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Abstract

Background and goal: The Random Forest (RF) algorithm for regression and classification has considerably gained
popularity since its introduction in 2001. Meanwhile, it has grown to a standard classification approach competing
with logistic regression in many innovation-friendly scientific fields.

Results: In this context, we present a large scale benchmarking experiment based on 243 real datasets comparing
the prediction performance of the original version of RF with default parameters and LR as binary classification tools.
Most importantly, the design of our benchmark experiment is inspired from clinical trial methodology, thus avoiding
common pitfalls and major sources of biases.

Conclusion: RF performed better than LR according to the considered accuracy measured in approximately 69% of
the datasets. The mean difference between RF and LR was 0.029 (95%-CI=[ 0.022, 0.038]) for the accuracy, 0.041
(95%-CI=[ 0.031, 0.053]) for the Area Under the Curve, and − 0.027 (95%-CI=[−0.034,−0.021]) for the Brier score, all
measures thus suggesting a significantly better performance of RF. As a side-result of our benchmarking experiment,
we observed that the results were noticeably dependent on the inclusion criteria used to select the example datasets,
thus emphasizing the importance of clear statements regarding this dataset selection process. We also stress that
neutral studies similar to ours, based on a high number of datasets and carefully designed, will be necessary in the
future to evaluate further variants, implementations or parameters of random forests which may yield improved
accuracy compared to the original version with default values.
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Introduction
In the context of low-dimensional data (i.e. when the num-
ber of covariates is small compared to the sample size),
logistic regression is considered a standard approach for
binary classification. This is especially true in scientific
fields such as medicine or psycho-social sciences where
the focus is not only on prediction but also on explana-
tion; see Shmueli [1] for a discussion of this distinction.
Since its invention 17 years ago, the random forest (RF)
prediction algorithm [2], which focuses on prediction
rather than explanation, has strongly gained popularity
and is increasingly becoming a common “standard tool”
also used by scientists without any strong background in
statistics or machine learning. Our experience as authors,
reviewers and readers is that random forest can now be
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used routinely in many scientific fields without particular
justification and without the audience strongly question-
ing this choice. While its use was in the early years limited
to innovation-friendly scientists interested (or experts) in
machine learning, random forests are nowmore andmore
well-known in various non-computational communities.
In this context, we believe that the performance of

RF should be systematically investigated in a large-scale
benchmarking experiment and compared to the cur-
rent standard: logistic regression (LR). We make the—
admittedly somewhat controversial—choice to consider
the standard version of RF only with default parame-
ters — as implemented in the widely used R package
randomForest [3] version 4.6-12 — and logistic regres-
sion only as the standard approach which is very often
used for low dimensional binary classification.
The rationale behind this simplifying choice is that,

to become a “standard method” that users with differ-
ent (possibly non-computational) backgrounds select by
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default, a method should be simple to use and not require
any complex human intervention (such as parameter tun-
ing) demanding particular expertise. Our experience from
statistical consulting is that applied research practitioners
tend to apply methods in their simplest form for differ-
ent reasons including lack of time, lack of expertise and
the (critical) requirement of many applied journals to keep
data analysis as simple as possible. Currently, the simplest
approach consists of running RF with default parameter
values, since no unified and easy-to-use tuning approach
has yet established itself. It is not the goal of this paper
to discuss how to improve RF’s performance by appro-
priate tuning strategies and which level of expertise is
ideally required to use RF. We simply acknowledge that
the standard variant with default values is widely used
and conjecture that things will probably not dramatically
change in the short term. That is why we made the choice
to consider RF with default values as implemented in the
very widely used package randomForest—while admit-
ting that, if time and competence are available, more
sophisticated strategies may often be preferable. As an
outlook, we also consider RF with parameters tuned using
the recent package tuneRanger [4] in a small additional
study.
Comparison studies published in literature often

include a large number of methods but a relatively small
number of datasets [5], yielding an ill-posed problem as
far as statistical interpretation of benchmarking results
are concerned. In the present paper we take an oppo-
site approach: we focus on only two methods for the
reasons outlined above but design our benchmarking
experiments in such a way that it yields solid evidence.
A particular strength of our study is that we as authors
are equally familiar with both methods. Moreover, we
are “neutral” in the sense that we have no personal pri-
ori preference for one of the methods: ALB published a
number of papers on RF, but also papers on regression-
based approaches [6, 7] and papers pointing to critical
problems of RF [8–10]. Neutrality and equal expertise
would be much more difficult if not impossible to ensure
if several variants of RF (including tuning strategies) and
logistic regression were included in the study. Further dis-
cussions of the concept of authors’ neutrality can be found
elsewhere [5, 11].
Most importantly, the design of our benchmark exper-

iment is inspired by the methodology of clinical trials
that has been developed with huge efforts for several
decades. We follow the line taken in our recent paper
[11] and carefully define the design of our benchmark
experiments including, beyond issues related to neutrality
outlined above, considerations on sample size (i.e. number
of datasets included in the experiment) and inclusion cri-
teria for datasets. Moreover, as an analogue to subgroup
analyses and the search for biomarkers of treatment effect

in clinical trials, we also investigate the dependence of our
conclusions on datasets’ characteristics.
As an important by-product of our study, we provide

empirical insights into the importance of inclusion crite-
ria for datasets in benchmarking experiments and general
critical discussions on design issues and scientific prac-
tice in this context. The goal of our paper is thus two-fold.
Firstly we aim to present solid evidence on the perfor-
mance of standard logistic regression and random forests
with default values. Secondly, we demonstrate the design
of a benchmark experiment inspired from clinical trial
methodology.
The rest of this paper is structured as follows. After a

short overview of LR and RF, the associated VIM, par-
tial dependence plots [12], the cross-validation procedure
and performance measures used to evaluate the meth-
ods (“Background” section), we present our benchmark-
ing approach in “Methods” section, including the criteria
for dataset selection. Results are presented in “Results”
section.

Background
This section gives a short overview of the (existing) meth-
ods involved in our benchmarking experiments: logistic
regression (LR), random forest (RF) including variable
importance measures, partial dependence plots, and per-
formance evaluation by cross-validation using different
performance measures.

Logistic regression (LR)
Let Y denote the binary response variable of interest and
X1, . . . ,Xp the random variables considered as explain-
ing variables, termed features in this paper. The logistic
regression model links the conditional probability P(Y =
1|X1, ...,Xp) to X1, . . . ,Xp through

P(Y = 1|X1, ...,Xp) = exp
(
β0 + β1X1 + · · · + βpXp

)

1 + exp
(
β0 + β1X1 + · · · + βpXp

) ,

(1)

where β0,β1, . . . ,βp are regression coefficients, which are
estimated by maximum-likelihood from the considered
dataset. The probability that Y = 1 for a new instance
is then estimated by replacing the β ’s by their estimated
counterparts and the X’s by their realizations for the con-
sidered new instance in Eq. (1). The new instance is then
assigned to class Y = 1 if P(Y = 1) > c, where c is a fixed
threshold, and to class Y = 0 otherwise. The commonly
used threshold c = 0.5, which is also used in our study,
yields a so-called Bayes classifier. As for all model-based
methods, the prediction performance of LR depends on
whether the data follow the assumed model. In contrast,
the RF method presented in the next section does not rely
on any model.
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Random forest (RF)
Brief overview
The random forest (RF) is an “ensemble learning” tech-
nique consisting of the aggregation of a large number
of decision trees, resulting in a reduction of variance
compared to the single decision trees. In this paper we
consider Leo Breiman’s original version of RF [2], while
acknowledging that other variants exist, for example RF
based on conditional inference trees [13] which address
the problem of variable selection bias [14] and perform
better in some cases, or extremely randomized trees [15].
In the original version of RF [2], each tree of the RF

is built based on a bootstrap sample drawn randomly
from the original dataset using the CARTmethod and the
Decrease Gini Impuritiy (DGI) as the splitting criterion
[2]. When building each tree, at each split, only a given
number mtry of randomly selected features are consid-
ered as candidates for splitting. RF is usually considered
a black-box algorithm, as gaining insight on a RF predic-
tion rule is hard due to the large number of trees. One
of the most common approaches to extract from the ran-
dom forest interpretable information on the contribution
of different variables consists in the computation of the so-
called variable importance measures outlined in “Variable
importance measures” section. In this study we use the
package randomForest [3] (version 4.6-12) with default
values, see the next paragraph for more details on tuning
parameters.

Hyperparameters
This section presents the most important parameters for
RF and their common default values as implemented in
the R package randomForest [3] and considered in our
study. Note, however, that alternative choices may yield
better performance [16, 17] and that parameter tuning
for RF has to be further addressed in future research.
The parameter ntree denotes the number of trees in the
forest. Strictly speaking, ntree is not a tuning parame-
ter (see [18] for more insight into this issue) and should
be in principle as large as possible so that each candi-
date feature has enough opportunities to be selected. In
practice, however, performance reaches a plateau with a
few hundreds of trees for most datasets [18]. The default
value is ntree=500 in the package randomForest.
The parameter mtry denotes the number of features ran-
domly selected as candidate features at each split. A low
value increases the chance of selection of features with
small effects, which may contribute to improved predic-
tion performance in cases where they would otherwise
be masked by features with large effects. A high value
of mtry reduces the risk of having only non-informative
candidate features. In the package randomForest, the
default value is √p for classification with p the num-
ber of features of the dataset. The parameter nodesize

represents the minimum size of terminal nodes. Setting
this number larger yields smaller trees. The default value
is 1 for classification. The parameter replace refers to
the resampling scheme used to randomly draw from the
original dataset different samples on which the trees are
grown. The default is replace=TRUE, yielding boot-
strap samples, as opposed to replace=FALSE yielding
subsamples— whose size is determined by the parameter
sampsize.
The performance of RF is known to be relatively robust

against parameter specifications: performance generally
depends less on parameter values than for other machine
learning algorithms [19]. However, noticeable improve-
ments may be achieved in some cases [20]. The recent
R package tuneRanger [4] allows to automatically tune
RF’s parameters simultaneously using an efficient model-
based optimization procedure. In additional analyses pre-
sented in “Additional analysis: tuned RF” section, we
compare the performance of RF and LR with the perfor-
mance of RF tuned with this procedure (denoted as TRF).

Variable importancemeasures
As a byproduct of random forests, the built-in vari-
able importance measures (VIM) rank the variables (i.e.
the features) with respect to their relevance for pre-
diction [2]. The so-called Gini VIM has shown to be
strongly biased [14]. The second common VIM, called
permutation-based VIM, is directly based on the accu-
racy of RF: it is computed as the mean difference (over
the ntree trees) between the OOB errors before and
after randomly permuting the values of the consid-
ered variable. The underlying idea is that the permu-
tation of an important feature is expected to decrease
accuracy more strongly than the permutation of an
unimportant variable.
VIMs are not sufficient in capturing the patterns of

dependency between features and response. They only
reflect—in the form of a single number—the strength of
this dependency. Partial dependence plots can be used to
address this shortcoming. They can essentially be applied
to any prediction method but are particularly useful for
black-box methods which (in contrast to, say, generalized
linear models) yield less interpretable results.

Partial dependence plots
Partial dependence plots (PDPs) offer insight of any black
box machine learning model, visualizing how each feature
influences the prediction while averaging with respect to
all the other features. The PDP method was first devel-
oped for gradient boosting [12]. Let F denote the function
associated with the classification rule: for classification,
F

(
X1, . . . ,Xp

) ∈ [0, 1] is the predicted probability of the
observation belonging to class 1. Let j be the index of
the chosen feature Xj and Xj its complement, such that
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Xj = {
X1, ...,Xj−1,Xj+1, ...,Xp

}
. The partial dependence of

F on feature Xj is the expectation

FXj = EXjF
(
Xj,Xj

)
(2)

which can be estimated from the data using the empirical
distribution

p̂Xj(x) = 1
N

N∑

i=1
F

(
xi,1, ...xi,j−1, x, xi,j+1, ..., xi,p

)
, (3)

where xi,1, . . . , xi,p stand for the observed values of
X1, . . . ,Xp for the ith observation. As an illustration, we
display in Fig. 1 the partial dependence plots obtained
by logistic regression and random forest for three simu-
lated datasets representing classification problems, each
including n = 1000 independent observations. For each
dataset the variable Y is simulated according to the for-
mula log(P(Y = 1)/P(Y = 0)) = β0 + β1X1 + β2X2 +
β3X1X2 + β4X2

1 . The first dataset (top) represents the lin-
ear scenario (β1 �= 0, β2 �= 0, β3 = β4 = 0), the second
dataset (middle) an interaction (β1 �= 0, β2 �= 0, β3 �= 0,
β4 = 0) and the third (bottom) a case of non-linearity
(β1 = β2 = β3 = 0, β4 �= 0). For all three datasets the ran-
dom vector (X1,X2)� follows distribution N2(0, I), with I
representing the identity matrix. The data points are rep-
resented in the left column, while the PDPs are displayed

Fig. 1 Example of partial dependence plots. Plot of the PDP for the
three simulated datasets. Each line is related to a dataset. On the left,
visualization of the dataset. On the right, the partial dependence for
the variable X1. First dataset: β0 = 1,β1 = 5,β2 = −2 (linear), second
dataset: β0 = 1,β1 = 1,β2 = −1,β3 = 3 (interaction), third dataset
β0 = −2,β4 = 5 (non-linear)

in the right column for RF, logistic regression as well as the
true logistic regressionmodel (i.e. with the true coefficient
values instead of fitted values). We see that RF captures
the dependence and non-linearity structures in cases 2
and 3, while logistic regression, as expected, is not able to.

Performance assessment
Cross-validation
In a k-fold cross-validation (CV), the original dataset
is randomly partitioned into k subsets of approximately
equal sizes. At each of the k CV iterations, one of the
folds is chosen as the test set, while the k − 1 others are
used for training. The considered performance measure
is computed based on the test set. After the k iterations,
the performances are finally averaged over the iterations.
In our study, we perform 10 repetitions of stratified 5-fold
CV, as commonly recommended [21]. In the stratified ver-
sion of the CV, the folds are chosen such that the class
frequencies are approximately the same in all folds. The
stratified version is chosen mainly to avoid problems with
strongly imbalanced datasets occurring when all obser-
vations of a rare class are included in the same fold. By
“10 repetitions”, we mean that the whole CV procedure is
repeated for 10 randompartitions into k folds with the aim
to provide more stable estimates.
In our study, this procedure is applied to different per-

formancemeasures outlined in the next subsection, for LR
and RF successively and for M real datasets successively.
For each performance measure, the results are stored in
form of anM × 2 matrix.

Performancemeasures
Given a classifier and a test dataset of size ntest , let p̂i,
i = 1, . . . , n denote the estimated probability of the ith
observation (i = 1, . . . , ntest) to belong to class Y = 1,
while the true class membership of observation i is simply
denoted as yi. Following the Bayes rule implicitly adopted
in LR and RF, the predicted class ŷi is simply defined as
ŷi = 1 if p̂i > 0.5 and 0 otherwise.
The accuracy, or proportion of correct predictions is

estimated as

acc = 1
ntest

ntest∑

i=1
I
(
yi = ŷi

)
,

where I(.) denotes the indicator function (I(A) = 1 if A
holds, I(A) = 0 otherwise). TheArea Under Curve (AUC),
or probability that the classifier ranks a randomly chosen
observation with Y = 1 higher than a randomly chosen
observation with Y = 0 is estimated as

auc = 1
n0,testn1,test

∑

i:yi=1

∑

j:yj=0
I
(
p̂i > p̂j

)
,

where n0,test and n1,test are the numbers of observations
in the test set with yi = 0 and yi = 1, respectively.
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The Brier score is a commonly and increasingly used
performance measure [22, 23]. It measures the devia-
tion between true class and predicted probability and is
estimated as

brier = 1
ntest

ntest∑

i=1

(
p̂i − yi

)2 .

Methods
The OpenML database
So far we have stated that the benchmarking experi-
ment uses a collection of M real datasets without further
specifications. In practice, one often uses already for-
matted datasets from public databases. Some of these
databases offer a user-friendly interface and good doc-
umentation which facilitate to some extent the prelimi-
nary steps of the benchmarking experiment (search for
datasets, data download, preprocessing). One of the most
well-known database is the UCI repository [24]. Specific
scientific areas may have their own databases, such as
ArrayExpress for molecular data from high-throughput
experiments [25]. More recently, the OpenML database
[26] has been initiated as an exchange platform allow-
ing machine learning scientists to share their data and
results. This database included as many as 19660 datasets
in October 2016 when we selected datasets to initiate
our study, a non-negligible proportion of which are rele-
vant as example datasets for benchmarking classification
methods.

Inclusion criteria and subgroup analyses
When using a huge database of datasets, it becomes obvi-
ous that one has to define criteria for inclusion in the
benchmarking experiment. Inclusion criteria in this con-
text do not have any long tradition in computational
science. The criteria used by researchers—including our-
selves before the present study—to select datasets are
most often completely non-transparent. It is often the fact
that they select a number of datasets which were found
to somehow fit the scope of the investigated methods, but
without clear definition of this scope.
We conjecture that, from published studies, datasets

are occasionally removed from the experiment a pos-
teriori because the results do not meet the expecta-
tions/hopes of the researchers. While the vast majority of
researchers certainly do not cheat consciously, such prac-
tices may substantially introduce bias to the conclusion of
a benchmarking experiment; see previous literature [27]
for theoretical and empirical investigation of this prob-
lem. Therefore, “fishing for datasets” after completion of
the benchmark experiment should be prohibited, see Rule
4 of the “ten simple rules for reducing over-optimistic
reporting” [28].

Independent of the problem of fishing for significance,
it is important that the criteria for inclusion in the bench-
marking experiment are clearly stated as recently dis-
cussed [11]. In our study, we consider simple datasets’
characteristics, also termed “meta-features”. They are pre-
sented in Table 1. Based on these datasets’ characteristics,
we define subgroups and repeat the benchmark study
within these subgroups, following the principle of sub-
group analyses in clinical research. For example, one could
analyse the results for “large” datasets (n > 1000) and
“small datasets” (n ≤ 1000) separately. Moreover, we
also examine the subgroup of datasets related to bio-
sciences/medicine.

Meta-learning
Taking another perspective on the problem of benchmark-
ing results being dependent on dataset’s meta-features, we
also consider modelling the difference between the meth-
ods’ performances (considered as response variable) based
on the datasets’ meta-features (considered as features).
Such a modelling approach can be seen as a simple form
ofmeta-learning—a well-known task in machine learning
[29]. A similar approach using linear mixed models has
been recently applied to the selection of an appropriate
classification method in the context of high-dimensional
gene expression data analysis [30]. Considering the poten-
tially complex dependency patterns between response and
features, we use RF as a prediction tool for this purpose.

Power calculation
Considering theM×2 matrix, collecting the performance
measures for the two investigated methods (LR and RF)
on the M considered datasets, one can perform a test for
paired samples to compare the performances of the two
methods [31]. We refer to the previously published statis-
tical framework [31] for a precise mathematical definition
of the tested null-hypothesis in the case of the t-test for
paired samples. In this framework, the datasets play the

Table 1 Considered meta-features

Meta-feature Description

n Number of observations

p Number of features
p
n Dimensionality

d Number of features of the associated design matrix for LR
d
n Dimensionality of the design matrix

pnumeric Number of numeric features

pcategorical Number of categorical features

pnumeric,rate Proportion of numeric features

Cmax Percentage of observation of the majority class

time Duration for the run a 5-fold CVwith a default Random Forest
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role of the i.i.d. observations used for the t-test. Sample
size calculations for the t-test for paired samples can give
an indication of the rough number of datasets required to
detect a given difference δ in performances considered as
relevant for a given significance level (e.g., α = 0.05) and
a given power (e.g., 1 − β = 0.8). For large numbers and
a two-sided test, the required number of datasets can be
approximated as

Mreq ≈
(
z1−α/2 + z1−β

)2
σ 2

δ2
(4)

where zq is the q-quantile of the normal distribution
and σ 2 is the variance of the difference between the
two methods’ performances over the datasets, which may
be roughly estimated through a pilot study or previous
literature.
For example, the required number of datasets to detect

a difference in performances of δ = 0.05 with α = 0.05
and 1 − β = 0.8 is Mreq = 32 if we assume a variance of
σ 2 = 0.01 and Mreq = 8 for σ 2 = 0.0025. It increases to
Mreq = 197 andMreq = 50, respectively, for differences of
δ = 0.02.

Availability of data andmaterials
Several R packages are used to implement the bench-
marking study: mlr (version 2.10) for higher abstraction
and a simpler way to conduct benchmark studies [32],
OpenML (version 1.2) for loading the datasets [33], and
batchtools (version 0.9.2) for parallel computing [34].
Note that the LR and RF learners called via mlr are
wrappers on the functions glm and randomForest,
respectively.
The datasets supporting the conclusions of this arti-

cle are freely available in OpenML as described in
“The OpenML database” section.

Emphasis is placed on the reproducibility of our results.
Firstly, the code implementing all our analyses is fully
available from GitHub [35]. For visualization-only pur-
poses, the benchmarking results are available from this
link, so that our graphics can be quickly generated by
mouse-click. However, the code to re-compute these
results, i.e. to conduct the benchmarking study, is also
available from GitHub. Secondly, since we use specific
versions of R and add-on packages and our results may
thus be difficult to reproduce in the future due to soft-
ware updates, we also provide a docker image [36]. Docker
automates the deployment of applications inside a so
called “Docker container” [37]. We use it to create an R
environment with all the packages we need in their cor-
rect version. Note that docker is not necessary here (since
all our codes are available fromGitHub), but very practical
for a reproducible environment and thus for reproducible
research in the long term.

Results
In our study we consider a set ofM datasets (see “Included
datasets” section for more details) and compute for each
of them the performance of random forest and logistic
regression according to the three performance measures
outlined in “Performance assessment” section.

Included datasets
From approximately 20000 datasets currently available
from OpenML [26], we select those featuring binary clas-
sification problems. Further, we remove the datasets that
include missing values, the obviously simulated datasets
as well as duplicated datasets. We also remove datasets
with more features than observations (p > n), and
datasets with loading errors. This leaves us with a total of
273 datasets. See Fig. 2 for an overview.

Fig. 2 Selection of datasets. Flowchart representing the criteria for selection of the datasets
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Missing values due to errors
Out of the 273 selected datasets, 8 require too much com-
puting time when parallelized using the package batch-
tools and expired or failed. These—extremely large—
datasets are discarded in the rest of the study, leaving us
with 265 datasets.
Both LR and RF fail in the presence of categorical fea-

tures with too many categories. More precisely, RF fails
when more than 53 categories are detected in at least one
of the features, while LR fails when levels undetected dur-
ing the training phase occur in the test data. We could
admittedly have prevented these errors through basic pre-
processing of the data such as the removal or recoding
of the features that induce errors. However, we decide to
just remove the datasets resulting in NAs because we do
not want to address preprocessing steps, which would be
a topic on their own and cannot be adequately treated
along the way for such a high number of datasets. Since 22
datasets yield NAs, our study finally includes 265-22=243
datasets.

Main results
Overall performances are presented in a synthesized form
in Table 2 for all three measures in form of average
performances along with standard deviations and confi-
dence intervals computed using the adjusted bootstrap
percentile (BCa) method [38]. The boxplots of perfor-
mances of Random Forest (RF) and Logistic Regression
(LR) for the three considered performance measures are
depicted in Fig. 3, which also includes the boxplot of the
difference in performances (bottom row). It can be seen
from Fig. 3 that RF performs better for the majority of
datasets (69.0% of the datasets for acc, 72.3% for auc and

Table 2 Performances of LR and RF (top: accuracy, middle: AUC,
bottom: Brier score): (top: accuracy, middle: AUC, bottom: Brier
score): mean performance μ, standard deviation σ and
confidence interval for the mean (estimated via the bootstrap
BCa method [38]) on the 243 datasets

Acc μ σ BCa confidence interval

Logistic regression 0.826 0.135 [0.808, 0.842]

Random forest 0.854 0.134 [0.837, 0.870]

Difference 0.029 0.067 [0.021, 0.038]

Auc

Logistic regression 0.826 0.149 [0.807, 0.844]

Random forest 0.867 0.147 [0.847, 0.884]

Difference 0.041 0.088 [0.031, 0.054]

Brier

Logistic regression 0.129 0.091 [0.117, 0.140]

Random forest 0.102 0.080 [0.092, 0.112]

Difference -0.0269 0.054 [-0.034, -0.021]

71.5% for brier). Furthermore, when LR outperforms RF
the difference is small. It can also be noted that the differ-
ences in performance tend to be larger for auc than for acc
and brier.

Explaining differences: datasets’ meta-features
In this section, we now perform different types of
additional analyses with the aim to investigate the
relation between the datasets’ meta-features and
the performance difference between LR and RF. In
“Preliminary analysis” section, we first consider an exam-
ple dataset in detail to examine whether changing the
sample size n and the number p of features for this given
dataset changes the difference between performances of
LR and RF (focusing on a specific dataset, we are sure
that confounding is not an issue). In “Subgroup analy-
ses: meta-features” to “Meta-learning” sections, we then
assess the association between dataset’s meta-features
and performance difference over all datasets included
in our study.

Preliminary analysis
While it is obvious to any computational scientist that the
performance of methods may depend on meta-features,
this issue is not easy to investigate in real data settings
because i) it requires a large number of datasets—a condi-
tion that is often not fulfilled in practice; ii) this problem
is enhanced by the correlations between meta-features. In
our benchmarking experiment, however, we consider such
a huge number of datasets that an investigation of the rela-
tionship between methods’ performances and datasets’
characteristic becomes possible to some extent.
As a preliminary, let us illustrate this idea using only

one (large) biomedical dataset, the OpenML dataset with
ID = 310 including n0 = 11183 observations and p0 = 7
features. A total of N = 50 sub-datasets are extracted
from this dataset by randomly picking a number n′ < n0
of observations or a number p′ < p0 of features. Thereby
we successively set n′ to n′ = 5.102, 103, 5.103, 104 and
p′ to p′ = 1, 2, 3, 4, 5, 6. Figure 4 displays the boxplots of
the accuracy of RF (white) and LR (dark) for varying n′
(top-left) and varying p′ (top-right). Each boxplot repre-
sents N = 50 data points. It can be seen from Fig. 4 that
the accuracy increases with p′ for both LR and RF. This
reflects the fact that relevant features may bemissing from
the considered random subsets of p′ features. Interest-
ingly, it can also be seen that the increase of accuracy with
p′ is more pronounced for RF than for LR. This supports
the commonly formulated assumption that RF copes bet-
ter with large numbers of features. As a consequence, the
difference between RF and LR (bottom-right) increases
with p′ from negative values (LR better than RF) to posi-
tive values (RF better than LR). In contrast, as n increases
the performances of RF and LR increase slightly but quite



Couronné et al. BMC Bioinformatics  (2018) 19:270 Page 8 of 14

Fig. 3Main results of the benchmark experiment. Boxplots of the performance for the three considered measures on the 243 considered datasets.
Top: boxplot of the performance of LR (dark) and RF (white) for each performance measure. Bottom: boxplot of the difference of performances
�perf = perfRF − perfLR

Fig. 4 Influence of n and p: subsampling experiment based on dataset ID=310. Top: Boxplot of the performance (acc) of RF (dark) and LR (white) for
N = 50 sub-datasets extracted from the OpenML dataset with ID=310 by randomly picking n′ ≤ n observations and p′ < p features. Bottom:
Boxplot of the differences in performances �acc = AccRF − AccLR between RF and LR. p′ ∈ {1, 2, 3, 4, 5, 6}. n′ ∈ {5e2, 1e3, 5e3, 1e4}. Performance is
evaluated through 5-fold-cross-validation repeated 2 times
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similarly (yielding a relatively stable difference), while—
as expected—their variances decrease; see the left column
of Fig. 4.

Subgroup analyses: meta-features
To further explore this issue over all 243 investigated
datasets, we compute Spearman’s correlation coefficient
between the difference in accuracy between random for-
est and logistic regression (�acc) and various datasets’
meta-features. The results of Spearman’s correlation test
are shown in Table 3. These analyses again point to the
importance of the number p of features (and related
meta-features), while the dataset size n is not signif-
icantly correlated with �acc. The percentage Cmax of
observations in the majority class, which was identified
as influencing the relative performance of RF and LR in
a previous study [39] conducted on a dataset from the
field of political science is also not significantly correlated
with �acc in our study. Note that our results are aver-
aged over a large number of different datasets: they are
not incompatible with the existence of an effect in some
cases.
To investigate these dependencies more deeply, we

examine the performances of RF and LR within subgroups
of datasets defined based on datasets’ meta-features
(called meta-features from now on), following the princi-
ple of subgroup analyses well-known in clinical research.
As some of the meta-features displayed in Table 3 are
mutually (highly) correlated, we cluster them using a hier-
archical clustering algorithm (data not shown). From the
resulting dendogramwe decide to select themeta-features
p, n, p

n , Cmax, while other meta-features are considered
redundant and ignored in further analyses.
Figure 5 displays the boxplots of the differences in accu-

racy for different subgroups based on the four selected
meta-features p, n, pn and Cmax. For each of the four meta-
features, subgroups are defined based on different cut-off
values, denoted as t, successively. The histograms of the
four meta-features for the 243 datasets are depicted in the

Table 3 Correlation between �acc and dataset’s features

Spearman’s ρ Spearman’s ρ p-value

n -0.0338 6.00 · 10−1

p 0.331 1.32 · 10−7

p
n 0.254 6.39 · 10−5

d 0.258 4.55 · 10−5

d
n 0.246 1.04 · 10−4

pnumeric 0.254 6.09 · 10−5

pcategorical -0.076 2.37 · 10−1

pnumeric,rate 0.240 1.54 · 10−4

Cmax 0.00735 9.10 · 10−1

bottom row of the figure, where the considered cutoff val-
ues are materialized as vertical lines. Similar pictures are
obtained for the two alternative performance measures
auc and brier; See Additional file 1.
It can be observed from Fig. 5 that RF tends to yield

better results than LR for a low n, and that the differ-
ence decreases with increasing n. In contrast, RF performs
comparatively poorly for datasets with p < 5, but better
than LR for datasets with p ≥ 5. This is due to low per-
formances of RF on a high proportion of the datasets with
p < 5. For p

n , the difference between RF and LR is negli-
gible in low dimension

( p
n < 0.01

)
, but increases with the

dimension. The contrast is particularly striking between
the subgroups p

n < 0.1 (yielding a small�acc) and p
n ≥ 0.1

(yielding a high �acc), again confirming the hypothesis
that the superiority of RF over LR is more pronounced for
larger dimensions.
Note, however, that all these results should be inter-

preted with caution, since confounding may be an issue.

Subgroup analyses: substantive context
Furthermore, we conduct additional subgroup analyses
focusing on the subgroup of datasets from the field of
biosciences/medicine. Out of the 243 datasets consid-
ered so far, 67 are related to this field. The modified
versions of Figs. 3 and 5 and Table 2 (as well as Fig. 6 dis-
cussed in “Meta-learning” section) obtained based on the
subgroup formed by datasets from biosciences/medicine
are displayed in Additional file 2. The outperformance
of RF over LR is only slightly lower for datasets from
biosciences/medicine than for the other datasets: the
difference between datasets from biosciences/medicine
and datasets from other fields is not significantly dif-
ferent from 0. Note that one may expect bigger differ-
ences between specific subfields of biosciences/medicine
(depending on the considered prediction task). Such
investigations, however, would require subject matter
knowledge on each of these tasks. They could be con-
ducted in future studies by experts of the respective tasks;
see also the “Discussion” section.

Meta-learning
The previous section showed that benchmarking results
in subgroups may be considerably different from that of
the entire datasets collection. Going one step further, one
can extend the analysis of meta-features towards meta-
learning to gain insight on their influence. More precisely,
taking the datasets as observations we build a regression
RF that predicts the difference in performance between
RF and LR based on the four meta-features considered
in the previous subsection

(
p, n, pn and Cmax

)
. Figure 6

depicts partial dependence plots for visualization of the
influence of each meta-feature. Again, we notice a depen-
dency on p and p

n as outlined in “Subgroup analyses:
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Fig. 5 Subgroup analyses. Top: for each of the four selected meta-features n, p, p/n and Cmax , boxplots of �acc for different thresholds as criteria for
dataset selection. Bottom: distribution of the four meta-features (log scale), where the chosen thresholds are displayed as vertical lines. Note that
outliers are not shown here for a more convenient visualization. For a corresponding figure including the outliers as well as the results for auc and
brier, see Additional file 1

meta-features” section and the comparatively bad results
of RF when compared to LR for datasets with small p. The
importance of Cmax and n is less noticeable.
Although these results should be considered with cau-

tion, since they are possibly highly dependent on the
particular distribution of the meta-features over the 243
datasets and confounding may be an issue, we conclude
from “Explaining differences: datasets’ meta-features”
section that meta-features substantially affect �acc. This

points out the importance of the definition of clear inclu-
sion criteria for datasets in a benchmark experiment and
of the consideration of the meta-features’ distributions.

Explaining differences: partial dependence plots
In the previous section we investigated the impact of
datasets’ meta-features on the results of benchmarking
and modeled the difference between methods’ perfor-
mance based on these meta-features. In this section, we

Fig. 6 Plot of the partial dependence for the 4 considered meta-features : log(n), log(p), log
( p
n

)
, Cmax . The log scale was chosen for 3 of the 4

features to obtain more uniform distribution (see Fig. 5 where the distribution is plotted in log scale). For each plot, the black line denotes the
median of the individual partial dependences, and the lower and upper curves of the grey regions represent respectively the 25%- und
75%-quantiles. Estimated mse is 0.00382 via a 5-CV repeated 4 times
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take a different approach for the explanation of differ-
ences. We use partial dependence plots as a technique to
assess the dependency pattern between response and fea-
tures underlying the prediction rule. More precisely, the
aim of these additional analyses is to assess whether dif-
ferences in performances (between LR and RF) are related
to differences in partial dependence plots. After getting
a global picture for all datasets included in our study,
we inspect three interesting “extreme cases” more closely.
In a nutshell, we observe no strong correlation between
the difference in performances and the difference in par-
tial dependences over the 243 considered datasets. More
details are given in Additional file 3: in particular, we see
in the third example dataset that, as expected from the
theory, RF performs better than LR in the presence of
a non-linear dependence pattern between features and
response.

Additional analysis: tuned RF
As an outlook, a third method is compared to RF and
LR: RF tuned using the package tuneRanger [4] with
all arguments set to the defaults (in particular, tuning
is performed by optimizing the Brier score by using the
out-of-bag observations). To keep computational time
reasonable, in this additional study CV is performed
only once (and not repeated 10 times as in the main
study), and we focus on the 67 datasets from bio-
sciences/medicine. The results are displayed in Additional
file 4 in the same format as the previously described
figures.
Tuned RF (TRF) has a slightly better performance than

RF: both acc and auc are on average by 0.01 better for
TRF than for RF. Apart from this slight average differ-
ence, the performances of RF and TRF appear to be similar
with respect to subgroup analyses and partial dependence
plots. The most noticeable, but not very surprising result
is that improvement through tuning tends to be more pro-
nounced in cases where RF performs poorly (compared
to LR).

Application to C-to-U conversion data
As an illustration, we apply LR, RF and TRF to the C-to-U
conversion data previously investigated in relation to
random forest in the bioinformatics literature [14, 40].
In summary, RNA editing is the process whereby RNA is
modified from the sequence of the corresponding DNA
template [40]. For instance, cytidine-to-uridine conver-
sion (abbreviated C-to-U conversion) is common in plant
mitochondria. Cummings and Myers [40] suggest to use
information from neighboring sequence regions flanking
the sites of interest to predict editing status, among
others in Arabidopsis thaliana. For each of the 876 com-
plete observations included in the dataset (available at
https://static-content.springer.com/esm/art%3A10.1186

%2F1471-2105-5-132/MediaObjects/12859_2004_248_
MOESM1_ESM.txt), the following features are available:

• the binary response at the site of interest (edited
versus not edited)

• the 40 nucleotides at positions -20 to 20, relative to
the edited site (4 categories: A, C, T, G), whereby we
consider only the nucleotides at positions -5 to 5 as
candidates in the present study,

• the codon position cp (4 categories: P0, P1, P2, PX),
• the (continuous) estimated folding energy (fe)
• the (continuous) difference dfe in estimated folding

energy between pre-edited and edited sequences.

When evaluating LR and RF on this dataset using the
same evaluation procedure as for the OpenML datasets,
we see that LR and RF perform very similarly for all three
considered measures: 0.722 for LR versus 0.729 for RF for
the accuracy (acc), 0.792 for LR versus 0.785 for RF for
the Area Under the Curve (auc) and 0.185 for LR versus
0.187 for RF for the Brier score. When looking at permu-
tation variable importances (for RF) and p-values of the
Wald test (for LR), we see that the 13 candidate features
are assessed similarly by both methods. In particular, the
two closest neighbor nucleotides are by far the strongest
predictors for both methods.
Using the package ’tuneRanger’ (corresponding to

method TRF in our benchmark), the results are extremely
similar for all three measures (acc: 0.722, auc: 0.7989,
brier: 0.184), indicating that, for this dataset, the default
values are adequate. Using the package ’glmnet’ to fit a
ridge logistic regression model (with the penalty parame-
ter chosen by internal cross-validation, as done by default
in ’glmnet’), the results are also similar: 0.728 for acc, 0.795
for auc and 0.189 for brier.
To gain further insight into the impact of specific tun-

ing parameters, we proceed by running RF with its default
parameters except for one parameter, which is set to sev-
eral candidate values successively. The parameters mtry,
nodesize and sampsize are considered successively
as varying parameter (while the other two are fixed to
the default values). More precisely, mtry is set 1, 3, 5,
10 and 13 successively; nodesize is set to 2, 5, 10,
20 successively; and sampsize is set to 0.5n and 0.75n
successively. The result is that all three performance mea-
sures are remarkably robust to changes of the parameters:
all accuracy values are between 0.713 and 0.729, all AUC
values are between 0.779 and 0.792, and all Brier score
values are between 0.183 and 0.197. Large nodesize val-
ues seem to perform slightly better (this is in line with the
output of tuneRanger, which selects 17 as the optimal
nodesize value), while there is no noticeable trend for
mtry and sampsize. In conclusion, the analysis of the
C-to-U conversion dataset illustrates that one should not

https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-5-132/MediaObjects/12859_2004_248_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-5-132/MediaObjects/12859_2004_248_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-5-132/MediaObjects/12859_2004_248_MOESM1_ESM.txt
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expect too much from tuning RF in general (note, how-
ever, that tuning may improve performance in other cases,
as indicated by our large-scale benchmark study).

Discussion
Summary
We presented a large-scale benchmark experiment for
comparing the performance of logistic regression and ran-
dom forest in binary classification settings. The overall
results on our collection of 243 datasets showed better
accuracy for random forest than for logistic regression for
69.0% of the datasets. On the whole, our results support
the increasing use of RF with default parameter values as
a standard method—which of course neither means that
it performs better on all datasets nor that other parameter
values/variants than the default are useless!
We devoted particular attention to the inclusion criteria

applied when selecting datasets for our study. We investi-
gated how the conclusions of our benchmark experiment
change in different subgroups of datasets. Our analyses
reveal a noticeable influence of the number of features
p and the ratio p

n . The superiority of RF tends to be
more pronounced for increasing p and p

n . More gener-
ally, our study outlines the importance of inclusion criteria
and the necessity to include a large number of datasets
in benchmark studies as outlined in previous literature
[11, 28, 31].

Limitations
Firstly, as previously discussed [11], results of benchmark-
ing experiments should be considered as conditional on
the set of included datasets. As demonstrated by our anal-
yses on the influence of inclusion criteria for datasets,
different sets of datasets yield different results. While the
set of datasets considered in our study has the major
advantages of being large and including datasets from
various scientific fields, it is not strictly speaking repre-
sentative of a “population of datasets”, hence essentially
yielding conditional conclusions.
Secondly, as all real data studies, our study considers

datasets following different unknown distributions. It is
not possible to control the various datasets’ characteris-
tics that may be relevant with respect to the performance
of RF and LR. Simulations fill this gap and often yield
some valuable insights into the performance of methods
in various settings that a real data study cannot give.
Thirdly, other aspects of classification methods are

important but have not been considered in our study, for
example issues related to the transportability of the con-
structed prediction rules. By transportability, wemean the
possibility for interested researchers to apply a prediction
rule presented in the literature to their own data [9, 10].
With respect to transportability, LR is clearly superior to
RF, since it is sufficient to know the fitted values of the

regression coefficient to apply a LR-based prediction rule.
LR also has themajor advantage that it yields interpretable
prediction rules: it does not only aim at predicting but also
at explaining, an important distinction that is extensively
discussed elsewhere [1] and related to the “two cultures”
of statistical modelling described by Leo Breiman [41].
These important aspects are not taken into account in our
study, which deliberately focuses on prediction accuracy.
Fourthly, our main study was intentionally restricted to

RF with default values. The superiority of RF may be more
pronounced if used together with an appropriate tuning
strategy, as suggested by our additional analyses with TRF.
Moreover, the version of RF considered in our study has
been shown to be (sometimes strongly) biased in variable
selection [14]. More precisely, variables of certain types
(e.g., categorical variables with a large number of cate-
gories) are systematically preferred by the algorithm for
inclusion in the trees irrespectively of their relevance for
prediction. Variants of RF addressing this issue [13] may
perform better, at least in some cases.

Outlook
In this paper, we mainly focus on RF with default
parameters as implemented in the widely used pack-
age randomForest and only briefly consider parameter
tuning using a tuning procedure implemented in the pack-
age tuneRanger as an outlook. The rationale for this
choice was to provide evidence for default values and
thereby the analysis strategy most researchers currently
apply in practice. The development of reliable and prac-
tical parameter tuning strategies, however, is crucial and
more attention should be devoted in the future. Tuning
strategies should be themselves compared in benchmark
studies. Beyond the special case of RF, particular atten-
tion should be given to the development of user-friendly
tools such as tuneRanger [4], considering that one of
the main reasons for using default values is probably the
ease-of-use—an important aspect in the hectic academic
context. By presenting the results on the average superi-
ority with default values over LR, we by no means want
to definitively establish these default values. Instead, our
study is intended as a fundamental first step towards well-
designed studies providing solid well-delimited evidence
on the performance.
Before further studies are performed on tuning strate-

gies, we insist that, whenever performed in applications
of RF, parameter tuning should ideally always be reported
clearly including all technical details either in the main or
in its supplementary materials. Furthermore, the uncer-
tainty regarding the “best tuning strategy” should in no
circumstances be exploited for conscious or subconscious
“fishing for significance”.
Moreover, our study could also be extended to yield

differentiated results for specific prediction tasks, e.g.,
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prediction of disease outcome based on different types of
omics data, or prediction of protein structure and func-
tion. In the present study, we intentionally considered a
broad spectrum of data types to achieve a high number
of datasets. Obviously, performance may depend on the
particular prediction task, which should be addressed in
more focused benchmark studies conducted by experts of
the corresponding prediction task with good knowledge
of the considered substantive context. However, the more
specific the considered prediction task and data type, the
more difficult it will be to collect the needed number of
datasets to achieve the desired power. In real data stud-
ies, there is a trade-off between the homogeneity and the
number of available datasets.

Conclusion
Our systematic large-scale comparison study performed
using 243 real datasets on different prediction tasks shows
the good average prediction performance of random for-
est (compared to logistic regression) even with the stan-
dard implementation and default parameters, which are
in some respects suboptimal. This study should in our
view be seen both as (i) an illustration of the application
of principles borrowed from clinical trial methodology to
benchmarking in computational sciences—an approach
that could be more widely adopted in this field and (ii) a
motivation to pursue research (and comparison studies!)
on random forests, not only on possibly better variants
and parameter choices but also on strategies to improve
their transportability.
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