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Abstract

Our experiments investigate the extent to which traders learn from the
price, differentiating between situations where orders are submitted before
versus after the price has realized. In simultaneous markets with bids that
are conditional on the price, traders neglect the information conveyed by
the hypothetical value of the price. In sequential markets where the price
is known prior to the bid submission, traders react to price to an extent
that is roughly consistent with the benchmark theory. The difference’s
robustness to a number of variations provides insights about the drivers
of this effect (JEL D82, D81, C91).

1 Introduction

Market prices reflect much information about fundamental values. The extent
to which traders are able to utilize this information has important welfare con-
sequences but is difficult to measure as one often lacks control of the traders’
restrictions, beliefs and preferences. One possibility to detect a bias in price in-
ference is to modify the informational environment in a way that is irrelevant for
rational traders. If trading reacts to a framing variation that is uninformative
under rational expectations, the latter assumption is questionable. We focus
on an important dimension of variability between markets, the conditionality of
price. In simultaneous markets, the price realization is unknown to the traders
at the time when they make their decisions—examples are financial markets with
limit orders or other supply/demand function regimes. Theoretically, traders
would incorporate the information of each possible price into their bids, as in the
Rational Expectations Equilibrium prediction by Grossman (1976), inter alia.
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support by the European Research Council (through Starting Grant 263412) and the German
Science Foundation (through Collaborative Research Center TRR 190) is gratefully acknowl-
edged. Ngangoué: New York University, kn44@nyu.edu. Weizsäcker: Humboldt-Universität
zu Berlin and DIW Berlin, weizsaecker@hu-berlin.de
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But the price information is hypothetical and traders may find it hard to make
the correct inference in hypothetical conditions. A host of evidence on Winner’s
Curse and other economic decision biases is consistent with this conjecture, as
is the psychological evidence on accessibility (Kahneman, 2003) and contingent
thinking (Evans, 2007).1 Simultaneous asset markets with price-taking agents
are a relevant point in case for such failures of contingent thinking; one that
has not previously been researched, to our knowledge. In contrast, sequential

markets—e.g. many quote-based markets and sequential auctions—have the
traders know the price at which they can complete their trades. Here, it may
still be nontrivial to learn from the price; but both the psychological research on
contingent reasoning and the related economic experiments that include treat-
ment variations where simultaneity is switched on and off (Carrillo and Palfrey
2011, Esponda and Vespa 2014; 2016 and Li 2016) suggest that the task is more
accessible in a sequential trading mechanism than in a simultaneous one. Our
series of experiments confirms this hypothesis, in a simple and non-strategic
market environment where agents act as price takers.2 In such an environment,
the failure to learn from the price is especially noteworthy because the price
explicitly reflects the asset value, conditional on the available information. To
shed further light on the importance of this failure, we study its potential sources
and discuss possible implications in financial markets.

The comparison between the two extreme trading mechanisms enables us to
identify sets of trades that can be directly attributed to imperfect contingent
thinking. We prefer avoiding claims about external validity but we note that the
necessity to think contingently is ubiquitous in real-world markets, at various
levels, despite the fact that a clear distinction between pure simultaneous and
sequential markets vanishes. Order-driven markets, especially in the form of call
auctions, require investors to supply liquidity without knowledge of the liquidity
demand (Malinova and Park, 2013; Comerton-Forde et al., 2016). Examples of
pure order-driven markets are the stock exchanges in Hong Kong, Japan and
several other Asian countries, whereas the London SEAQ, for instance, functions
as a pure quote-driven market.

Markets that represent hybrid versions of order- and quote-driven mecha-
nisms also exhibit important features of simultaneous trading. For example,
equity markets with low liquidity may be cleared throughout the day with peri-
odically conducted call auctions; other markets open or close the day’s trading
via call auctions. Additionally, an increasing flow of retail orders is internalized
(Comerton-Forde et al., 2016). These orders are not executed on public ex-
changes but are executed internally through dark avenues or routed to different
exchanges, making it difficult for retail investors to monitor the market condi-
tions prior to trade. Thus, even for continuously traded assets the increasing
market fragmentation and the increasing speed of trades force (slow) retail in-
vestors to post orders without precise knowledge of transaction prices, requiring
contingent thinking.

1Experiments analyzing the Winner’s Curse include, for example, Bazerman and Samuelson
(1983); Kagel and Levin (1986); Kagel, Levin, Battalio, and Meyer (1989). For a thorough
review on the Winner’s Curse literature see Kagel and Levin (2009).

2While technically incompatible, our evidence may be viewed as supporting the main idea
of Li’s (2016) obvious strategy proofness: in a sequential market, the set of prices that are still
possible is smaller than in simultaneous markets, enabling the trader to identify an optimal
strategy.
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The difference in informational efficiency between simultaneous and sequen-
tial trading mechanisms has been discussed both theoretically (e.g. Kyle 1985;
Madhavan 1992; Pagano and Roell 1996) and experimentally (Schnitzlein, 1996;
Theissen, 2000; Pouget, 2007). A consensus is that, in the presence of per-
fectly informed insiders, the temporal consolidation of orders in call auctions
allows markets to aggregate information as efficiently as with continuous trad-
ing.3 With heterogeneous information, in contrast, the possibility to learn from
market prices becomes essential when private information is at odds with the
aggregate information, and determines the speed of price discovery. This holds
in particular when new information flows into markets. Yet, an established pat-
tern is that prices in real and experimental call markets adjust relatively slowly
to incoming information (Amihud et al., 1997; Theissen, 2000). Contributing
to a possible explanation of this pattern, we further document and examine
the discrepancies between stylized simultaneous and sequential markets, with a
focus on the extent to which traders learn from the price.

Our participants trade a single, risky, common-value asset. To trade opti-
mally, a participant considers two pieces of information: her private signal and
the information conveyed by the asset price. The latter is informative because
it is influenced by the trading activity of another market participant who has
additional information about the asset value. To manipulate the accessibility
of the price information, we perform the experiment in two main treatments,
simultaneous (SIM) versus sequential (SEQ). In treatment SIM, participants
receive a private signal and submit a limit order. If the market price realizes
below the limit, the trader buys one unit of the asset, otherwise she sells one
unit.4 Despite the fact that the price has not yet realized, SIM traders would
optimally infer the extent to which a high price indicates a high value and, thus,
soften the demand’s downward reaction to a higher price, relative to the case
that the price is uninformative. The possibility that traders may fail to learn
from hypothetical prices is examined by comparing to the treatment with se-
quential markets, SEQ, where the price is known when traders choose to buy or
sell. Conditional thinking is not necessary here but treatments SIM and SEQ
are nevertheless equivalent: they have isomorphic strategy sets and isomorphic
mappings from strategies to payoffs.

Section 2 presents the experimental design in detail and Section 3 discusses
our behavioral hypotheses. We present three benchmark predictions for com-
parison with the data: first, full naiveté, where the trader learns nothing from
the price; second, the Bayes-Nash prediction, where a trader assumes that pre-
vious trades are fully rational and accounts for it; and third, the empirical
best response that takes into account the actual distribution of previous trades,
which may deviate from optimality. We use the latter as our main benchmark
for optimality as it maximizes the traders’ expected payments. That is, we ask
whether naiveté fits the data better than the empirical best response, separately
by treatment.

3Pouget’s experimental call market is informationally efficient because of the high share of
insiders, but liquidity provision in call markets deviates more from equilibrium predictions.
This finding is consistent with ours and Pouget, too, assigns the deviation from equilibrium
strategies to bounded rationality and partly to strategic uncertainty.

4Traders also have the option to reverse their limit order, selling at low prices and buying
at high prices. This ensures the equivalence between the treatments, see Section 2. In each
treatment, we restrict the trades to a single unit of supply or demand per trader.
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The data analysis of Section 4 shows that the participants’ inference of in-
formation from the price varies substantially between simultaneous versus se-
quential markets. In SIM, participants often follow the prediction of the naive
model, thus showing ignorance of the information contained in the price. Price
matters mainly in its direct influence on the utility from trade—a buyer pays
the price, a seller receives it. In contrast, in SEQ, where transaction prices are
known beforehand, asset demand is significantly more affected by the informa-
tion contained in the price and the large majority of trades are as predicted by
empirical best response. Averaging over all situations where the naive bench-
mark differs from the empirical best response, the frequency of naive trading
decisions is twice as high in SIM relative to SEQ, at 38% versus 19%.

Section 5 identifies various possible sources underlying the difficulty of hy-
pothetical thinking in our markets. One possibility is that the participants feel
rather well-informed by their own signals, relative to what they can learn from
the price. We thus repeat the experiment with two treatments where early
traders are much better informed than later traders, rendering learning from
the price more important and more salient. We find that the replication only
exacerbates the differences between simultaneous and sequential markets, both
in terms of behavior and payoff consequences. This evidence makes it implau-
sible that the bias is driven by negligence or the lack of salience of the price’s
informativeness.

A further hypothesis is that the effect arises due to the difficulty in correctly
interpreting human choices. As in the literature examining inference in games
versus in single-person tasks (Charness and Levin, 2009; Ivanov et al., 2010), we
therefore ask whether the bias also occurs if the price’s informativeness is gen-
erated by an automated mechanism. The corresponding treatment comparison
replicates the main results. We can therefore rule out that the effect is driven
by the necessity of responding to the behavior of others.

Finally, we ask whether the difficulty in contingent reasoning lies in the
cognitive load of required inference, or rather in the hypothetical nature of
price. To this end, we run another treatment where only one of the possible
prices is considered, but still not yet realized. The rate of optimal choices in this
treatment lies mid-way between that of the two main treatments, illustrating
that the difficulty on contingent thinking is significantly fueled by both the
amount and the hypothetical nature of possible prices in simultaneous markets.

We then combine the different treatments into an aggregate estimation of
information use (Section 5.4). The analysis of the combined simultaneous treat-
ments shows that relative to empirical best response, the participants under-
weight the information contained in the price to a degree that is statistically
significant (at p = 0.09 in a one-sided test) and that they strongly over-weight
their own signal’s importance. In the sequential treatments, they over-weight
both price and their own signal. Overall, the estimates indicate that traders far
under-weight the prior distribution of the asset’s value but that they neverthe-
less learn too little from the price in simultaneous markets.

Taken together, the experiments provide evidence of an interaction between
market microstructure and the efficiency of information usage. In the language
introduced by Eyster and Rabin (2005), we find that the degree of ‘cursedness
of beliefs’ is higher when the information contained in the price is less acces-
sible: with price not yet realized, traders behave as if they tend to ignore the
connection between other traders’ information and the price. Aggregate de-
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mand therefore decreases too fast with the price. The economic bearing of the
effect is further discussed in Section 6. We examine the predictions of Hong
and Stein (1999) and Eyster et al. (2015) that markets with naive traders, who
cannot learn from the price, generate an inefficient and slow price discovery.
Naive traders tend to speculate against the price, pushing it back towards its
ex-ante expectation also in cases where their own signals are consistent with the
direction of price movement. Their erroneous speculation reduces the extent
to which the price reveals the underlying value. Confirming this prediction, we
simulate a standard price setting rule with our data and find that price discov-
ery is slower in simultaneous treatments than in sequential treatments. Any
(hypothetical) subsequent traders can therefore learn less from the price. But
naiveté is detrimental not only to later players: also the observed payoffs of our
market participants themselves are lower in SIM than in SEQ, albeit not to a
large extent.

While we focus on markets, we again emphasize that our findings are also
consistent with evidence in very different domains. The experimental literatures
in economics and psychology provide several sets of related evidence that con-
ditional inference is suboptimal. Psychologists have confirmed quite generally
that decision processes depend on task complexity (Olshavsky, 1979) and that
decision makers prefer decision processes with less cognitive strain. They focus
on one model, one alternative or one relevant category when reflecting about
possible outcomes and their consequences (Evans, 2007; Murphy and Ross, 1994;
Ross and Murphy, 1996). They also process salient and concrete information
more easily than abstract information (see e.g. Odean 1998 and the literature
discussed there).

Several authors before us have pointed out that a possibility to reduce the
complexity of learning is to proceed in a sequential mechanism, like in quote-
driven markets.5 Our experiment suggests a specific manifestation of this effect,
namely that drawing the attention to the realized price may enable the decision
maker to interpret more easily the information underlying the price. In the re-
lated bilateral bargaining experiment by Carrillo and Palfrey (2011), buyers also
trade more rationally in a sequential trading mechanism than in a simultaneous
one. They process information more easily and exhibit less non-Nash behavior
when facing a take-it-or-leave-it price instead of bidding in a double auction.
Auction experiments similarly find that overbidding is substantially reduced in
dynamic English auctions compared to sealed-bid auctions (Levin et al., 1996).
Other contributions suggest that traders may systematically disregard relevant
information that is conveyed by future, not yet realized events: overbidding
decreases when finding the optimal solution does not necessitate updating on
future events (Charness and Levin, 2009; Koch and Penczynski, 2014).6 An-
other related study is the voting experiment of Esponda and Vespa (2014) who
find that when the voting rules follow a simultaneous game that requires hypo-
thetical thinking, the majority of participants behave nonstrategically, whereas
in the sequential design they are able to extract the relevant information from

5Shafir and Tversky (1992) note that participants see their preferences more clearly if they
focus on one specific outcome. As they observe, "[t]he presence of uncertainty [...] makes it
difficult to focus sharply on any single branch [of a decision tree]; broadening the focus of
attention results in a loss of acuity" (p.457).

6Charness and Levin (2009) analyze the Winner’s Curse in a takeover game, whereas Koch
and Penczynski (2014) focus on common-value auctions.
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others’ actions and behave strategically.
We complement the described evidence on contingent thinking in strategic

situations (bilateral bargaining games, auctions and strategic voting games) by
addressing markets that clear exogenously and where traders are price takers.
The simple structure of the traders’ decision problems may make it easy for
our participants to engage in contingent thinking—a possibility that the data
refute—and helps us to straightforwardly assess whether market traders make
too much or too little inference from the price.

2 Experimental Design

The basic framework is identical across treatments, involving a single risky asset
and money. A market consists of two traders, trader 1 and trader 2, who each
either buy or sell one unit of the risky asset.7 The asset is worth θ ∈ {θ, θ},
with equal probabilities. Traders do not observe the fundamental value θ but
they each receive a private signal si ∈ [0, 1]. The true value θ determines which
of two triangular densities the signal is drawn from, such that in the low-value
state the participants receive low signals with a higher probability, and vice
versa:

f(si|θ) =

{

2(1 − si) if θ = θ

2si if θ = θ
i ∈ {1, 2} (1)

Conditional on θ, the signals of the two traders are independent.
Each trader i faces a separate transaction price pi. Trader 1’s price p1 is

uniformly distributed in [θ, θ] and is uninformative about the fundamental value
θ. Trader 1 observes his private signal s1 and states his maximum willingness
to pay by placing a limit order b1. If p1 lies weakly below b1, he buys one
unit of the asset. If p1 strictly exceeds b1, he sells one unit.8 By checking
an additional box, trader 1 may convert his limit order into a “reversed” limit
order. A reversed limit order entails the opposite actions: the trader buys if p1

weakly exceeds b1, otherwise he sells. (Only few participants make use of it; we
defer the motivation for allowing reversed limit orders to Section 2.2.) Let Z1

denote the indicator function that takes on value 1 if a limit order is reversed.
Trader 1’s demand is X1(p1, b1):

X1(p1, b1) = Y1(p1, b1)(1 − Z1) − Y1(p1, b1)Z1 (2)

Y1(p1, b1) =

{

1 if p1 ≤ b1

−1 if p1 > b1

where p1 ∼ U [θ, θ]

The task of trader 2 varies across the two main treatments, a simultaneous
and a sequential mechanism.

7Because of a possible reluctance to sell short, we avoid any notion of short sales in the
experimental instructions. Participants are told that they already possess a portfolio that
needs to be adjusted by selling or buying one unit of a given asset.

8The design does not allow for a “no trade” option because of the possibility that it may
add noise and complications to the data analysis. We opted for a minimal set of actions that
enables participants to state their preference to buy and sell with a single number.
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2.1 Simultaneous treatment (SIM)

Trader 2 observes trader 1’s price p1 and her own private signal s2. Like trader
1, she chooses a limit order or, optionally, a reversed limit order. When sub-
mitting her decision, she does not know her own price p2.
Participants are informed that the price p2 reflects the expectation of an exter-
nal market maker who observes trader 1’s buying or selling decision and who
assumes that trader 1 bids rationally upon receipt of his signal s1. Importantly,
to avoid any ambiguity in the description, they learn the pricing rule that maps
p1 and the realized value of X1 into p2:

p2 =











θ+p1

2 , if X1(p1, b1) = 1

θ+p1

2 , if X1(p1, b1) = −1

(3)

Participants also receive a verbal explanation of the implied fact that for
given p1, trader 2’s price p2 can take on only one of the two listed possible
realizations, depending on whether trader 1 buys or sells. Through X1, p2 is
influenced by trader 1’s private signal s1; p2 is therefore informative about the
asset value θ and trader 2 would ideally condition her investment decision on
both s2 and p2.

2.2 Sequential treatment (SEQ)

In treatment SEQ, trader 2 observes the price p2 as specified in (3) before mak-
ing her decision. The game proceeds sequentially, with trader 1 first choosing
his (possibly reversed) limit order b1. As in treatment SIM, his demand X1

determines the price for trader 2, p2. Trader 2 observes the realized value of
{p1, p2, s2} and chooses between buying and selling at p2.
It is straightforward to check that treatments SIM and SEQ are strategically
equivalent. Treatment SEQ allows for four possible strategies contingent on

p2 ∈ {
θ+p1

2 , θ+p1

2 }: {buy, buy}, {buy, sell}, {sell, buy} and {sell, sell}. In treat-
ment SIM, the possibility to reverse the limit order enables the same four com-
binations of buying and selling contingent on p2. The two strategy spaces are
therefore isomorphic.

2.3 Payoffs

In each of the treatments, the experimenter takes the other side of the market,
which therefore always clears. In case of a buy, the profit Πi of trader i ∈ {1, 2}
is the difference between the asset value and the market price, and vice versa if
the asset is sold:

Πi = (θ − pi)Xi(pi, bi) (4)

Between treatments SIM and SEQ, payoffs arising from each combination
of strategies and signals are identical. Any rational response to a fixed belief
about trader 1 leads to the same purchases and sales in the two treatments.9

9This statement holds under the assumptions of subjective utility theory. Probability
weighting and other generalizations of expected utility can lead to different weighting of out-
comes between the two treatments.
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3 Predictions

We mainly focus on trader 2 and compare the participants’ behavior to three
theoretical predictions. The first two are variants of the case that trader 2 has
rational expectations and properly updates on her complete information set. As
the third benchmark, we consider the case that trader 2 fully neglects the price’s
informativeness. For all three predictions, we assume traders to be risk-neutral.

3.1 Rational best response

Trader 1 has only his private signal s1 to condition his bid upon. His optimal
limit order b∗

1 is not reversed and maximizes the expected profit conditional on
s1. It is easy to show (using the demand function (2)) that b∗

1 increases linearly
in the signal:

b∗
1(s1) = arg max

b1

E[(θ − p1)X1(p1, b1)|s1] = E[θ|s1] = θ + (θ − θ)s1 (5)

Under rational expectations about trader 1’s strategy, trader 2 maximizes her
expected payoff conditioning on both her private signal s2 and the informative
price p2. If her maximization problem has an interior solution, it is solved by
the following fixed point:10

b∗
2(s2) = E[θ|s2, p2 = b∗

2(s2)] (6)

The optimal bidding of trader 2 never uses reversed limit orders but follows
a cutoff strategy that switches from buying to selling as the price increases. At
a price equal to the (interior) cutoff b∗

2, the trader is indifferent between a buy
and a sell.

The Bayes-Nash (BN) strategy of trader 2, however, simplifies to a step
function: p2 reflects the market maker’s expectation (see (3)), implying that in
equilibrium p2 would make trader 2 indifferent in the absence of her own signal
s2. The additional information contained in s2 breaks the tie, such that trader
2 buys for s2 ≥ E[s2] = 1

2 , and sells otherwise.
However, the BN best response is not the most payoff-relevant ’rational’

benchmark. In the experiment, participants in the role of trader 1 deviate from
their best response b∗

1 and participants acting as trader 2 would optimally adjust
to it. Their price p2 is still informative about θ because it reflects s1, but p2 does
not generally equal E[θ|X∗

1 (·)] if X1 is subject to deviations from X∗
1 (p1, b∗

1). For
a stronger test of naive beliefs, we therefore consider the empirical best response
(EBR) to the participants acting as traders 1. The empirical best response is
computed via a numerical approximation to the fixed point equation (6).

The two benchmarks BN and EBR are depicted in Figure 1 (for the param-
eters of the actual experiment that are reported in Section 4, and using the
empirical behavior described in Section 5 for the calculation of EBR), together
with the naive prediction that we describe next.11 The graphs represent the

10For a simple proof of this statement, verify that if b∗
2 were to violate (6) then there would

exist realizations of (p2, s2) such that p2 lies in the vicinity of E[θ|s2, p2 = b∗
2] and profits are

forgone.
11The kinks in the EBR function arise because of the numerical approximation to the fixed

point, which is done for signals that are rounded to lie on a grid with step size 0.1 for close
approximation.
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prices at which, for a given signal, trader 2 is indifferent between buying and
selling. She is willing to buy at prices below the graph and willing to sell at
prices above the graph. The EBR graph is less steep than that of BN: e.g.
for an above-average level of p2, EBR requires trader 2 to buy only if she has
additional positive information (large s2).

3.2 Best response to naive beliefs

Contrasting the optimal behavior, a trader 2 with naive beliefs does not infer
any information from the price. She fails to account for the connection between
trader 1’s signal s1 and his demand X1 and, instead, conditions on her own
signal s2 only. The maximization problem with naive beliefs is then analogous
to that of trader 1 and leads to the same bidding behavior:

bN
2 = arg max

b2

E[(θ − p2)X2(p2, b2)|s2] = E[θ|s2] = θ + (θ − θ)s2 (7)

The naive strategy is depicted as the straight line in Figure 1. Its under-
lying belief is equivalent to level-1 reasoning or fully cursed beliefs. In the
level-k framework (for a formulation with private information, see e.g. Craw-
ford and Iriberri (2007)) level-0 players ignore their information and randomize
uniformly and a naive trader 2, as defined above, is therefore equivalent to a
level-1 agent. In our setting, this prediction also coincides with a fully cursed
strategy of Eyster and Rabin (2005) and Eyster et al. (2015) that best responds
to the belief that agent 1’s equilibrium mixture over bids arises regardless of
their information.12

3.3 Hypotheses

As outlined in the Introduction, we conjecture that the updating on additional
market information is more difficult in the simultaneous treatment than in the
sequential treatment. Using the benchmarks from the previous subsection, we
translate the conjecture into a behavioral hypothesis:

Hypothesis 1 Naive bidding is more prevalent in treatment SIM than in treat-

ment SEQ.

The hypothesis is tested in the next section by considering those decisions
of trader 2 where EBR and Naive bidding differ, separately for each of the two
treatments. As shown in Figure 1, EBR and Naive bidding predict different
decisions in the area between the two graphs. For instance, at prices within this
area, a naive agent with a signal below 0.5 would buy whereas she would sell
according to EBR.

12In fully cursed equilibrium, trader 2 believes that trader 1 with signal s1 randomizes
uniformly over his possible bids: trader 2 expects that trader 1 with signal s1 has a bid
distribution equal to that resulting from the optimal bids given in (5), independent of s1.
The perceived mixture of bids by each type of trader 1 therefore follows the distribution

F (
b−θ

θ−θ
) = F (s1), with density 1

2
f(s1|θ) + 1

2
f(s1|θ) = 1. The analysis of Eyster and Rabin

(2005) and Eyster et al (2015) also allows for intermediary levels of cursedness, where agents
may only partially ignore the information revealed by other agents’ actions. Our estimations
in Subsection 5.4 also allow for milder versions of information neglect.
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Figure 1: Naive, Bayes Nash and empirical best responses of trader 2.

Our second hypothesis considers the possibility that all participants acting
as trader 2 have naive beliefs. In this case, the symmetry of the two traders’
decision problems would induce symmetry between their bid distributions. We
can therefore use trader 1’s bid distribution as an empirical benchmark for naive
traders 2. We restrict the comparison to treatment SIM, where the two traders
have identical action sets.

Hypothesis 2 In treatment SIM, bids of trader 2 do not significantly differ

from bids of trader 1.

4 Experimental Procedures and Results

4.1 Procedures

The computerized experiment is conducted at Technical University Berlin, using
the software z-Tree (Fischbacher, 2007). A total of 144 students are recruited
with the laboratory’s ORSEE database (Greiner, 2004). 72 participants are in
each of the treatments SIM and SEQ, each with three sessions of 24 participants.
Within each session, the participants are divided into two equally sized groups
of traders 1 and traders 2. Participants remain in the same role throughout the
session and repeat the market interaction for 20 periods. At the beginning of
each period, participants of both player roles are randomly matched into pairs
and the interaction commences with Nature’s draw of θ, followed by the market
rules as described in Section 2. At the end of each period, subjects learn the
value θ, their own transaction price (if not already known) and their own profit.
Upon conclusion of the 20 periods, a uniform random draw determines for every
participant one of the 20 periods to be paid out for real.
Participants read the instructions for both roles, traders 1 and 2, before learning
which role they are assigned to. The instructions include an elaborate computer-
based simulation of the signal structure as well as an understanding test. The
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Note: The average bidding curve corresponds to θ + (θ − θ) · P̂ (X1|s1), where P̂ (X1|s1) is
the probit estimate of the probability of trader 1 buying in treatment SIM.

Figure 2: Trades of traders 1.

support of the asset value is {40, 220}.13 Each session lasted approximately 90
minutes and participants earned on average EUR 22.02. Total earnings consist
of a show-up fee of EUR 5.00, an endowment of EUR 15.00 and profits from
the randomly drawn period (which could be negative but could not deplete the
entire endowment). Units of experimental currency are converted to money by
a factor of EUR 0.08 per unit.

4.2 Results

4.2.1 Trader 1

For a cleaner comparison of the two treatments, we analyze realized trades
instead of bids, thereby considering also the suboptimal, reverse limit orders (ca.
15% of all bids in treatment SIM). Figure 2 shows the implemented buys and
sells of participants acting as trader 1 in treatment SIM, with the corresponding
market price on the vertical axis and their private signal on the horizontal axis.
(Results for trader 1 in treatment SEQ are very similar.) The figure also includes
the theoretical prediction and the results of a probit estimate of the mean bid.
The mean bid increases in the signal, even slightly stronger than is predicted
by the benchmark theory. This overreaction is not significant, though.

4.2.2 Trader 2: Testing hypotheses

Hypothesis 1. To evaluate the degree of naiveté, we focus on the area of Figure
1 where naive and optimal strategies make different predictions. That is, we

13See the Online Appendix for a set of instructions for treatments SIM and SEQ. We chose
the possible asset values {θ, θ} = {40, 220} in an attempt to minimize midpoint effects, which
are often observed in experiments.
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Figure 3: Sells and buys within the relevant area in treatment SIM.
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Figure 4: Sells and buys within the relevant area in treatment SEQ.
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consider the set of trades with prices and signals between the solid (bNaive
2 ) and

the dashed (bEBR
2 ) bidding functions: {(s2, p2)|(s2 < 1/2) ∩ (bEBR

2 ≤ p2 ≤
bNaive

2 )} ∪ {(s2, p2)|(s2 > 1/2) ∩ (bNaive
2 ≤ p2 ≤ bEBR

2 )}. Within this area,
we calculate the proportion η of naive decisions:

η =
dN

dN + dB

(8)

where dN and dB denote the number of orders consistent with naive and EBR
predictions, respectively.

Figures 3 and 4 show the relevant observations in treatments SIM and SEQ,
respectively. For these observations, naive expectations induce buys for signals
below 0.5 and sells for signals above 0.5, while rational expectations induce
opposite actions. The empirical measures dN and dB correspond to the number
of triangle markers and cross markers, respectively. Hypothesis 1 is confirmed
if the proportion of naive choices is larger in treatment SIM than in treatment
SEQ: ηSIM > ηSEQ.
Indeed, we find that neglect of information contained in the price is stronger
in a simultaneous market. Appendix Table A4 shows that the share of naive
decisions in treatment SIM (η = 0.38) is twice as large as in treatment SEQ
(η = 0.19). The difference is statistically significant (p = 0.0091, Wald test).

An especially strong difference between the two treatments appears in situ-
ations where trader 2 has a relatively uninformative signal, s2 ∈ [0.4, 0.6], i.e.
when traders have the strongest incentive to make trading contingent on the
price. In these cases, the frequency of buying at a price below the ex-ante mean
of p2 = 130 is at 0.68 in SIM and at 0.37 in SEQ (see Appendix Table A1).
Similarly, the frequency of buying at a high price, above p2 = 130, is at 0.28 in
SIM and at 0.48 in SEQ (see Appendix Table A2). This illustrates that treat-
ment SEQ’s participants were less encouraged by low prices and less deterred
by high prices, respectively, than treatment SIM’s participants, consistent with
a relatively more rational inference in the sequential market.

In Appendix A.3, we also consider the evolution of decisions in the course of
the experiment. We cannot detect any learning success over 20 repetitions.14

Hypothesis 2. Hypothesis 2 compares the buy and sell decisions of traders
1 and 2 in treatment SIM. Figure 5 reveals that the two traders’ average bid
functions do not significantly, or even perceivably, differ from each other. Just
like trader 1, trader 2 shows no significant deviations from a linear bidding
function, an observation that is consistent with full naiveté of trader 2.15

We note that in the variations of the simultaneous game, featuring in the
next section, fully naive bidding does not always appear.
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Figure 5: Estimated average bids of traders 1 and 2 in treatment SIM.
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Figure 6: Signal distributions for trader 1 (solid) and trader 2 (dashed) in LSQ treatments.
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5 Possible drivers of information neglect

5.1 Signal strength

One possible driver of the observed information neglect is that the participants’
strong private signals might distract them from the information contained in
the price. In a challenging and new environment, participants may perceive
the benefit from interpreting the price as relatively low. In real markets, in-
vestors may be more attentive to the price’s informativeness, especially when
they themselves have little private information.16

We examine the hypothesis by introducing an asymmetric signal strength
between trader 1 and trader 2, keeping the rest of the design unchanged. In two
additional treatments with “Low Signal Quality”, LSQ-SIM and LSQ-SEQ (with
N = 70 and N = 68, respectively), trader 2’s signal is less informative. The
densities in the new treatments are depicted in Figure 6 and take the following
form.

f(si|θ = θ) = 1 − τi(2si − 1)

f(si|θ = θ) = 1 + τi(2si − 1)

with τ1 = 1 and τ2 = 0.2.

Behavior of trader 2 deviates from the naive prediction in both treatments
LSQ-SIM and LSQ-SEQ. Trader 2s react to their signals more strongly than
predicted by naive bidding (see Figure A 1). A comparison with the bids in the
main treatments SIM and SEQ thus supports the conjecture that subjects pay
more attention to market information when they are less informed privately.

However, the discrepancy between the two market mechanisms increases
with information asymmetry. The share of naive decisions in treatment LSQ-
SEQ (22%, black triangles in Figure 7b) is much smaller than in LSQ-SIM (44%,
black triangles in Figure 7a). This significant difference (p = 0.0003, Wald test)
corresponds to a steeper estimate of the average bidding curve in LSQ-SEQ,
see Appendix Figure A 1. Tables A1 to A3 in the appendix also show that
differences in frequencies of buys and sells between the two mechanisms are
highly significant for various signal ranges, and that they tend to be larger than
in the comparison of SIM and SEQ. For example, participants in the role of
trader 2 of LSQ-SEQ act very frequently against their own signal. In sum, the
importance of trading mechanisms for rational decision making prevails under
the new informational conditions.

5.2 Strategic uncertainty

Strategic uncertainty adds to the complexity of the trading game. For an accu-
rate interpretation of price, participants in the role of trader 2 need to consider
the trading behavior of trader 1 and their ability to do so may vary between

14Carrillo and Palfrey (2011) report similar evidence of constantly naive play in their ex-
periment.

15In contrast, there do appear significant differences from naive actions in treatment SEQ,
which is in line with the previously examined Hypothesis 1. Results are available upon request.

16We thank an anonymous referee for raising this hypothesis.
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(a) LSQ-SIM
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(b) LSQ-SEQ

Figure 7: Buys and sells consistent with either naive bidding or EBR in treatments LSQ-SIM
and LSQ-SEQ, respectively.

simultaneous and sequential mechanisms. In other words, the necessity to as-
sess the human-driven EBR (not just the simpler BN response) may lead to less
optimal behavior by trader 2 in treatment SIM relative to SEQ.

We therefore examine whether the treatment effect appears also in two ad-
ditional treatments with “No Player 1” (NP1), containing 40 participants in
NP1-SIM and 46 in NP1-SEQ, all of whom act in the role of trader 2. In these
treatments we delete trader 1’s presence. Participants acting as trader 2 are
informed that the price is set by a market maker who receives an additional
signal. This additional signal follows a distribution that mimics the information
of the market maker in the two main treatments when observing the demand
X1 of a trader 1 who behaves rationally.17

For better comparison with the main treatments, the instructions of the
NP1 treatments retain not only much of the wording but also the chronological
structure of the main treatments. Participants in NP1 treatments thus learn
about the existence of p1, which is presented to them as a random “initial value”
of the asset’s price, and they learn that the market maker observes an additional
signal that is correlated with the asset’s value. Like in the main treatments,
the instructions display the updating rule (3) and explain that it results in the
price p2 at which the participants can trade and which reflects the expectation
of the asset’s value, conditional on the market maker’s additional signal but not
conditional on the participants’ own signal.

The data show no strong differences between the NP1 treatments and the
main treatments. Appendix Figure A 2 shows that the estimated bidding curve
in NP1-SIM exhibits the same slope as the curve in SIM, with a mild downward
shift, whereas behavior in NP1-SEQ is very close to that of SEQ.18

Most notably, the effect of simultaneous versus sequential trading persist.
The share of naive decisions is two and a half times higher in NP1-SIM than

17The distributions of the additional signals (one for each asset value) are shown in a
graphical display. The instructions do not explain how the distributions are determined.

18The downward shift in NP1-SIM is more pronounced for low signals and leads to a sig-
nificant deviation from the naive benchmark (Multiple binomial testing with Bonferroni cor-
rection rejects 1 out of 9 hypotheses at .0055 significance level, see Appendix A.2). Despite
this deviation, the average bid does not increase disproportionally in the private signal as the
rational benchmark predicts. Another mild difference is that the use of reversed limit orders
is smaller in NP1-SIM (9%) than in SIM (15%).
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(a) NP1-SIM
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(b) NP1-SEQ

Figure 8: Naive v Bayesian in NP1-SIM and NP1-SEQ.

in NP1-SEQ (45.27% vs. 17.67%). We also observe significantly more buys at
high prices and more sells at low prices in NP1-SEQ (see Tables A1 and A2
in Appendix A.1). Figure 8 shows the individual decisions for cases where
naive and rational predictions differ, in treatments NP1-SIM and NP1-SEQ,
respectively.

5.3 Number of decisions per treatment

Our last treatment addresses the question whether the higher frequency of naive
decisions in SIM may be driven by the additional cognitive strain that condi-
tional thinking requires. Perhaps, it is not conditionality per se that is difficult
for the participants, but rather the fact that they have to make two decisions in
treatment SIM (one for each possible price realization) but only one in treatment
SEQ.

We therefore introduce a “hypothetical” sequential treatment (Hyp-SEQ)
with 62 participants, which rules out higher dimensionality of strategies as a
source of difficulty. Treatment Hyp-SEQ is analogous to SEQ in that after
learning trader 1’s price p1, participants in the role of trader 2 specify their
buying or selling preferences for only a single price p̂2. However, p̂2 is only a
candidate price as p̂2 is equiprobably drawn from the two price values that are
possible after updating via rule (3). Participants decide whether they would buy
or sell at p̂2 and the decision is implemented if and only if trader 1’s demand
induces the realization p2 = p̂2. Otherwise, trader 2 does not trade and makes
zero profit.

Participants in treatment Hyp-SEQ thus face only one price and make only
one decision, rendering the task dimensionality identical to that in SEQ. (The
instructions are almost word-for-word identical.) But the nature of the decision
in Hyp-SEQ is conditional, like in treatment SIM. We can therefore assess the
importance of task dimensionality by comparing SIM versus Hyp-SEQ, and the
role of conditionality by comparing SEQ versus Hyp-SEQ.

Average bidding shows no large difference between treatments SIM and Hyp-
SEQ, or between traders 1 and 2 of treatment Hyp-SEQ: The estimated bid
functions in Appendix Figures A 3a and A 3b exhibit approximately the same
slope. Moreover, the Appendix A.2 also shows that naive bidding cannot be
rejected for treatment Hyp-SEQ, in multiple binomial testing.
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Figure 9: Naive v EBR in Hyp-SEQ.

However, Figure 9 and Table A4 in the Appendix show that the frequency of
making suboptimal decisions (η) in Hyp-SEQ lies well in between those of SEQ
and SIM. The significant difference between treatments SIM and Hyp-SEQ (0.38
versus 0.28, p=0.022, one-sided t test) shows that reducing the set of hypothet-
ical prices considerably improves decision-making. Yet, the frequency of naive
decisions is still significantly higher in Hyp-SEQ than in the fully sequential
treatment SEQ, (0.28 versus 0.19, p=0.081, one-sided t test).19 Altogether, we
conclude from the above tests that reducing the number of hypothetical trading
decisions reduces the degree of naiveté, but does not eliminate it.20

5.4 Random Utility Model

This subsection pools the data for a statistical comparison of sequential versus
simultaneous mechanisms. We combine the data from all simultaneous treat-
ments into a data set “SIM+” and those from sequential treatments into a data
set “SEQ+”. (Data from the hybrid treatment Hyp-SEQ are excluded.) We
assume that the probability with which trader 2 buys the risky asset follows a
logistic distribution, allowing for an over-weighted or under-weighted relevance
of the available pieces of information:

P (X2 = 1|ui, s2, p2) =
eλ(Ê[θ|p2,s2]−p2+ui)

1 + eλ(Ê[θ|p2,s2]−p2+ui)
(9)

19Notice that the lower rate of suboptimal decisions in Hyp-SEQ relative to SIM is consistent
with the main idea of Li’s (2016) obvious strategy proofness: in Hyp-SEQ, the set of relevant
prices is reduced to a singleton, helping the participants to detect the optimal strategy.

20Our working paper version, Ngangoue and Weizsäcker (2015) shows a first version of the
experiment where the simultaneous treatment elicits buy and sell preferences for a list of 26
hypothetical prices (treatment “Price List”), instead of 2 as in the present paper’s treatment
SIM. There, we find the neglect of the price informativeness to be even more pronounced, which
is also consistent with an effect of task dimensionality. The previous experiment, however,
also has other differences to the present one.
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with

Ê[θ|p2, s2] = 40 + 180 · P̂ (θ = 220|p2, s2) (10)

P̂ (θ = 220|p2, s2) = [1 + LR(s2)−β · LR(p2)−α]−1 (11)

The choice probability (9) depends on subjectively expected payoff, Ê[θ|p2, s2]
− p2. The parameter λ reflects the precision of the logistic response and ui is
the random utility shifter, which we assume to be normally distributed with
mean 0 and variance σ2

u. To allow for irrational weighting of information, we
introduce the subjective posterior probability of the event that θ = 220, given
by P̂ (θ = 220|p2, s2). Analogous to the method introduced by Grether (1992),
we let the posterior probability depend on the likelihood ratios of the signal

and the price, LR(s2) ≡ P (θ=220|s2)
P (θ=40|s2) and LR(p2) ≡ P (θ=220|p2)

P (θ=40|p2) , respectively.

The likelihood ratios are exponentiated by the potentially irrational weights β
and α that the participant assigns to the signal’s and the price’s informational
content. A participant with naive beliefs (a ‘fully cursed’ participant) would cor-
rectly weight the signal, β = 1, but would ignore the information in the price,
α = 0. An intermediary level of cursedness translates into α between 0 and 1.
A rational trader would correctly weight the signal and the price, β = α = 1.
The model also allows for an over-weighting of the signal or the price, by letting
β or α exceed 1.

We estimate the model via Maximum Simulated Likelihood (MSL). To arrive
at LR(p2), we estimate the distributions P (p2|θ = 220) and P (p2|θ = 40) for

each treatment individually via kernel density estimation and infer P (θ=220|p2)
P (θ=40|p2)

for each p2 in the data set.

Table 1: Results of MSL estimation

Trader 1 Trader 2

SIM+ SEQ+

β 2.05∗∗∗ 2.54∗∗ 1.36∗∗∗

(0.31) (0.90) (0.36)

α - 0.60∗ 1.85∗∗∗

(0.26) (0.22)

λ 0.0314∗∗∗ 0.0230∗∗∗ 0.0373∗∗∗

(0.003) (0.004) (0.006)

σu 0.0010 0.0010 0.0039

N 3435 2220 2260

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Std. Err.
in parentheses. Hypothesis testing for β and α refers to
one-sided tests of deviations from 1. The estimation for
trader 1 pools all treatments with participants acting
as trader 1 since their data do not significantly differ
across treatments.

The estimates are reported in Table 1 and confirm the findings of the previous
subsections. Trader 1’s model estimates serve as a benchmark. Participants in
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the role of trader 1 overweight their private signal (β = 2.05), inducing a slight
S-shape of the estimated bid function (see Figure A 4). Traders’ 2 weighting
of the private signal decreases from 2.54 to 1.36 between the simultaneous and
the sequential treatments. Both of these β estimates significantly differ from 1,
but in the sequential treatments β lies significantly below trader 1’s weighting
of the private signal (p = 0.0298, Wald test).

In the simultaneous mechanisms, the estimated α of 0.60 lies well below
the optimal value 1, albeit at a somewhat marginal statistical significance of
p = 0.09. While this difference from 1 reflects the hypothesis that participants
pay too little attention to the price’s informativeness, we can also reject the
extreme formulation of Hypothesis 2, stating that participants are fully naive:
α differs significantly from 0.

In the treatments with sequential mechanisms, the perceived levels of infor-
mativeness of signal relative to price are reversed. These treatments induce a
significant over-weighting of the price’s likelihood ratio (α = 1.85).21 Overall,
the evidence from sequential treatments shows that the prior distribution of θ
is under-weighted and that, confirming Hypothesis 1, sequential markets reveal
a significantly stronger inference from the price than simultaneous markets.

6 Discussion: Information neglect in markets

This section discusses the possible impact of naiveté on market efficiency. We
begin by stating a classical question of market prices: how do prices that arise
after a given trading pattern differ from equilibrium prices? Notice that this
question addresses the welfare of subsequent traders in the same market, i.e.,
traders outside of the set of traders that we consider in the experiment. We
therefore have to resort to auxiliary calculations. Yet we also consider the
payoff of our actual participants.

Pricing. A natural measure of price efficiency is the speed at which price
aggregates the traders’ dispersed pieces of information and converges to funda-
mental value. With naive traders in the market, this speed may be reduced.
Moreover, naive traders may distort the price recovery process by suppressing
some subsets of possible signals more than others. Two theoretical contributions
that study the implications of naiveté on price are by Hong and Stein (1999) and
Eyster et al. (2015). They both find, with different models, that the presence of
naive traders creates a bias of prices leaning towards their ex-ante expectation.
The reason is that naive traders are likely to engage in excessive speculation
based on their own signal—they bet against the market price too often. This
pushes price towards its ex-ante mean.22

Testing this implication requires the simulation of a specific price mechanism
after trader 2 has completed her trades. For simplicity and for consistency
with the rule governing p2, we calculate the price that a market maker would

21This relates to Levin et al. (1996)’s finding that participants in the English auction put
relatively more weight on the latest drop-out prices compared to their own signal.

22Hong and Stein (1999) analyze a dynamic model where information dispersion is staggered
in the market and where naive traders are myopic but can be exploited by sophisticated (yet
cognitively restricted) traders who start betting against the naive traders eventually. Price
can therefore overshoot at a later stage in the cycle. Eyster et al.’s (2015) model uses partially
cursed equilibrium to show the bias in pricing, using a more standard (and more static) model
of financial markets with incomplete information akin to that in Grossman (1976).
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(a) s1, s2 in same direction
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(b) s1, s2 in opposite
direction
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(c) All signals

Figure 10: Kernel density of efficient price 3 after naive, rational and actual demand of traders
1 and 2 in SIM and SEQ .

set in Bayes Nash equilibrium: the market maker sets the price p3 equal to
E[θ|X1, X2], where X1, X2 ∈ {−1, 1} denote the demand of traders 1 and 2,
assumed to follow the Bayes-Nash prediction. In our main treatments SIM and
SEQ, the price for a hypothetical trader 3 is thus a simple function of p2 and
X2:23

p3 =











−8800+310p2

50+p2

if X2 = 1

−8800+50p2

310−p2

if X2 = −1

Under the given pricing rule, price moves towards its extremes fast if both
signals s1 and s2 deviate from their expectation in the same direction. In this
case either both traders buy or both traders sell, in Bayes Nash Equilibrium.
For all cases where s1 and s2 lie on the same side of 0.5, Figure 10a shows
the resulting distribution of Bayes Nash price p3 as a dotted line, with much
probability mass located towards the extremes. In contrast, if trader 2 bids
naively, then she will tend to sell at high prices and buy at low prices, creating
excessive density of p3 near the center of the distribution (light grey line).

Figure 10a also depicts the kernel densities of the price p3 that would arise
from the actual trading in treatments SIM and SEQ. The price distribution
under SIM is close to that of naive bidding. In SEQ, prices deviate more from the
prior expectation and the distribution lies far closer to its equilibrium prediction.

Figure 10b shows the kernel densities when the two signals are on opposite
sides of their ex-ante expectation. Here, the aggregate information is not very
informative, prices with naive and Bayes-Nash traders do not differ much and
markets yield prices that revolve around prior expectations. Figure 10c de-
picts the densities when taking into account all observations. Overall, the price
distribution in treatment SEQ has a more pronounced bi-modal shape.

In a nutshell, prices in the simultaneous mechanisms incorporate information
slowly. This finding is consistent with the momentum effect in call auctions
documented in Amihud et al. (1997) and Theissen (2000).

To quantitatively assess price efficiency under the two treatments, we ask
about the variance of fundamental value conditional on the price, V ar[θ|p3].

23In treatments LSQ, we obtain p3 =
1030(−8.54p2)

770+p2
if X2 = 1, p3 =

−770(11.43p2)
p2−1030

else.
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It captures the error in market expectations given information contained in
p3. Conditional variance is significantly lower in treatment SEQ than in SIM,
at high level of significance (p=0.00, nonparametric median test, taking each
market as a unit of observation) and with a somewhat sizable difference: in
treatment SIM, the price explains on average 21% of the variance in the asset
value, versus 27% in treatment SEQ.24

Profits. The difference between simultaneous and sequential mechanisms
also affects the distribution of profits of trader 2. A corresponding difference
occurs in each of the relevant treatment comparisons, but it is economically
small (our experiments were not designed to generate big payoff differences
between treatments) and is statistically significant only in the comparison LSQ-
SIM versus LSQ-SEQ, i.e. with asymmetry in the informativeness of signals.
Less informed traders benefit from sequential information processing, where the
employed updating is more rational. The results on mean and median profits of
each treatment is in Table A5 in the Appendix. It is also noteworthy that the
distribution of profits conditional on price p2 in LSQ-SEQ is mirror-inverted to
the one in LSQ-SIM (see Figure A 5b): the majority of traders in LSQ-SIM
lose significant amounts, whereas the majority of traders in LSQ-SEQ make
gains. This hints at the importance of pre-trade transparency to restrain insider
trading in real-world markets. Naive later traders may suffer if they are poorly
informed.

Trading volume. Naive beliefs may not only affect prices and profits, but
may also trigger speculative trade (Eyster et al., 2015). Naive traders who
receive differential information develop different beliefs as they neglect informa-
tion revealed by trades. When beliefs are sufficiently divergent, they agree to
speculate against each other and thus generate excessive trade. By means of a
simple simulation described in Appendix A.4, we compute for each treatment
the potential number of trades that would occur if participants acting in the role
of trader 2 were to trade with each other, at the stated levels of their willingness
to buy and sell. We find that simultaneous mechanisms generate significantly
more potential for trades than the sequential ones. (The “Low Signal Qual-
ity” treatments, whose shares of trades do not differ from each other, are the
exception.) This analysis, albeit simplistic, supports the conjecture that naive
traders who neglect disagreement in beliefs spawn additional trade.

7 Conclusion

How well traders are able to extract information in markets may depend on
the markets’ designs over and above ‘rational’ reasons. Although different but
isomorphic trading mechanisms should entail the same outcomes, decisions may
vary. Our experiments provide an example where a specific subset of infer-
ences are weak: traders in simultaneous markets, where optimal trading re-
quires Bayesian updating on hypothetical outcomes, do not account for the
price’s informativeness. They therefore neglect information revealed by others’
investments. However, when the reasoning is simplified to updating on a single
realized event, such ‘cursedness’ is mitigated. Traders are thus more likely to

24This uses a measure for informational efficiency (IE) that is standard in the finance liter-

ature (see e.g. Brown and Zhang 1997; De Jong and Rindi 2009): IE = 1 −
E[V ar[θ|p3]]

V [θ]
.
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detect covert information while focusing on a single outcome. In this sense, the
degree of inference and consequently the quality of informational efficiency in-
teract with market design. Of course, this is only a single setting and despite the
numerous robustness checks in the paper we must not presume generalizability.
It’s a stylized experiment, no more and no less. Subsequent work may address,
for example, the largely open research question of price efficiency in sequential
trading with more than two consecutive traders.
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A Appendix

A.1 Descriptive Statistics

We compute the share of buys for different ranges of signal values. Table A1
refers to the trades with a transaction price that lies below its prior expectation
of 130. The observations in Table A2 refers to rounds with transaction prices
above 130. The rows “Diff.” show the differences between the shares in the se-
quential and simultaneous mechanisms, for the main, the “Low Signal Quality”
and the “No Player 1” treatments, respectively.

Table A1: Share of buys at low prices for varying signal intervals

Treatment All signals [0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1]

SEQ .4138 .0825 .16 .3704 .7647 .9048
(.031) (.032) (.034) (.065) (.058) (.043)

SIM .4847 .12 .3053 .6818 .875 .8545
(.041) (.037) (.061) (.054) (.048) (.065)

Diff. -.0709 -.0375 -.1453∗∗ -.3114∗∗∗ -.1103 .0503

N 736 197 170 147 116 118

LSQ-SEQ .4106 .1667 .2432 .4231 .6 .6897
(.044) (.042) (.060) (.067) (.081) (.067)

LSQ-SIM .5714 .3171 .4783 .56 .7407 .7733
(.037) (.063) (.066) (.072) (.056) (.066)

Diff. -.1606∗∗∗ -.1504∗ -.2351∗∗ -.1369 -.1407 -.0836

N 736 160 143 153 156 133

NP1-SEQ .3403 .0392 .1048 .3333 .6538 .8462
(.030) (.023) (.035) (.051) (.058) (.060)

NP1-SIM .4495 .1214 .1939 .5789 .8088 .9245
(.033) (.042) (.048) (.062) (.058) (.044)

Diff. -.1092∗∗ -.0823∗ -.0891 -.2456∗∗∗ -.155∗ -.0784

N 825 209 203 163 146 118

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in two-sample t test with unequal variances. CRSE in
parentheses.
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Table A2: Share of buys at high prices for varying signal intervals

Treatment All signals [0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1]

SEQ .6190 .0555 .2388 .4828 .9054 .9406
(.033) (.036) (.056) (.066) (.037) (.026)

SIM .5140 - .1724 .2778 .7419 .84
(.033) (.) (.053) (.063) (.053) (.043)

Diff. .105∗∗ - .066 .205∗∗ .1635 .1006∗∗

N 692 69 125 130 167 201

LSQ-SEQ .6151 .2537 .5294 .7 .8 .7848
(.038) (.067) (.070) (.066) (.056) (.053)

LSQ-SIM .3050 .2239 .2 .1818 .4464 .5079
(.038) (.059) (.058) (.047) (.066) (.081)

Diff. .3101∗∗∗ .0298 .3294∗∗∗ .5182∗∗∗ .3536∗∗∗ .2769∗∗∗

N 635 134 106 147 106 142

NP1-SEQ .6738 .1475 .3889 .7 .8817 .9626
(.027) (.047) (.062) (.063) (.042) (.018)

NP1-SIM .4523 .1132 .0882 .225 .6813 .8302
(.030) (.042) (.053) (.044) (.063) (.035)

Diff. .2215∗∗∗ .0343 .3007∗∗∗ .475∗∗∗ .2004∗∗∗ .1324∗∗∗

N 821 114 140 170 184 213

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in two-sample t test with unequal variances. CRSE in
parentheses.
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Table A3 shows the shares of buys when prices and signals reflect contrary
information because they lie on opposite sides of their corresponding prior ex-
pectation. Trading decisions that conform rather with the information in the
price than with the information in the signal indicate that participants give
thought to the price’s informativeness. In all treatment variations, traders 2 in
the sequential mechanisms trade more often against the information contained
in their own signal: they sell (buy) more often than their peers in the simultane-
ous mechanism when the price is low (high). The differences between the buys
and sells in the two mechanisms are significant for the variations “Low Signal
Quality” and “No Player 1”.

Table A3: Acting against one’s own signal (treatment prices)

p2 ≤ 130 p2 > 130
s2 > .5 s2 ≤ .5

SEQ .7834 .2357
(.042) (.044)

SIM .8332 .1460
(.036) (.040)

Diff. -.0498 .0877

N 293 277

LSQ-SEQ .5976 .4323
(.059) (.047)

LSQ-SIM .7326 .1939
(.049) (.044)

Diff. -.135∗ .2383∗∗∗

N 351 320

NP1-SEQ .6815 .3584
(.049) (.040)

NP1-SIM .8446 .1198
(.045) (.045)

Diff. -.1631∗∗ .2386∗∗∗

N 327 340

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in
two-sample t test with unequal variances.
CRSE in parentheses.
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Figure A 1: Estimated average bids in treatments LSQ-SIM and LSQ-SEQ.
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Figure A 2: Estimated average bids in treatments NP1-SIM and NP1-SEQ.
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(a) Trader 1
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(b) Trader 2

Figure A 3: Buys, sells and estimated average bids of traders 1 (a) and 2 (b) in
treatment Hyp-SEQ.
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Table A4: Shares of naive decisions

SIM SEQ LSQ-SIM LSQ-SEQ Hyp-SEQ NP1-SIM NP1-SEQ

η .3760 .1851 .4449 .2222 .2830 .4527 .1767
(.047) (.052) (.045) (.033) (.042) (.053) (.033)

N 118 108 227 261 106 148 181

Note: CRSE in parentheses. Significant difference at 1% level between SIM & SEQ, between LSQ-
SIM & LSQ-SEQ and between NP1-SIM & NP1-SEQ (Wald test). Significant difference in 1-sided
Gauss test between Hyp-SEQ and SIM (p=0.022), and Hyp-SEQ and SEQ (p=0.081).
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Figure A 4: Bid function for trader 1 given random utility model estimates.
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(a) SIM vs. SEQ
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(b) LSQ

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
���

��
���

�

���� ���� � ��� ���
�

������� �������

(c) NP1

Figure A 5: Kernel density of profits of traders 2 in treatments SIM, SEQ, LSQ-SIM,
LSQ-SEQ and NP1-SIM,NP1-SEQ.
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Table A5: Profits of traders 2

Mean S.E. Median

SIM 27.63 2.98 44
SEQ 30.65 2.86 43.25

LSQ-SIM -1.24 3.19 -18.25
LSQ-SEQ .85 3.21 21

HYP-SEQ∗ 27.48 4.30 43.25

NP1-SIM 25.30 2.78 50.5
NP1-SEQ 28.36 2.65 52.5

Note: S.E. refers to standard errors of
mean. ∗Excluding rounds that gener-
ated zero profit in Hyp-SEQ because no
trade occurred.

A.2 Multiple Binomial Testing

This section describes how we identify significant deviations from naive bidding.
We test the hypothesis that the propensity to buy conforms with the probability
of buying with naive expectations. With naive expectations, the probability that
a trader buys equals her posterior belief for the high asset value, which (given
uniform priors) equals the signal’s value. Thus, the null hypothesis of naive
posterior beliefs corresponds to:

H0 : π(sj) = sj , j = 1, ..., 9.

We round signals to decimals. We merge extreme signals close to 0 and 1
to the nearest category to satisfy testing criteria in the approximate binomial
test. We then perform (one-sided) binomial tests for each of the 9 categories.
The first column of Table A6 denotes the alternative hypothesis HA for each
test. The alternative hypothesis is chosen to reject naiveté in favor of Bayesian
probabilities. The other columns in Table A6 report the p-values for each test
for the corresponding treatment.

We account for the multiple testing problem using the Bonferroni signifi-
cance level of 0.0055 (with a significance level of α = .05 for individual tests).
Two treatments, SEQ and NP1-SIM, display trading decisions that significantly
differ from the naive prediction. In treatment SEQ, the more extreme trading
decisions lead to a rejection of the null, while in treatment SIM the share of
buys is consistent with naive beliefs. In treatments Hyp-SEQ, NP1-SIM and
NP1-SEQ the null is rejected in four out of 9 categories, but only in treatment
NP1-SIM the null is rejected after correcting for the multiple testing problem.
This significant deviation in the simultaneous mechanism is driven by the overall
increased tendency to sell, especially at low signal values. Figure A 2 reveals an
estimated bidding curve that lies below the naive function for almost all signal
values.
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Table A6: P-values in one-sided binomial testing

HA SIM SEQ Hyp-SEQ NP1-SIM NP1-SEQ

π < .1 .7695 .2716 .9999 .9303 .7555
π < .2 .4754 .0364 .3399 .1616 .0194
π < .3 .1751 .0083 .2765 .0002∗ .0369
π < .4 .1320 .2614 .0214 .0110 .1658
π 6= .5 .7962 .2642 .7854 .0114 .9146
π > .6 .4000 .0874 .0427 .7092 .0201
π > .7 .1084 .0009∗ .0206 .0293 .0808
π > .8 .0506 .1063 .0103 .7250 .0227
π > .9 .9962 .3770 .7435 .9228 .5131

Note:∗p < 0.0055 (Bonferroni significance level.). Tests for H0 : π = .5
are two-sided.

For the treatments with low signal quality, the likelihood for the high asset
value is bounded in [.4,.6] due to the signal’s low precision. The null adjusts to:

H0 : π(sj) = 0.4 + 0.2 · sj , j = 1, ..., 11.

Table A7: P-Values in multiple binomial testing

HA LSQ-SIM LSQ-SEQ

π < .4 + .2 ∗ .0 .0422 .3546
π < .4 + .2 ∗ .1 .0191 .0000∗

π < .4 + .2 ∗ .2 .0495 .0235
π < .4 + .2 ∗ .3 .0133 .0195
π < .4 + .2 ∗ .4 .0000∗ .3714
π 6= .4 + .2 ∗ .5 .4060 .3172
π > .4 + .2 ∗ .6 .4643 .0722
π > .4 + .2 ∗ .7 .0209 .0347
π > .4 + .2 ∗ .8 .6458 .0000∗

π > .4 + .2 ∗ .9 .0191 .0007∗

π > .4 + .2 ∗ 1 .3047 .5000

Note:∗p < 0.0045 (Bonferroni significance level.)
Tests for H0 : π = .5 are two-sided.

The multiple binomial tests detect in both treatments LSQ-SIM and LSQ-
SEQ significant deviations from the share of buys that would be expected under
naiveté. The deviations occur at both low and high signal values, reflecting the
higher steepness of the bidding curves shown in Figure A 1. The information
asymmetry helps trader 2 to take into account the price’s informativeness.
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A.3 Learning

To investigate whether participants learn over time, we divide observations into
two time subsections: an early time interval for the rounds one to ten and a
late interval for later rounds. In the subset of price-signal realizations where
naive and Bayesian predictions differ, the proportion of naive decisions does
not change significantly over time in all treatments except treatment LSQ-SEQ,
as shown in Table A8. Furthermore, plotting the share or number of naive
decisions across periods does not display any systematic pattern of decay. Even
pooling treatments into simultaneous and sequential variants does not reveal
any learning effect.

Table A8: Proportion of naive decisions

SIM SEQ LSQ-SIM LSQ-SEQ Hyp-SEQ NP1-SIM NP1-SEQ

First 10 .3971 .2127 .4741 .2810 .3077 .5128 .1596
(.060) (.074) (.052) (.046) (.065) (.070) (.044)

Last 10 .34 .1639 .4144 .1714 .2593 .3857 .1954
(.079) (.058) (.068) (.038) (.057) (.073) (.044)

Diff. .0571 .0488 .0597 .1096∗∗ .0484 .1271 -.0358

N 118 108 227 261 106 148 181

Note:∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01. CRSE in parentheses.

A.4 Trading volume

We calculate the number of trades that would occur within one treatment if
traders 2 were allowed to trade with each other (as price-takers). To this end,
we compare the actual buys and sells that took place at each price values,
rounding the latter to the nearest ten. The minimum of buys or sells at a given
price value defines the number of transactions that would have been possible
between the set of traders 2 at this price. Table A9 shows the share of potential
trades per price value, which corresponds to the ratio of potential trades to
the maximum possible trading volume. Since every trade requires two trading
parties, the maximum number of possible trades at a specific price equals the
frequency of this price value divided by two. The simultaneous mechanisms
entail significantly more potential trades, except for the treatment variation with
“Low Signal Quality” that displays similar shares of trades in each mechanism.
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Table A9: Average simulated trading volume with random matching of trader
2 participants

SIM SEQ

Main treatments .8611 .7806∗∗∗

(.004) (.004)
Low Signal Quality .7629 .7735

(.006) (.007)
No Player 1 .87 .6977∗∗∗

(.005) (.003)

∗∗∗: Share is significantly smaller than in
the alternative treatment in a one-sided t-
test with p < .01.
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