Step 4 (Presentation independence):

Next, take any u ∈ U, any ũ ∈ U, and define u′ = a+ bu (a,b ∈ R : b > 0) such that

infu′ ≤ inf ũ and supu′ > sup ũ; such u′ ∈ U exists by richness (transformability). Define

X ′ ⊆ X such that for all x ∈ X , there is exactly one x′ ∈ X ′ : u′x = u′x′ . Define X̃ such that

for each x ∈ X , there is exactly one x̃ ∈ X̃ : ux = ũx̃.

Define the function f : X ′ → [infu′,supu′] as f (x′) = ux′ for all x′ ∈ X ′. Note that f

is a bijection and thus invertible. Extend f and f−1 to be set functions as in Definition 7.

Pick any finite B̃ ⊂ X̃ and define B′ = f−1
(

ũ(B̃)
)

. Thus, |B′| = |B̃| and ũ(B̃) = f (B′) =
u′(B′).

For any y ∈ B̃, if x = f−1
(

ũy

)

, then ũy = f (x) = u′x, and by Axiom 4,

Pr(y | ũ, B̃) = Pr(x |u′,B′) =
exp{λu′ ·u

′
x +wu′(x)}

∑x′∈B′ exp{λu′ ·u
′
x′
+wu′(x′)}

.

As stated, this obtains for all y ∈ B̃ and all B̃ ⊂ X̃ (with corresponding x and B′). Using

the above result that for all x,y ∈ X , ũx = ũy implies wũ(x) = wũ(y), we thus obtain

Pr(x | ũ,B) =
exp{λu′ · ũx +wu′( f−1(ũx))}

∑x′∈B exp{λu′ · ũx′ +wu′( f−1(ũx′))}

for all x ∈ B and all B ∈ P(X). Defining λ̂ = λu′ and ŵ : [infu′,supu′] → R such that
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ŵ(u′x) = wu′(x) for all x ∈ X ′, this implies

Pr(x | ũ,B) =
exp{λ̂ · ũx + ŵ(ũx)}

∑x′∈B exp{λ̂ · ũx′ + ŵ(ũx′)}
. (22)

Since this holds true for all ũ such that infu′ ≤ inf ũ and supu′ ≥ sup ũ, it also holds true

for ũε = ũ+ ε if 0 < ε ≤ supu′− sup ũ, implying

Pr(x | ũε,B) =
exp{λ̂ · [ũx + ε]+ ŵ(ũx + ε)}

∑x′∈B exp{λ̂ · [ũx′ + ε]+ ŵ(ũx′ + ε)}
=

exp{λ̂ · ũx + ŵ(ũx + ε)}

∑x′∈B exp{λ̂ · ũx′ + ŵ(ũx′ + ε)}
.

By Axiom 2, Pr(x | ũ,B) = Pr(x | ũε,B), and thus there exists a function h : R → R such

that ŵ(ũx + ε) = ŵ(ũx)+ h(ε), i.e. ε cancels out. Hence, we can represent propensities

given ũε equivalently as ŵ(ũx + ε) = ŵ(ũx) for all ε ≤ supu′− sup ũ and all x ∈ X . By

surjectivity of ũ (richness), it follows that ŵ is constant, which implies that wu′ and wũ

are constant and cancel out. Hence, for any ũ ∈ U, Pr(x | ũ,B) has a logit representation

with λ = λũ = λu′ .

Step 5 (Context independence):

Pick any two ũ1, ũ2 ∈ U, and any u′ ∈ U such that u′ = a+bu (a,b ∈R : b > 0) such that

infu′ ≤ inf{ũ1, ũ2} and supu′ ≤ inf{ũ1, ũ2}. By the previous results, both Pr(x | ũ1,B) and

Pr(x | ũ1,B) have logit representations with λũ1
= λũ2

= λu′ , establishing Point 1, ⇐.

Proof of Point 2, ⇒: By Lemma 2, Pr satisfies Axioms 1 and 3 if and only if it has

a standardized Luce representation. Contextual logit satisfies Axiom 5, establishing ⇒.

Proof of Point 2, ⇐: We have to show that, given Axioms 1 and 3, Axiom 5 implies

contextual logit.

Steps 1–2 (Generalized contextual logit):

First, fix u ∈ U such that supu− infu = 1. Hence,

Pr(x|u,B) =
Vu

(

x, ux−infu
supu−infu

)

∑x′∈BVu

(

x′,
ux′−infu

supu−infu

)

=
Vu(x,ux − infu)

∑x′∈BVu(x′,ux′ − infu)
,

i.e. conditional on context u, Pr also a relative Luce representation. Thus we may follow

the arguments in the proof of Point 1 (⇐), up to Eq. (21), and obtain

Pr(x|u,B) =
exp{λu ·ux +wu(x)}

∑x′∈B exp{λu ·ux′ +wu(x′)}
=

exp
{

λu·ux

supu−infu
+wu(x)

}

∑x′∈B exp
{ λu·ux′

supu−infu
+wu(x

′)
}

,
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with λu+r = λu and wu+r = wu for all r ∈ R. By Axiom 3, Pr(x|u,B) = Pr(x|u · r,B) for

all r > 0, i.e.

Pr(x|u ·r,B)=Pr(x|u,B)=
exp{λu ·ux +wu(x)}

∑x′∈B exp{λu ·ux′ +wu(x′)}
=

exp
{

λu·rux

supru−infru
+wu(x)

}

∑x′∈B exp
{ λu·rux′

supru−infru
+wu(x

′)
}

for all r > 0, B ∈ P(X), x ∈ B; note that supru− infru = r, since supu− infu = 1. Hence,

using u′ = ru,

Pr(x|u′,B) =
exp

{ λu′ ·u
′
x

supu′−infu′
+wu′(x)

}

∑x′∈B exp
{ λu′ ·u

′
x′

supu′−infu′
+wu′(x

′)
}

,

with wu′ = wu and λu′ = λu. By above, we already know wr+u = wu and λr+u = λu for

all r ∈ R, implying λu = λa+bu and wu = wa+bu for all a,b ∈ R : b > 0 and all u ∈ U.

Step 3: Next, pick any u∈U and any x,y∈ X such that ux = uy. By Axiom 5, this implies

wu(x) = wu(y), i.e. ux = uy implies wu(x) = wu(y).

Step 4 (Presentation independence):

Now, pick any u′, ũ ∈ U such that infu′ = inf ũ = 0 and supu′ = sup ũ = 1. Note that

supu′− infu′ = sup ũ− inf ũ = 1 initially allows me to drop the normalization by supu−
infu in the choice propensities. Given this restriction of the images of u′ and ũ, Axiom 5

implies, simply following the proof above, up to Eq. (22),

Pr(x | ũ,B) =
exp{λ̂ · ũx + ŵ(ũx)}

∑x′∈B exp{λ̂ · ũx′ + ŵ(ũx′)}
.

for all x ∈ B and all B ∈ P(X), with λ̂ = λu′ = λu′/(supu′− infu′) and ŵ : [infu′,supu′]→
R such that ŵ(u′x) = wu′(x) for all x ∈ X ′. Again, define ũε = ũ+ ε, with ε > 0. Noting

that the image of ũε is not contained in the image of u′, Axiom 5 applies only to options x :

ũε(x)≤ 1, but given this restriction, the arguments made in the proof of above, following

Eq. (22) imply

Pr(x | ũε,B) =
exp{λ̂ · ũx + ŵ(ũx + ε)}

∑x′∈B exp{λ̂ · ũx′ + ŵ(ũx′ + ε)}
.

for all x ∈ B and all B ∈ P(X) such that max ũε(B) ≤ 1. By Axiom 3, Pr(x | ũ,B) =
Pr(x | ũε,B), which similarly to above implies ŵ(ũx+ε) = ŵ(ũx), now only for all x ∈ X :

ux + ε ≤ 1, but for all ε ∈ (0,1), including all ε ≈ 0. Hence, ŵ is constant, implying that

wu′ and wũ are constant and that given u′ or ũ, Pr has a contextual logit representation

with λ = λũ = λu′ , recalling that supu′− infu′ = 1 and sup ũ− inf ũ = 1.
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Step 5 (Weak context independence): Finally, pick any two u1,u2 ∈ U. Define u′ =
(u1− infu1)/(supu1− infu1) and ũ = (u2− infu2)/(supu2− infu2). By step 2, λu1

= λu′

and wu1
=wu′ as well as λu2

= λũ and wu2
=wũ. By step 4, λu′ = λũ and wu′ =wũ = const,

and by transitivity, λu1
= λu2

and wu1
= wu2

= const, implying the latter cancel out and

that given u1 or u2, Pr has a contextual logit representation with the λu1
= λu2

= λ. Since

this obtains for all u1,u2 ∈ U, Point 2, ⇐ is established.

C Proof of Theorem 2

Proof of Point 1, ⇒: If Pr is conditional logit, then it also has an unconditional logit

representation, and we know by the definition of choice utility vu that, for all u ∈ U and

all x ∈ X ,

Pr(x|u,X) =
exp{vu(x)}

∑x′∈X exp{vu(x′)}
=

exp{λux}

∑x′∈X exp{λux′}
,

⇔ Pr(x|u,X) =
exp{vu(x)− infvu}

∑x′ exp{vu(x′)− infvu}
=

exp{λ(ux − infu)}

∑x′ exp{λ(ux′ − infu)}

Now define a sequence (xε) such that limε→0 vu(xε)= infvu, which implies limε→0 u(xε)=
infu as vu = λu+ r for some r ∈ R, and by positivity

lim
ε→0

Pr(xε|u,X)

Pr(x|u,X)
=

exp{0}

exp{vu(x)− infvu}
=

exp{λ ·0}

exp{λ(ux − infu)}

for all x ∈ X . Hence, vu(x)− infvu = λ(ux − infu) with λ > 0 by richness (choice varia-

tion) for all x ∈ X and u ∈ U.

Proof of Point 1, ⇐: Fix u ∈ U. If point 3 holds true, then vu = a+ λu with a =
infvu −λ infu, and by the definition of unconditional logit,

Pr(x|u,B) =
exp{vu(x)}

∑x′∈B exp{vu(x′)}
=

exp{a+λux}

∑x′∈B exp{a+λux′}
=

exp{λux}

∑x′∈B exp{λux′}

for all (u,B) ∈ D and all x ∈ B, i.e. Pr is has a conditional logit representation for λ.

Proof of Point 2, ⇒: If Pr is contextual logit, then it also has an unconditional logit

representation, and we know by the definition of choice utility vu that, for all u ∈ U and
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all x ∈ X ,

Pr(x|u,X) =
exp{vu(x)}

∑x′ exp{vu(x′)}
=

exp
{

λ · ux

supu−infu

}

∑x′ exp
{

λ ·
ux′

supu−infu

}

⇔ Pr(x|u,X) =
exp{vu(x)− infvu}

∑x′ exp{vu(x′)− infvu}
=

exp
{

λ · ux−infu
supu−infu

}

∑x′ exp
{

λ ·
ux′−infu

supu−infu

}

Now define a sequence (xε) such that limε→0 vu(xε)= infvu, which implies limε→0 u(xε)=
infu as vu = au+r, with a= λ/(supu− infu)> 0 by richness (choice variation) and some

r ∈ R, and by positivity

lim
ε→0

Pr(xε|u,X)

Pr(x|u,X)
=

exp{0}

exp{vu(x)− infvu}
=

exp
{

λ ·0
}

exp
{

λ · ux−infu
supu−infu

}

for all x ∈ X . Hence, vu(x)− infvu = λ · ux−infu
supu−infu

for all x ∈ X and u ∈ U.

Proof of Point 2, ⇐: Fix u ∈ U. If point 3 holds true, then vu = a+λ · u
supu−infu

with

a = infvu −λ · infu
supu−infu

, and by the definition of unconditional logit,

Pr(x|u,B)=
exp{vu(x)}

∑x′∈B exp{vu(x′)}
=

exp{a+λ · ux

supu−infu
}

∑x′∈B exp{a+λ ·
ux′

supu−infu
}
=

exp{λ · ux

supu−infu
}

∑x′∈B exp{λ ·
ux′

supu−infu
}

for all (u,B) ∈ D and all x ∈ B, i.e. Pr is has a contextual logit representation for λ.
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