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Abstract

It is well known that the presence of response styles can affect estimates in
item response models. Various approaches to account for response styles
have been suggested, in particular the tendency to extreme or middle cat-
egories has been included in the modelling of item responses. A response
style that has been rarely considered is the noncontingent response style,
which occurs if persons have a tendency to respond randomly and non-
purposefully, which might also be a consequence of indecision. A model
is proposed that extends the Rasch model and the Partial Credit Model
to account for a response style that accounts for subject-specific uncer-
tainty when responding to items. It is demonstrated that ignoring the
subject-specific uncertainty may yield biased estimates of model parame-
ters. Uncertainty as well as the underlying trait are linked to explanatory
variables. The parameterization allows to identify subgroups that differ in
response style and underlying trait. The modeling approach is illustrated
by using data on the confidence of citizens in public institutions.

Keywords: Rasch model; Partial credit model; Rating scales; Response styles;
Ordinal data; Heterogeneity, Dispersion; Differential Item Functioning.

1 Introduction

Response styles are a problem in psychological measurement since ignoring their
presence typically yields biased estimates and can affect the validity of scale
scores. Models that explicitly account for response styles and model the hetero-
geneity in the population are able to reduce the bias and yield better inference,
in particular if response styles are linked to explanatory variables.
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Various methods for investigating response styles in latent trait theory have
been proposed. Bolt and Johnson (2009), Johnson and Bolt (2010), Bolt and
Newton (2011), and Falk and Cai (2016) use the multi-trait model to investigate
the presence of a response style dimension. Johnson (2003) considered a cumu-
lative type model for extreme response styles, Wetzel and Carstensen (2017),
Plieninger (2016) and Tutz et al. (2018) proposed partial credit models that ac-
count for specific response styles. An alternative strategy for measuring response
style is the use of finite mixtures. Eid and Rauber (2000) considered a mixture
of partial credit models. It is assumed that the whole population can be divided
into disjunctive latent classes. After classes have been identified it is investi-
gated if item characteristics differ between classes, potentially revealing differing
response styles. Finite mixture models for item response data were also consid-
ered by Gollwitzer et al. (2005) and Maij-de Meij et al. (2008). Related latent
class approaches were used by Moors (2004), Kankaraš and Moors (2009), Moors
(2010) and Van Rosmalen et al. (2010).

More recently, tree-based methods to investigate response styles have been
proposed. In tree-based methods one assumes a nested structure, first a decision
about the direction of the response is modelled and then the strength. Models of
this type have been considered by Suh and Bolt (2010), De Boeck and Partchev
(2012), Thissen-Roe and Thissen (2013), Jeon and De Boeck (2016), Böcken-
holt (2012), Khorramdel and von Davier (2014), Plieninger and Meiser (2014),
Böckenholt (2017) and Böckenholt and Meiser (2017).

The focus of the present paper is on the noncontingent response style (NCR),
which seems to have been neglected in the literature. The noncontingent re-
sponse style is found if persons have a tendency to respond to items carelessly,
randomly, or nonpurposefully (Van Vaerenbergh and Thomas, 2013; Baumgart-
ner and Steenkamp, 2001). Although tree-based methods are strong tools it seems
hard to capture this response style by tree-based methods. Given their hierar-
chical nature they are more appropriate to model extreme response styles or the
preference for specific categories. Finite mixture model that are in common use
typically fit different item response models in the components without specifying
a specific structure. However, if one does not specify a response style structure
in the components it is hard to identify specific response styles after fitting. Fi-
nite mixture models that should be mentioned because they do assume a specific
structure in one of the components to account for uncertainty are the so-called
CUB models, which have been propagated in a series of papers by Piccolo (2003),
D’Elia and Piccolo (2005), Iannario and Piccolo (2016), Gottard et al. (2016),
Tutz et al. (2017), Simone and Tutz (2018). The basic assumption is that the
choice of a response category is determined by a mixture of a distinct preference
and uncertainty. The latter is represented by a uniform distribution over the
response categories. But CUB models are designed as regression models without
assuming repeated measurements, they are not latent trait models, uncertainty
is linked to explanatory variables, and they do not account for subject-specific
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response styles.
The modelling strategy proposed in the following is the explicit modelling of

the noncontingent response style by introducing subject-specific parameters that
are consistent throughout items and might be determined by external explanatory
variables. The proposed model explicitly aims at modelling the heterogeneity in
the population. We consider in detail extensions of the partial credit model,
which contains the binary Rasch model as the most important member.

2 Unobserved Heterogeneity and the Occurrence of Invalid

Parameters

In the following we consider a specific form of unobserved heterogeneity that can
cause severe problems in latent trait models. It is of interest because it can be
seen as one of the sources of a noncontingent response style and a motivation
for the model that is proposed. For simplicity we consider the binary Rasch
model although the same problems are found in latent trait models with more
than two response categories. The binary Rasch model assumes that the response
Ypi ∈ {0, 1} of person p when meeting item i is determined by

P (Ypi = 1) =
exp(θp − δi)

1 + exp(θp − δi)
, p = 1, . . . , P, i = 1, . . . , I.

In achievement tests, θp typically represents the ability of the person and δi the
difficulty of the item. In questionnaires θp may represent the attitude and δi an
item-specific threshold on the latent scale. In both cases it is assumed that the
parameters are on the same latent scale. For the identification of problems that
may arise when using the Rasch model it is instructive to consider the derivation
of the model from the assumption of latent random variables. When person p
meets item i one assumes:

• The ability or attitude is determined by the continuous random variable Y ∗
pi =

θp + σεpi, where θp is a fixed parameter linked to the person, εpi is a random
variable that represents the variability of the response and σ is a dispersion
parameter.

• The link between the unobserved variable Y ∗
pi and the observed response is given

by
Ypi = 1 if Y ∗

pi ≥ δi, (1)

which means that one observes Ypi = 1 if the latent variable is larger than the
item-specific threshold δi.

If one assumes that the noise variable εpi has the logistic distribution function
F (η) = exp(η)/(1 + exp(η)), it is straightforward to derive the model

P (Ypi = 1) =
exp((θp − δi)/σ)

1 + exp((θp − δi)/σ))
, p = 1, . . . , P, i = 1, . . . , I.
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Since the parameters in this representation are not identifiable, constraints on
the parameters are needed. Typically one uses the scale constraint σ = 1 and
a location constraint by choosing a fixed value for one of the parameters, for
example, θ1 = 0 or δ1 = 0. Then the model is equivalent to the Rasch model
with a location constraint, which is always needed and is assumed to be fixed in
the following.

The derivation uses implicitly that the dispersion parameter σ is the same
for all persons. However, this is a strong assumption that does not have to hold.
Let us assume more generally that the latent variable is given by Y ∗

pi = θp +σpεpi
with person-specific dispersion σp. To keep things simple let us first consider the
case where the dispersion takes only two values, depending on a binary trait like
gender or age group (young/old). This can be represented by σp = exp(xpγ),
where xp is a group indicator with values xp ∈ {0, 1}. Then one obtains

σp =

{
exp(γ) if xp = 1
1 if xp = 0.

If one derives the observed response in the same way as previously as a di-
chotomized version of latent variables one obtains different parameters for the
two groups. More concrete, one obtains

log

(
P (Ypi = 1)

P (Ypi = 0)

)
= θp − δi, in the group xp = 0

log

(
P (Ypi = 1)

P (Ypi = 0)

)
=
θp
eγ
− δi
eγ
, in the group xp = 1.

This entails peculiar effects if one wants to compare parameters. Actually one
has two Rasch models, one that holds in the subpopulation xp = 0 and one in
the subpopulation xp = 1. Formally these can be given by

log

(
P (Ypi = 1)

P (Ypi = 0)

)
= θ(s)p − δ(s)i , s = 0, 1, (2)

with s = 0 representing xp = 0 and s = 1 representing xp = 1. In the group
xp = 0 one has the original parameters

θ(0)p = θp, p = 1, . . . , P, δ
(0)
i = δi, i = 1, . . . , I,

whereas in the group xp = 1 one has the parameters

θ(1)p =
θp
eγ
, p = 1, . . . , P, δ

(1)
i =

δi
eγ
, i = 1, . . . , I.

It is essential that in both subpopulations simple Rasch models hold. However,
comparison of parameters between groups may be strongly misleading. For illus-
tration, let xp refer to gender with xp = 1 coding females and xp = 0 males. Let
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us consider two persons, one female with parameter θf , one male with parameter
θm, which have the same strength parameter, that is, θf = θm. If one compares
the Rasch model parameters of the two persons one obtains

θ
(0)
m

θ
(1)
f

=
θm
θf
eγ = eγ.

That means, if γ > 0, although the underlying abilities are the same (θf = θm),
the comparison of the Rasch model parameters measured by the Rasch model
parameters θ

(s)
p indicates that the ability of the male person is larger than the

ability of the female person. The reason is that the female person is confronted
with ”simpler” items δi/e

γ than the male persons. Consequently, the ability of
females measured in terms of the Rasch model parameters is considered to be
lower for females.

It should be noted that the Rasch model does not hold in the total population.
However, it holds in each subpopulation and can be legitimately fitted within
subpopulations. But parameters (and parameter estimates) can not be compared
since parameters in each subpopulation are scaled by using the scale constraint
σ = 1 in each subpopulation.

Even if one does not want to compare parameter estimates it is obvious that
one runs into problems if one ignores heterogeneity and fits a simple Rasch model
to the total population. The heterogeneity of the person parameters is less severe
because although the persons come from different subpopulations each person has
his/her own parameter. However, estimates of item parameters tend to be biased
because persons from different subpopulations meet items with different difficulty
parameters. For males the difficulties are δi and for females δi/e

γ, which may be
seen as a specific form of differential item functioning, which will be discussed
later.

Similar problems with unobserved heterogeneity have been found for binary
and ordinal regression models, Allison (1999) showed that misleading parameter
estimates can occur if one fits a binary logit model in separate groups. Some
methods to correct parameter estimates in regression were considered by Williams
(2009), Mood (2010), Karlson et al. (2012), Breen et al. (2014), and Tutz (2018).

3 Heterogeneity and Response Styles

In the following we consider models that are able to avoid the occurrence of biased
estimates caused by unobserved heterogeneity. We will consider the family of
Rasch models represented by the partial credit model. First we briefly consider
the partial credit model.
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3.1 The Partial Credit Model

Let Ypi ∈ {0, 1, . . . , k}, p = 1, . . . , P , i = 1, . . . , I denote the ordinal response of
person p on item i. The partial credit model (PCM) assumes for the probabilities

P (Ypi = r) =
exp(

∑r
l=1 θp − δil)∑k

s=0 exp(
∑s

l=1 θp − δil)
, r = 1, . . . , k,

where θp is the person parameter and (δi1, . . . , δik) are the item parameters of
item i. For notational convenience the definition of the model implicitly uses∑0

k=1 θp − δik = 0. With this convention an alternative form is given by

P (Ypi = r) =
exp(rθp −

∑r
k=1 δik)∑k

s=0 exp(
∑s

k=1 θp − δik)
.

The PCM was proposed by Masters (1982), see also Masters and Wright (1984).
The defining property of the partial credit model is seen if one considers

adjacent categories. The resulting presentation

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k

shows that the model is locally (given response categories r − 1, r) a binary
Rasch model with person parameter θp and item difficulty δir. It is immediately
seen that for θp = δir the probabilities of adjacent categories are equal, that is,
P (Ypi = r) = P (Ypi = r − 1).

3.2 An Extended Partial Credit Model

The extended version of the partial credit model that is proposed has the form

P (Ypi = r) =
exp(

∑r
l=1 e

αp(θp − δil))∑k
s=0 exp(

∑s
l=1 e

αp(θp − δil))
, r = 1, . . . , k. (3)

Thus, the usual predictor in the PCM, ηpir = θp−δir, which distinguishes between
category r − 1 and r, is replaced by the more general predictor

ηpir = eαp(θp − δir), r = 1, . . . , k,

which contains the additional subject-specific parameter αp. As is discussed in
the following, the parameter αp can be seen as a subject-specific response style
parameter, which describes a tendency to a specific response pattern.
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Interpretation of Subject-Specific Parameters

Let us start with the simplest case of a binary response (k = 1). Then it is easily
seen that the following holds.

If αp = 0 for all p one obtains the binary Rasch model.

If αp > 0 the person p is a strong discriminator, he/she has a distinct
preference for specific categories. For αp →∞ one obtains P (Ypi = 1) = 1
if θp > δi1, and P (Ypi = 0) = 1 if θp < δi1.

If αp < 0 the person p is a weak discriminator, For αp → −∞ one obtains
P (Ypi = 1) = 0.5 for all abilities/attitudes θp. The person shows a non-
contingent response style (NCR), which means he/she has a tendency to
respond to items randomly, or nonpurposefully.

In the general PCM one has to distinguish between two cases, ordered thresh-
olds and un-ordered thresholds. In the case of ordered thresholds (δir ≤ δi,r+1)
one obtains the following:

If αp = 0 for all p one obtains the traditional PCM.

For αp →∞ one obtains for a person with θp ∈ (δir, δi,r+1) the probability
P (Ypi = r) = 1, one observes a distinct response, the person knows exactly
which category he/she prefers. The property holds for all k if one defines
in addition δi0 = −∞, δi,k+1 =∞.

For αp → −∞ one obtains P (Ypi = r) = 1/(k+ 1) for all abilities/attitudes
θp. The person’s response has a discrete uniform distribution over the
response categories, which means simple guessing.

For illustration, the impact of the parameter αp is visualized in Figure 1. It
shows the response probabilities for a PCM with four categories for five different
values of αp. For αp = 0 one obtains the response probabilities given in the mid-
dle, which represent the response probabilities for the traditional PCM without
subject-specific heterogeneity. It is seen that for decreasing αp one comes closer
to a uniform distribution across categories, whatever the parameter θp is, for in-
creasing αp the preference for categories becomes very distinct depending on the
value of θp. The chosen parameters are rather large/small so that the impact
becomes obvious.

In the case of three response categories (k = 2), which are considered for
simplicity, and reverse thresholds δi2 < δi1 one obtains the following behaviour.

For αp →∞ the probabilities are given by:

For all persons one obtains P (Ypi = 1) = 0, that is, the middle category is
never chosen.
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Figure 1: Response probabilities in an extended PCM for four values of αp
(ordered thresholds).

For person θp < δi2 one obtains P (Ypi = 0) = 1.

For person θp > δi1 one obtains P (Ypi = 2) = 1.

Thus the inverse structure of thresholds yields a more distinct avoidance of the
middle category than the traditional PCM.

For αp → −∞ one obtains again P (Ypi = r) = 1/(k + 1)) for all abili-
ties/attitudes θp. The person has a discrete uniform distribution over the
response category, which means simple guessing.

As has been demonstrated the parameter αp can be seen as modelling the
subject-specific decisiveness or discriminatory power. For large αp the person
has distinct preferences, for small αp the person tends to a choose one of the
response categories at random which can be seen as noncontingent response style
or indecision. Since it is not possible to determine if indecisiveness or carelessness
is the reason we will, more generally, refer to the subject-specific effect eαp as
uncertainty effect. Although the used terminology primarily refers to attitude
measurement or personality questionnaires uncertainty may also come into play
in achievement tests. The uncertainty may refer to a nonpurposeful response
representing a person’s ability to work concentrated or distractedly. Without
specifying the specific source we consider the term eαp as representing uncertainty
and call the extended model (3) the uncertainty partial credit model (UPCM).

The uncertainty can also explain the occurrence of response patterns that
are unlikely in a unidimensional model in which uncertainty is ignored. The
responses of a person with high uncertainty is hardly predictable, since he/she
shows random behaviour. Therefore response patterns might occur that appear
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strange in a unidimensional model that does not account for heterogeneity of
uncertainty.

It should be noted that the response style parameter αp is strongly linked
to the unobvserved heterogeneity considered in Section 2. In the special case of
binary responses (k = 1) the parameter e−αp in the extended model represents
the unobserved dispersion σp in the latent variable Y ∗

pi = θp+σpεpi With σp = eγp

model, one has γp = −αp. This interpretation is also possible in the general PCM.
If one derives the PCM from latent variables locally (given categories r − 1, r)
the same reasoning applies as for the binary Rasch model. While eγp represents
the distinctiveness of the response e−γp represents the uncertainty of person p.

Differential Item Functioning

Differential item functioning (DIF) is the well known phenomenon that the prob-
ability of a correct response among equally able persons differs in subgroups. In
particular, the difficulty of an item may depend on the membership to a racial,
ethnic or gender subgroup. Then the performance of a group can be lower be-
cause these items are related to specific knowledge that is less present in this
group. The effect is measurement bias and possibly discrimination. More gen-
erally, including ordinal and nominal responses, DIF is present if the response
probabilities among persons with equal trait differ in subgroups. Various forms
of differential item functioning have been considered in the literature, see Magis
et al. (2010) for an instructive overview of DIF detection methods.

Differential item functioning usually aims at identifying those items that have
different difficulties in differing subgroups. It is typically assumed that just some
of the available items show this property. This is different in the case considered
here when persons have varying uncertainty represented in the factor eαp . If
the parameter αp is linked to a binary variable like gender one obtains that the
effective parameters of all all items are modified in one subgroup. Similar as in
Section 2 let us consider the binary model and let αp = α if xp = 1 and αp = 0
if xp = 0. Then the ’effective’ person and item parameters (eαpθp and eαpδi) in
group xp = 0 are

θ1, . . . , θP δ1, . . . , δI ,

and in group xp = 1
eαθ1, . . . , e

αθP eαδ1, . . . , e
αδI .

Thus, even when the underlying abilities θp are the same in both groups the
probability of a correct response differs in the groups, which corresponds to the
general definition of DIF that the probability of a correct response among equally
able persons differs in subgroups. Nevertheless, it should be seen as a specific
form of DIF, which could be called uniform DIF across items.

One further consequence of the modification of person and item parameters
is the reduced possibility of comparing item difficulties. If persons have different
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response styles, that is, different parameters αp, the person parameters θp cannot
be compared directly. Only for persons p and p̃, which have the same slope
parameter (αp = αp̃), the log-odds can be compared directly by

P (Ypi = r)/P (Ypi = r − 1)

P (Yp̃i = r)/P (Yp̃i = r − 1)
= eθp−θp̃ .

The Generalized Partial Credit Model

It is noteworthy that the extended partial credit model considered here differs
from the generalized partial credit model as considered by Muraki (1992), Muraki
(1997). It assumes

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= ai(θp − δir), r = 1, . . . , k,

which includes an item-specific slope parameter ai, not a subject-specific parame-
ter. In the generalized partial credit model the items have differing discriminatory
power. In contrast the uncertainty partial credit model considered here allows a
subject-specific uncertainty parameter, which means that discriminatory power
varies across persons.

3.3 Including Subject-Specific Characteristics

In the extended PCM each person has its own response style parameter αp, which
yields a large number of parameters. Thus, for estimation it is useful to assume
that they are random effects. In the light of differential item functioning it
is of special interest to investigate if response styles (or equivalently dispersion
heterogeneity) is determined by subject-specific covariates. To this end we let
the response style parameter depend on a vector of subject-specific covariates xp
in the form

αp = αp0 + xTpα,

and assume that αp0 follows the normal distribution IN(0, σ2). In the same way
one can include explanatory variables for the trait parameter by using

θp = θp0 + xTp ξ.

Thus the general uncertainty partial credit model (UPCM) we consider is

P (Ypi = r) =
exp(

∑r
l=1 e

αp0+xT
p α(θp0 + xTp ξ − δil))∑k

s=0 exp(
∑s

l=1 e
αp0+xT

p α(θp0 + xTp ξ − δil))
, r = 1, . . . , k.

Figure 2 shows the resulting response probabilities if a binary predictor (male:
xp = 1, female: xp = 0) is included in the location part and the dispersion part
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Figure 2: Response probabilities in an extended PCM with a binary predictor.

of an extended PCM with parameters α = 1.5 and ξ = 0 for the middle row
of the plot and parameters α = 0 and ξ = 1.5 for the bottom plot. The first
row shows the effect of αp0, larger values increase the distinctness, smaller values
decrease distinctness. In the middle row one sees the probabilities resulting from
an additional dispersion effect α = 1.5, which makes all responses more distinct
in the male population. In the third row the location/trait effect ξ = 1.5 is
visualized. It increases the probabilities for higher categories since the trait is
stronger in the male population.

4 Estimation

To reduce the number of parameters one assumes that the uncertainty parameters
are drawn from a normal distribution N(0, σ2

α). The corresponding marginal
likelihood with δT = (δT1 , . . . , δ

T
I ) is

L(θ,α, ξ, δ, σ2) =
P∏

p=1

∫
P ({Yp1, . . . , YpI})f(αp0)dαp0,
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where f(αp0) is the density N(0, σ2
α) of the random effects, θT = (θ1, . . . , θP−1),

δTi = (δi1, . . . , δik). The corresponding log-likelihood simplifies to

l(θ,α, ξ, δ, σ2) =

P∑

p=1

log

(∫ I∏

i=1

k∏

r=1

{ exp(
∑r

l=1 e
αp0+xT

p α(θp0 + xTξ − δil))∑k
s=0 exp(

∑s
l=1 e

αp0+xT
p α(θp0 + xTξ − δil))

}ypirf(αp0)dαp0

)
,

where ypir = 1 if Ypi = r and ypir = 0 otherwise.
Maximization of the marginal log-likelihood can be obtained by integration

techniques.
Typically one first wants to obtain good estimates of the item parameters and

estimate person parameters later for the validated test tool. Therefore, one also
assumes a distribution for the person effects, which yields the marginal likelihood

L(δ,Σ) =
P∏

p=1

∫
P ({Yp1, . . . , YpI})f(αp0, θp0)dαp0 dθp0,

where f(αp0, θp0) now denotes the two-dimensional density of the person pa-
rameters, N(0,Σ). The diagonals of the matrix Σ contain the variance of the
response style parameters σ2

γ and the variance of the person effects, σ2
α, the off

diagonals are the covariances between response style and location effects, covαθ.
The corresponding log-likelihood is

l(δ,α, ξ,Σ ) =

P∑

p=1

log

(∫ I∏

i=1

k∏

r=1

{ exp(
∑r

l=1 e
αp0+xT

p α(θp0 + xTξp − δil))∑k
s=0 exp(

∑s
l=1 e

αp0+xT
p α(θp0 + xTξp − δil))

}ypirf(αp0, θp0)dαp0 dθp0

)
.

The embedding into the framework of generalized mixed models allows to use
methods that have been developed for this class of models. One strategy is to
use joint maximization of a penalized log-likelihood with respect to parameters
and random effects appended by estimation of the variance of random effects, see
Breslow and Clayton (1993) and McCulloch and Searle (2001). However, joint
maximization algorithms tend to underestimate the variances and, therefore, the
true values of the random effects. An alternative strategy, which is used here, is
numerical integration by Gauss-Hermite integration methods. For an overview on
estimation methods for generalized mixed model see McCulloch and Searle (2001)
and Tutz (2012). The likelihood can be maximized numerically, and also the
corresponding Hessian can be approximated numerically for the final parameter
estimates. This allows for the calculation of (numerically approximated) standard
errors.
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5 Simulations

We conducted a small simulation study to evaluate the performance of the method
and the possible consequences of ignoring the response style. We used n = 300
observations on I = 10 items with each item having k = 5 categories. The
data were simulated under the assumption that the uncertainty partial credit
model (UPCM) holds. As explanatory variables we used one binary variable
and one continuous variables drawn from a standard normal distribution. We
fix the respective effects of the explanatory variables to ξT = (0.2,−0.1) for the
trait effects and αT = (−0.2, 0) for the response style effects. Furthermore, the
covariance matrix of the random effects was fixed to

Σ =

(
1 0.1

0.1 0.5

)
.

The simulation was conducted with 100 replications. Figure 3 compares the esti-
mates of the item parameters of a regular PCM to the item parameter estimates
obtained for the UPCM. The boxplots show the respective estimates together with
the true values, separately for each item and separately for PCM and UPCM.
True values are highlighted by (red) crosses. It can be seen, that in contrast to
the UPCM, the regular PCM estimates are biased.

Figure 4 displays the estimates of the random effects covariance matrix Σ .
Again the estimates can be compared to estimates from the regular PCM, however
obviously the PCM only provides estimates for the random effect of the trait.
While the PCM clearly underestimates the variance of the trait effects, the UPCM
estimates all parameters reasonably well. Figure 5 displays the estimates of all
covariate effects, both for trait and response style effects. All effects are estimated
rather well by the UPCM model.

6 An Application

For illustration, we consider data from the ALLBUS, the general survey of so-
cial science carried out by the German institute GESIS (http://www.gesis.
org/allbus). The data contain the answers of 2535 respondents from the ques-
tionnaire in 2012. In particular, we consider 8 items that refer to the degree of
confidence the participants have in public institutions and organizations. These
institutions are the federal court, the Bundestag (parliament), the justice system,
TV, press, government, police and political parties. The items are measured on
a scale from 1 (no confidence at all) to 7 (excessive confidence). As explanatory
variables for the trait and for the response style effects we used the following
person characteristics:

Age: Age of participant in years

Gender: 0: male; 1: female
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Figure 3: Boxplots for estimates of the four threshold parameters δir together

with true values (red crosses). Estimates are displayed separately for all 10 items

and both for the regular PCM model and the UPCM model.
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effect for trait effects, the respective estimates are shown for comparison.

Income: Income of participant in Euros
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both explanatory variables.

WestEast: 1: East Germany/former GDR; 0: West Germany/former FRG

To ensure that all covariate effects are comparable in their size all variables were
standardized. We applied both a simple Partial Credit Model (PCM) and the
UPCM to the data. While in the PCM the variance of the random effect for the
trait parameters was estimated to be σ̂2 = 0.736, when fitting the UPCM the
covariance matrix was estimated as

Σ̂ =

(
0.917 0.039
0.039 0.423

)
.

While there seems to be no correlation between both random effects it seems
that the random response style effect can not be neglected. It should be noted
that this refers only to the random effect response style component. This effect
is modelled in addition to the effects of the covariates on the response style.

Figure 6 displays the estimates of the item parameters of both the simple
PCM and the proposed UPCM. It can be seen that in particular the estimates
for the exterior thresholds differ between both models while the estimates for the
inner thresholds are rather similar.

Table 1 collects the parameters estimates of both the trait effects and the
response style effects of the explanatory variables together with the corresponding
p-values. It is seen that with the exception of the gender and age effects on
confidence all effects have to be considered as relevant.

For the interpretation of the effects we propose a visualization tool, which
is in particular helpful, when many explanatory variables are available. For the
motivation let us consider again the uncertainty partial credit model, which can
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Figure 6: Item parameter estimates for confidence data, separately for simple

PCM and the proposed UPCM.

ξ (Response style) α (Trait)

Income 0.051 (0.000) 0.056 (0.004)
Gender -0.004 (0.847) 0.044 (0.020)
Age -0.034 (0.092) -0.056 (0.002)
WestEast -0.156 (0.000) -0.039 (0.040)

Table 1: Parameter estimates for effects of explanatory variables (together with

p-values), both for trait effects ξ and for response style effects α.

be given by

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= eαp0+xT

p α(θp0 + xTp ξ − δir).

From this representation it is seen that the person and item parameters determine
the log-odds of observing category r rather than category r − 1. One obtains

a multiplicative effect eαj if the j-th variable increases by one unit, and

a location effect that shifts the second part of the predictor by ξj if the j-th
variable increases by one unit

We plot for each variable the effect point (ξj, e
αj) together with 0.95 confi-

dence intervals in both direction, which yields stars (Figure 7). The no-effects
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reference point is (0, e0) = (0, 1). The abscissa represents the effect on traits, val-
ues on the right (larger than zero) indicate that the trait increases with increasing
variable values, values on the left (below zero) indicate that the trait decreases
when the variable increases. It is seen that higher income increases confidence
in public institutions and people living in the former east (WestEast=1) tend to
have reduced confidence. It is also seen that age tends to reduce the confidence,
although the effect is not significant at the 0.05 level, since the star crosses the
zero line ξj = 0. The ordinate represents the uncertainty or random behaviour.
Large values (above 1) indicate distinctness of the response, small values (below
1) indicate indecision. Income increases distinctness, also females have a ten-
dency to a more distinct response. Increasing age reduces the distinctness of the
response, also people from the former west show higher uncertainty. In summary,
only income and WestEast appear to have distinct effects on the general trait
level while all variables show significant effects with respect to the response style.
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Figure 7: (Exponential) effects of explanatory variables in ALLBUS data to-

gether with confidence intervals both for trait effects ξ and response style effects

α .

7 Alternative Item Response Models

The partial credit model is an extension of the binary Rasch model, but not
the only one. Also Samejima’s graded response model (Samejima, 2016) and the
sequential model (Tutz, 1989; Verhelst et al., 1997) are extensions of the binary
model, which contain the Rasch model as special cases. In the same way as
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the partial credit model these models can be extended to contain an additional
subject-specific uncertainty component. It is less interesting in the sequential
model, which assumes a step wise solving of items, but is sensible in the case of
the graded response model, which can be derived from an underlying latent trait
and works well in personality questionnaires and attitude scales. The graded
response model has the form

P (Ypi ≥ r) = F (θp − δir), r = 1, . . . , k,

where F (.) again is a cumulative distribution function, typically chosen as the
logistic function. The extended version assumes for the probabilities

P (Ypi ≥ r) = F (eαp(θp − δir)), r = 1, . . . , k, (4)

with eαp representing the subject-specific factor. However, some caution is war-
ranted when interpreting the subject-specific term. It differs from the correspond-
ing term in the partial credit model. The way the subject-specific term modifies
the response probabilities is seen best when looking at the extreme cases. One
obtains the following properties.

For αp = 0 one obtains the traditional graded response model.

For αp →∞ one obtains for a person with θp ∈ (δir, δi,r+1) the probability
P (Ypi = r) = 1, that means a person knows exactly what he/she wants.

For αp → −∞ one obtains P (Ypi = 0) = P (Ypi = k) = 0.5.

In particular the last case (αp → −∞) shows that the subject-specific term
has a different meaning in the graded response model. Persons with αp → −∞
choose one of the extreme categories, which means they show what is called an
extreme response style (ERS). Thus when going through the continuum between
αp = −∞ to αp =∞

one covers the continuum between an extreme response style and a distinct
response.

For the partial credit model with a subject-specific term

one covers the continuum between a uniform distribution, which means
uncertainty, and a distinct response.

The difference in interpretation is caused by the specific property of the partial
credit model that modification of the local responses (given Y ∈ {r − 1, r})
modifies automatically all the other response probabilities. The extended graded
response model is in itself of interest but refers to a different response style and
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is not further investigated here. The graded response model with a subject-
specific factor as given in (4) was considered previously by Ferrando (2009), for
alternative models see also Ferrando (2014).

An interesting model is the binary Rasch model with a subject-specific term,
which is a special case of both extensions. For the binary Rasch model αp →
−∞ means that P (Ypi = 0) = P (Ypi = 1) = 0.5. This is hardly an extreme
response style, it means a simple random choice from the alternatives Y ∈ {0, 1}.
Therefore, the interpretation is in line with the interpretation of the extended
partial credit model, not the extended graded response model. The underlying
reason is that for binary responses the notion of an extreme response style is not
sensible.

It should be noted that subject-specific factors for binary models were con-
sidered before. The model proposed by Reise (2000) has been critically discussed
by Conijn et al. (2011). The latter investigated in particular problems with the
representation as a multilevel logistic regression model. More recently, Ferrando
(2016) proposed a normal-ogive model that contains item and person discrimina-
tion parameters. The presence of two factors makes more difficult estimation pro-
cedures necessary. Ferrando (2016) proposes a two-step approach, which works
only under rather specific assumptions.

The model proposed here differs from the models proposed by Ferrando and
others in several respect. We consider extensions of the partial credit model,
not the graded response model. Moreover, we include explanatory variable and
use marginal estimation methods that allow that the slope parameters can be
correlated with content related parameters. The additional parameters are con-
sidered as response style parameters, the model is embedded into the framework
of continuous response style modeling.

8 Concluding Remarks

The extended uncertainty partial credit model that has been proposed adds a
subject-specific uncertainty component to the traditional PCM. It can be used to
investigate if response styles are determined by person characteristics. Ignoring
the uncertainty component can yield biased estimates.

The model differs from multi-trait models that account for response styles by
using a linear predictor with some of the components describing response styles,
models that have been proposed, among others, by Plieninger (2016) and Wetzel
and Carstensen (2017). In contrast to these model a multiplicative predictor is
specified with one of the factors representing the response style, the other the
difference between trait and item parameter. The multiplicative structure is also
found in Muraki’s extended partial credit model, but in a quite different way.
The UPCM specifies a subject-specific uncertainty whereas in Muraki’s model
the slope parameters may vary across items. Consequently, estimation methods
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for the two models are quite different.
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Böckenholt, U. and T. Meiser (2017). Response style analysis with threshold and
multi-process irt models: A review and tutorial. British journal of mathemat-
ical and statistical psychology 70 (1), 159–181.

Bolt, D. M. and T. R. Johnson (2009). Addressing score bias and differential
item functioning due to individual differences in response style. Applied Psy-
chological Measurement 33 (5), 335–352.

Bolt, D. M. and J. R. Newton (2011). Multiscale measurement of extreme re-
sponse style. Educational and Psychological Measurement 71 (5), 814–833.

Breen, R., A. Holm, and K. B. Karlson (2014). Correlations and nonlinear prob-
ability models. Sociological Methods & Research 43 (4), 571–605.

Breslow, N. E. and D. G. Clayton (1993). Approximate inference in generalized
linear mixed model. Journal of the American Statistical Association 88, 9–25.

Conijn, J. M., W. H. Emons, M. A. van Assen, and K. Sijtsma (2011). On the
usefulness of a multilevel logistic regression approach to person-fit analysis.
Multivariate Behavioral Research 46 (2), 365–388.

De Boeck, P. and I. Partchev (2012). Irtrees: Tree-based item response models
of the glmm family. Journal of Statistical Software 48 (1), 1–28.

D’Elia, A. and D. Piccolo (2005). A mixture model for preference data analysis.
Computational Statistics & Data Analysis 49, 917–934.

Eid, M. and M. Rauber (2000). Detecting measurement invariance in organiza-
tional surveys. European Journal of Psychological Assessment 16 (1), 20.

20



Falk, C. F. and L. Cai (2016). A flexible full-information approach to the modeling
of response styles. Psychological methods 21 (3), 328.

Ferrando, P. J. (2009). A graded response model for measuring person reliability.
British Journal of Mathematical and Statistical Psychology 62 (3), 641–662.

Ferrando, P. J. (2014). A factor-analytic model for assessing individual differences
in response scale usage. Multivariate behavioral research 49 (4), 390–405.

Ferrando, P. J. (2016). An IRT modeling approach for assessing item and person
discrimination in binary personality responses. Applied psychological measure-
ment 40 (3), 218–232.

Gollwitzer, M., M. Eid, and R. Jürgensen (2005). Response styles in the assess-
ment of anger expression. Psychological assessment 17 (1), 56.

Gottard, A., M. Iannario, and D. Piccolo (2016). Varying uncertainty in CUB.
Advances in Data Analysis and Classification 10 (2), 225–244.

Iannario, M. and D. Piccolo (2016). A comprehensive framework of regression
models for ordinal data. Metron 74 (2), 233–252.

Jeon, M. and P. De Boeck (2016). A generalized item response tree model for
psychological assessments. Behavior research methods 48 (3), 1070–1085.

Johnson, T. R. (2003). On the use of heterogeneous thresholds ordinal regres-
sion models to account for individual differences in response style. Psychome-
trika 68 (4), 563–583.

Johnson, T. R. and D. M. Bolt (2010). On the use of factor-analytic multinomial
logit item response models to account for individual differences in response
style. Journal of Educational and Behavioral Statistics 35 (1), 92–114.

Kankaraš, M. and G. Moors (2009). Measurement equivalence in solidarity at-
titudes in europe insights from a multiple-group latent-class factor approach.
International Sociology 24 (4), 557–579.

Karlson, K. B., A. Holm, and R. Breen (2012). Comparing regression coefficients
between same-sample nested models using logit and probit: a new method.
Sociological Methodology 42 (1), 286–313.

Khorramdel, L. and M. von Davier (2014). Measuring response styles across the
big five: A multiscale extension of an approach using multinomial processing
trees. Multivariate Behavioral Research 49 (2), 161–177.
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