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Induce Antiproliferative and Antimigratory 
Effects in Human Neuroendocrine Tumor Cells 
in vitro: Evidence for ‘Off-Target’ Effects Not 
Mediated by c-Met Inhibition 

 Clemens Reuther    a     Vera Heinzle    a     Matilde Spampatti    a, c     George Vlotides    a     
Enrico de Toni    a     Gerald Spöttl    a     Julian Maurer    a     Svenja Nölting    a     Burkhard Göke    a, b     
Christoph J. Auernhammer    a  

  a    Department of Internal Medicine II, Campus Grosshadern, University Hospital, Ludwig Maximilian University of 
Munich,  Munich , and  b    Universitätsklinikum Hamburg-Eppendorf,  Hamburg , Germany;  c    U.O.C. Gastroenterologia 2, 
Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and Università degli Studi di Milano,  Milan , Italy 

that c-Met inhibition alone is not sufficient to exert direct 
antitumoral or antimigratory effects in neuroendocrine tu-
mor cells. The multi-tyrosine kinase inhibitors cabozantinib 
and tivantinib show promising antitumoral and antimigra-
tory effects in neuroendocrine tumor cells, which are most 
probably ‘off-target’ effects, not mediated by c-Met. 

 © 2015 S. Karger AG, Basel 

 Introduction 

 Neuroendocrine tumors (NET) are a heterogeneous 
group of neoplasms mainly originating from the gastro-
enteropancreatic system and the lung  [1] . Molecular tar-
geted therapy of NETs with the mTOR inhibitor everoli-
mus  [2, 3]  or the multi-tyrosine kinase inhibitor (multi-
TKI) sunitinib (VEGFR, PDGFR, KIT)  [4]  is currently 
only approved for pancreatic NETs. There is still an un-
met need for further medical therapies including novel 
targeted therapies  [5, 6] .

  The hepatocyte growth factor (HGF) receptor is en-
coded by the proto-oncogen c-Met and is a transmem-
brane tyrosine kinase. The endogenous ligand of c-Met is 

 Key Words 

 c-Met · INC280 · Cabozantinib · Tivantinib · Neuroendocrine 
tumor 

 Abstract 

  Background/Aims:  The hepatocyte growth factor/trans-
membrane tyrosine kinase receptor c-Met has been defined 
as a potential target in antitumoral treatment of various car-
cinomas. We aimed to investigate the direct effect of c-Met 
inhibition on neuroendocrine tumor cells in vitro.  Methods:  
The effects of the multi-tyrosine kinase inhibitors cabozan-
tinib and tivantinib and of the highly specific c-Met inhibitor 
INC280 were investigated in human pancreatic neuroendo-
crine BON1, bronchopulmonary NCI-H727 and midgut GOT1 
cells in vitro.  Results:  INC280, cabozantinib and tivantinib 
inhibited c-Met phosphorylation, respectively. However, 
while equimolar concentrations (10 μ M ) of cabozantinib and 
tivantinib inhibited cell viability and cell migration, INC280 
had no inhibitory effect. Knockdown experiments with c-
Met siRNA also did not demonstrate effects on cell viability. 
Cabozantinib and tivantinib caused a G2 arrest in neuroen-
docrine tumor cells.  Conclusions:  Our in vitro data suggest 
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HGF. The HGF/c-Met axis has been characterized as an 
important target in cancer therapy  [7–10]  as it mediates 
tumor cell growth, migration and metastasis. Extracellu-
lar anti-HGF antibodies, anti-Met antibodies, as well as 
ATP-competitive and non-ATP competitive MET inhib-
itors have been developed and are in clinical trial pro-
grams  [7, 9] . Cabozantinib (XL-184) is an ATP-competi-
tive multi-TKI (with activity against c-Met, VEGFR2, c-
KIT, FLT3, RET and TIE2) that has recently been approved 
by the FDA and EMEA for the treatment of medullary 
thyroid carcinoma  [11, 12] . Cabozantinib is also current-
ly in phase 3 clinical trials for hepatocellular carcinoma 
(NCT01908426), prostate cancer (NCT01522443) and 
renal cell carcinoma (NCT01865747). A phase 2 clinical 
trial with cabozantinib in patients with NET is currently 
ongoing (NCT01466036). Tivantinib (ARQ-197) is a 
non-ATP-competitive c-MET kinase inhibitor  [7] . Re-
cently, ‘off-target’ effects of tivantinib have been report-
ed, and antitumoral effects of tivantinib irrespective of 
c-Met inhibition have been found in vitro  [13–16] . Tivan-
tinib has positive phase 2 trial results  [17, 18] , and cur-
rent phase 3 clinical trials for hepatocellular carcinoma 
(NCT02029157) and for NSCLC (NCT01377376) are on-
going. INC280 (c-Met) is an ATP-competitive c-MET ki-
nase inhibitor  [7] , currently in phase 1/2 clinical trials in 
various cancer entities.

  In preclinical pancreatic neuroendocrine tumor mod-
els, various multi-TKIs with combined anti-VEGF and 
anti-MET efficacy have shown enhanced angiogenesis in-
hibition, as well as suppression of tumor invasion and 
metastasis  [19–21] . In the Rip-Tag2 mouse model  [19] , 
the multi-TKIs foretinib (XL880; with activity against c-
Met, VEGFR2, PDGFR, c-KIT, FLT3, RON and TIE2) 
and cabozantinib (XL184; with activity against c-Met, 
VEGFR2, c-KIT, FLT3, RET and TIE2), demonstrated
superior inhibition of angiogenesis, reduced tumor in-
vasiveness and reduced metastasis in comparison to
the multi-TKI XL999 (with activity against VEGFR2, 
PDGFR, c-KIT and FLT3). This higher antitumoral effi-
cacy of XL880 and XL184 compared to XL999 might have 
been caused by their different activities against c-Met 
with IC50s of 0.4 and 1.3 versus 463 n M   [19] . Inhibition 
of VEGF signaling by an anti-VEGF antibody or by suni-
tinib in the RIP-Tag2 mouse model reduced tumor growth 
but caused an increase in phospho-c-Met expression, par-
alleled by increased lymphatic metastasis. Invasion and 
metastasis were reduced by the c-Met inhibitors PF-
04217903 (with activity against c-Met, ALK) and crizo-
tinib (PF-02341066; with activity against c-Met and ALK) 
or cabozantinib (XL184; with activity against c-Met, 

VEGFR2, c-KIT, FLT3, RET and TIE2)  [20, 21] . Due to 
these findings, a role of c-Met as a potential target in neu-
roendocrine tumors has been suggested  [19–21] . A phase 
2 clinical trial with cabozantinib in patients with neuro-
endocrine tumors is currently ongoing (NCT01466036).

  Despite these promising preclinical data for the multi-
TKI cabozantinib in neuroendocrine tumors  [19–21] , a 
direct effect of c-MET inhibition on neuroendocrine tu-
mor cell growth and migration seems not yet proven. The 
multi-TKI tivantinib has recently been reported in vari-
ous cancer cells to exert its antitumoral efficacy not re-
lated to c-Met inhibition but by other ‘off-target’ effects 
 [13–16] . Therefore, we performed a comparative in vitro 
study using equimolar concentrations of the highly spe-
cific c-Met inhibitor INC280 and the multi-TKIs cabo-
zantinib and tivantinib in several human neuroendocrine 
tumor cell lines. We compared the efficacy of all three 
compounds on c-Met phosphorylation status, cell viabil-
ity, cell cycle control, as well as cell migration. In addition, 
we performed siRNA experiments to knockdown c-MET 
expression in neuroendocrine tumor cells. Our study 
demonstrates that c-Met inhibition is not essential for the 
inhibition of cell growth and cell migration in the inves-
tigated neuroendocrine tumor cell models. The observed 
antiproliferative and antimigratory effects of cabozan-
tinib and tivantinib seem to be mediated by ‘off-target’ 
effects other than c-Met.

  Materials and Methods 

 Materials 
 Dulbecco’s modified Eagle medium – Nutrient Mixture F-12, 

1:   1 (DMEM/F12) – and penicillin/streptomycin were purchased 
from Gibco/Invitrogen (Karlsruhe, Germany), trypsin-EDTA 
(10×) from PAA Laboratories (Cölbe, Germany), phosphate-buff-
ered saline (PBS) and RPMI medium (with  L -glutamine, NaCO 3 ) 
were from Sigma-Aldrich (St. Louis, Mo., USA), and fetal bovine 
serum (FBS) and amphotericin B were acquired from Biochrom 
(Berlin, Germany). INC280 was from Novartis (Basel, Switzer-
land). Cabozantinib and tivantinib were from Selleckchem (Hous-
ton, Tex., USA).

  Cell Cultures 
 All human neuroendocrine cell lines were received and cul-

tured as recently described  [22] . The human pancreatic neuroen-
docrine tumor cell line BON1  [23, 24]  (kindly provided by Prof. R. 
Göke, Marburg, Germany) was grown in DMEM/F12 (1:   1) supple-
mented with 10% FBS, 1% penicillin/streptomycin and 0.4% am-
photericin B. The human midgut carcinoid GOT1 cells  [25]  (kind-
ly provided by Prof. O. Nilsson, Sahlgrenska University Hospital 
Göteborg, Sweden) and human bronchopulmonary neuroendo-
crine NCI-H727 tumor cells  [26, 27]  (purchased from ATCC, 
Manassas, Va., USA) were cultured in RPMI medium supplement-
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ed with 10% FBS, 1% penicillin/streptomycin and 0.4% ampho-
tericin B. The cells were mycoplasma free and incubated at 37   °   C 
in 5% CO 2 /95% air.

  Assessment of Cell Viability 
 BON1 and NCI-H727 cells were counted by an automated cell 

counter (Countess TM , Invitrogen, Germany), seeded into 96-well 
plates at densities of 3,000 (BON1) and 4,000 (NCI-H727) cells per 
well and grown for 24 h in a complete medium containing serum/
antibiotic. The next day, the cells were incubated with various con-
centrations of INC280, cabozantinib and tivantinib (1 n M  to 10 
μ M ) in 10% FBS medium (antibiotic free). After 24, 48 and 72 h, 
the metabolic activity was measured with ‘Cell Titer 96 Aqueous 
One Solution’ cell proliferation assay (Promega, Madison, Wis., 
USA) according to the manufacturer’s instructions. The measure-
ment was performed at 492 nm with an ELISA plate reader.

  siRNA Transfection 
 The siRNA transfections were performed as described previ-

ously  [28] . The siRNA oligonucleotide [ON-TARGETplus 
SMARTpool, Human MET (4233), Cat. No. 003156-00-0005] and 
the nontargeting siRNA (ON-TARGETplus Non-targeting Pool, 
Cat. No. D-001810-10-05) were purchased from Thermo Fisher 
Scientific (Schwerte, Germany). Cells were transfected in an anti-
biotic- and FBS-free medium using DharmaFECT 2 (BON1) and 
Dharmafect 3 (NCI-H727) according to the manufacturer’s in-
structions (Dharmacon, Lafayette, Colo., USA). Twenty-four 
hours after transfection, FBS was added for a final concentration 
of 10%.

  Cell Cycle Analysis by FACS 
 Cell cycle distribution was analyzed using propidium iodide 

staining and flow cytometry (BD Accuri C6 Analysis). Cells were 
cultured in 6-well plates (4 × 10 5  BON1 cells/well and 5 × 10 5  NCI-
H727 cells/well) for 24 h in complete medium. The next day, the 
medium was replaced with fresh 10% FBS medium and incubated 
with 10 μ M  INC280, cabozantinib and tivantinib. After 24, 48 and 
72 h, cells were washed with PBS and treated with 300 μl trypsin at 
37   °   C for 4 min. Cells were collected and centrifuged at 2,000 rpm 
for 5 min. After another wash cycle with PBS, the cells were cen-
trifuged again. The pellets were resuspended in 350 μl propidium 
iodide. After 2 h, the samples were measured.

  Cell Migration Assay 
 BON1 and NCI-H727 cells were seeded at densities of 

120,000/140,000 cells/chamber in culture inserts (Ibidi, Munich, 
Germany). After 24 h, the inserts were removed, and the cells were 
treated with 100 n M  and 10 μ M  of INC280, cabozantinib and tivan-
tinib. Every 24 h, pictures of the gap between the two cell layers 
were taken [Zeiss, Axiovert 135 TV (microscope) and Zeiss, Ax-
ioCam MRm (camera)]. The assay was stopped after 72 h, and pic-
tures were analyzed.

  Protein Extraction and Western Blotting 
 For Western blot experiments, 4 × 10 5  cells (BON1) or 5 × 10 5  

cells (NCI-H727) were seeded in 6-well plates and grown for 24 h 
in complete medium. After the medium was replaced by a fresh 
10% FBS medium, the cells were incubated with several concentra-
tions of INC280, cabozantinib and tivantinib (1 n M  to 10 μ M ) for 
2 and 24 h. The cells were placed on ice, washed twice with cold 

PBS and lysed in 200 μl lysis buffer (M-PER ®  Mammalian Protein 
Extraction Reagent containing HALT TM  protease and phosphatase 
inhibitor cocktail; Thermo Scientific, Rockford, Ill., USA). Lysates 
were centrifuged at 13,000 rpm for 10 min. The supernatants were 
adjusted to the same protein concentration (30–50 μg/50 μl; Roti-
quant Universal, Carl Roth, Karlsruhe, Germany). Sodium dode-
cyl sulfate (SDS) sample buffer (0.25 m M  Tris HCL, 40% glycerol, 
2% SDS, 1% dithiothreitol, bromophenol blue, pH 8.8) was added, 
and the samples were boiled for 5 min and separated on an SDS 
polyacrylamide gel. Proteins were electrotransferred for 60 min 
onto PVDF membranes (Immobilone; Millipore, Eschborn, Ger-
many) using a semi-dry Western-blot technique. After blocking in 
2% nonfat dried milk, the membranes were incubated overnight in 
appropriate dilutions of antibodies against pMet (Tyr 1234/5; 
#3077), Met (#3127), pAkt (Ser 473; #4060), Akt (#2920), pERK 
(Thr202/Tyr204) 1/2 (#4370), pp70S6K (Thr389; #9234), p70S6K 
(#9202), p4EBP1 (Ser65; #9451), 4EBP1 (#9644), pGSK3 (Ser21/9; 
#9331), GSK3 (#9315), CDK4 (#12790), CDK6 (#13331), pChk1 
(Ser345; #2341), Chk1 (#2360), cyclin B1 (#12231), cyclin D1 
(#2978), cyclin D3 (#2936), PARP (#9542), PCNA (#2586), E-cad-
herin (#3195), N-cadherin (#4061), β-catenin (#8480), src (#2109), 
vimentin (#5741), ZO-1 (#8193), all from Cell Signaling (Danvers, 
Mass., USA), twist (sc-15393; Santa Cruz, Dallas, Tex., USA), HGF 
(701283; Novex-Life, Frankfurt, Germany), actin (A5441; Sigma, 
St. Louis, Mo., USA), Erk 1/2 (06-182; Merck-Millipore, Darm-
stadt, Germany). After washing with TBS, the membranes were 
incubated with a peroxidase-conjugated secondary antibody (1:  
 25,000) for 2 h. The blots were washed and immersed in the che-
miluminescent substrate SuperSignal West Dura (Thermo Scien-
tific, Rockford, Ill., USA), and images were taken with an ECL Che-
mocam Imager (INTAS, Göttingen, Germany).

  Statistical Analysis 
 For proliferation assays, comparisons were evaluated using 

two-tailed Student’s t test. Results are expressed as mean ± SD of 
three or four independently performed experiments. Statistical 
significance was set at p < 0.05.

  Results 

 Human Neuroendocrine Tumor Cells Express 
Functional c-Met and Its Endogenous Ligand HGF 
 Western blot analysis demonstrated the expression of 

c-Met in human pancreatic neuroendocrine BON1, bron-
chopulmonary NCI-H727 and midgut GOT1 tumor cells, 
respectively ( fig. 1 a). Expression of the endogenous c-Met 
ligand HGF was found in BON1 and H727 tumor cells, 
but not in GOT1 cells ( fig.  1 b). Incubation of BON1, 
H727 and GOT1 cells with recombinant human HGF 
(rhHGF) at a concentration of 1.25 n M  for 10 min caused 
a significant induction of phospho-c-Met Y1234/5, while 
preincubation with the c-Met-inhibitor INC280 at a con-
centration of 100 n M  for 2 h completely abolished the 
baseline and HGF-stimulated phospho-c-Met Y1234/5 
( fig. 1 a). In addition, rhHGF stimulated phosphorylation 
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of Akt and ERK1/2, while preincubation with the c-Met-
inhibitor INC280 at a concentration of 100 n M  for 2 h 
prevented any stimulation ( fig. 1 a).

  Thus, these data demonstrate the expression of a func-
tional c-Met receptor on all three human neuroendocrine 
tumor cell lines investigated. However, the expression of 
the endogenous c-Met ligand HGF and expression of ac-
tivated c-Met (phospho-c-Met Y1234/5) in untreated 
cells were only found in BON1 and H727 cells, while it 
could not be detected in GOT1 cells.

  Cabozantinib and Tivantinib Inhibit Cell Viability of 
Neuroendocrine Tumor Cells, while the Specific c-Met 
Inhibitor INC280 Has No Effect 
 Human pancreatic neuroendocrine BON1, broncho-

pulmonary NCI-H727 and midgut GOT1 tumor cells 
were incubated with INC280, cabozantinib and tivantinib 
at a concentration range of 1 n M  to 10 μ M , for 24 h ( fig. 2 a), 

48 h ( fig. 2 b) and 72 h ( fig. 2 c), respectively. Cabozantinib 
and tivantinib at lower concentrations of 1 and 100 n M  
demonstrated no constant significant effects on cell via-
bility of the three tumor cell lines. However, cabozantinib 
10 μ M  caused a significant decrease in cell viability in 
BON1, H727 and GOT1 cells, each at 24, 48 and 72 h, re-
spectively ( fig. 2 ). At 72 h, cabozantinib 10 μ M  caused a 
decrease in cell viability in BON1 cells to 51.1 ± 2.3%
(p < 0.001), H727 cells to 59.3 ± 2.1% (p < 0.001) and 
GOT1 cells to 30.5 ± 9.3% (p < 0.01), respectively. Also 
tivantinib 10 μ M  caused a significant decrease in cell via-
bility in BON1 and H727 cells at 24, 48 and 72 h, respec-
tively ( fig. 2 ), but had no effect on cell viability of GOT1 
cells ( fig. 2 ). At 72 h, tivantinib 10 μ M  caused a decrease 
in cell viability in BON1 cells to 28.1 ± 5.2% (p < 0.001) 
and in H727 cells to 65.9 ± 7.4% (p < 0.01). In contrast, 
no significant effect of tivantinib 10 μ M  was observed on 
cell viability of GOT1 cells [98.8 ± 13.9% (n.s.)]. In con-
trast, INC280 at all tested concentrations of 1 and 100 n M , 
and 10 μ M  demonstrated no constant significant effects 
on cell viability of the three tumor cell lines ( fig. 2 ). At
72 h, INC280 10 μ M  caused only minimal changes in cell 
viability in BON1 cells to 105.3 ± 2.9% (p < 0.05), in H727 
cells to 91.0 ± 4.5% (p < 0.05) and in GOT1 cells to 99.1 ± 
3.9% (n.s.), respectively.

  Thus, these data demonstrate that cabozantinib and 
tivantinib at a concentration of 10 μ M  potently inhibit cell 
viability in human neuroendocrine tumor cell lines, while 
INC280 does not. The antiproliferative effects of INC280, 
cabozantinib and tivantinib ( fig. 2 ) are not correlated and 
not congruent with their efficacy as a c-Met inhibitor (see 
fig. 4a), as demonstrated below. The antiproliferative ef-
ficacies of cabozantinib on BON1, H727 and GOT1 cells 
( fig. 2 ) do not correlate with the respective expression lev-
els of activated c-Met (phospho-c-Met Y1234/5) in these 
cell lines ( fig. 1 a).

  Inhibition of c-Met Expression by c-Met siRNA Does 
Not Inhibit Cell Viability of Neuroendocrine Tumor 
Cells 
 Human pancreatic neuroendocrine BON1 and bron-

chopulmonary NCI-H727 cells were transfected with 
nontargeted β-gal siRNA (50 n M ) or siRNA against c-Met 
(50 n M ). The effectiveness of the siRNAs was verified by 
Western blot analysis 72 h after transfection, and siRNA 
against c-Met demonstrated a significant decrease in c-
Met expression ( fig. 3 a). Cell viability 72 h after transfec-
tion with nontargeted β-gal siRNA versus c-Met siRNA 
( fig. 3 b) was not significantly affected in BON1 cells (45.8 
± 25.7% vs. 46.6 ± 25.2%; n.s.), and only a minimal effect 
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+
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–
+
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–
–

+
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–
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–
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+
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–
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–
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+
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+
–
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–
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b

  Fig. 1.   a  The endogenous c-Met ligand HGF induces c-MET phos-
phorylation in neuroendocrine tumor cells, which is blocked by 
the specific c-Met inhibitor INC280. Human pancreatic neuroen-
docrine BON1, bronchopulmonary H727 and midgut GOT1 cells 
were incubated with HGF (1.25 n M ) for 10 min. A preincubation 
with INC280 (100 n M ) for 2 h was performed in the control group 
and the HGF treatment group. Subsequently, the expression of 
phospho-c-Met Y1234/5, c-Met, pAkt S473, pERK1/2 T202/Y204 
and β-actin loading control was evaluated by Western blot analy-
sis. A representative blot out of three independently performed 
experiments is shown.  b  Endogenous HGF expression by neuro-
endocrine tumor cells. Cell lysates of untreated BON1, NCI-H727 
and GOT1 neuroendocrine tumor cells were harvested. Subse-
quently, the expression of HGF and β-actin loading control was 
evaluated by Western blot analysis. A representative blot out of 
three independently performed experiments is shown .  
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  Fig. 2.  Differential effects of INC280, cabozantinib and tivantinib on cell viability of neuroendocrine tumor cells. 
Human pancreatic neuroendocrine BON1, bronchopulmonary NCI-H727 and midgut GOT1 cells were incu-
bated with INC280, cabozantinib and tivantinib at a concentration range of 1 n M  to 10 μ M  for 24 h ( a ), 48 h ( b ) 
and 72 h ( c ), respectively. Cell viability was measured with Cell Titer 96 kit (Promega). The arithmetic means and 
standard deviation of four independent experiments are shown. Statistical analysis with t test showed significant 
results for 1 n M  to 10 μ M  with  *  p < 0.05,  *  *  p < 0.01 and  *  *  *  p < 0.001. 

(For figure 2c see next page.)
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was seen in H727 cells (94.7 ± 8.9% vs. 89.5 ± 3.2%; p < 
0.05), respectively.

  Thus, these data demonstrate that inhibition of c-Met 
expression does not affect or only minimally affects cell 
viability of neuroendocrine tumor cells.

  Differential Effects of INC280, Cabozantinib and 
Tivantinib on c-Met Activity and EGFR, Akt and 
MAPK Signaling 
 Human pancreatic BON1 and bronchopulmonary 

NCI-H727 cells were incubated with INC280, cabozan-
tinib and tivantinib, respectively, in concentrations of 1, 
100 and 10,000 n M  for 24 h, followed by protein extrac-
tion and Western blot analysis ( fig. 4 a). Expression of ac-
tivated phospho-c-Met Y1234/5 was already partially in-
hibited by INC280 and cabozantinib at the lowest con-
centration of 1 n M , while concentrations of 100 and 
10,000 n M  completely abolished phospho-c-Met Y1234/5 
expression, respectively ( fig. 4 a). In contrast, tivantinib 
demonstrated a partial inhibition of phospho-c-Met 
Y1234/5 expression in BON1 cells only at the highest con-
centration of 10,000 n M  ( fig. 4 a). Thus, these data dem-
onstrate that the c-Met-inhibitor efficacy of INC280 and 
cabozantinib in neuroendocrine tumor cells is in a similar 
low nanomolar range, while tivantinib, even at the high-
est concentration tested, caused only a partial inhibition 
of activated phospho-c-Met Y1234/5 expression ( fig. 4 a). 

The c-Met-inhibitor efficacy of either drug and the extent 
of inhibition of activated phospho-c-Met Y1234/5 ex-
pression during drug incubation ( fig. 4 a) do not correlate 
with the respective antiproliferative efficacies of INC280, 
cabozantinib and tivantinib on BON1 and H727 cells 
( fig. 2 ).

  As Akt/mTOR signaling and MAPK signaling is essen-
tially involved in neuroendocrine tumor cell proliferation 
 [28–30] , an analysis of various markers of Akt/mTOR 
signaling and MAPK signaling was performed ( fig. 4 b, c). 
Human pancreatic BON1 and bronchopulmonary NCI-
H727 cells were incubated with INC280 (10,000 n M ), 
cabozantinib (10,000 n M ) and tivantinib (10,000 n M ) for 
2, 24, 48 and 72 h, respectively, followed by protein ex-
traction and Western blot analysis ( fig. 4 b, c). Cabozan-
tinib and tivantinib caused late-onset effects at 48 and
72 h with a decrease in phospho-EGFR in BON1 and 
NCI-H727 cells ( fig.  4 b, c). Cabozantinib also demon-
strated an early negative effect on phospho-IGF-1R at 2 h 
in BON1 and NCI-H727 cells ( fig. 4 b, c). Cabozantinib 
and tivantinib caused inhibition of pAkt and p4EBP1S65 
in BON1 cells at 72 h ( fig.  4 b), but not in H727 cells 
( fig. 4 c). INC280 and cabozantinib caused induction of 
GSK3 phosphorylation at pGSK3 S21/9 in BON1 cells at 
72 h ( fig. 4 b), while cabozantinib and tivantinib caused 
induction of pGSK3 S21/9 in H727 cells at 72 h ( fig. 4 c). 
A modest compensatory activation of phospho-Erk1/2 
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T202/Y204 by INC280, cabozantinib and tivantinib could 
be detected at 2 h in BON1 cells ( fig. 4 b) and by cabozan-
tinib and tivantinib at 24 h in H727 cells ( fig. 4 c). In con-
trast, none of the above described effects were observed 
in a similar manner with INC280 ( fig. 4 b, c).

  Cabozantinib and Tivantinib Cause a G2 Arrest of 
Neuroendocrine Tumor Cells, while the Specific c-Met 
Inhibitor INC280 Has No Effect 
 Human pancreatic neuroendocrine BON1 ( fig. 5 a, b) 

and bronchopulmonary NCI-H727 ( fig. 5 c, d) cells were 
incubated with equimolar concentrations (10,000 n M ) of 

INC280, cabozantinib and tivantinib for 24 h, followed by 
FACS analysis. In BON1 cells, cabozantinib and tivan-
tinib caused a significant accumulation in G2 phase with 
54.9 ± 13.9% (p < 0.05) and 75.6 ± 7.9% (p < 0.01) versus 
17.5 ± 3.2% G2 phase in the control group ( fig. 5 b). In 
H727 cells, cabozantinib and tivantinib caused a signifi-
cant accumulation in G2 phase with 31.9 ± 4.4% (n.s.,
p = 0.2) and 53.7 ± 4.7% (p < 0.05) versus 26.6 ± 6.4% G2 
phase in the control group ( fig. 5 d). In contrast, INC280 
did not exert a significant effect on the percentage of cells 
in the G2 phase neither in BON1 cells with 17.0 ± 5.3% 
(n.s.) versus 17.5 ± 3.2% G2 phase in the control group 
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  Fig. 3.  Effects of c-Met siRNA on c-Met expression and cell viability of neuroendocrine tumor cells. Human pan-
creatic neuroendocrine BON1 and bronchopulmonary NCI-H727 cells were transfected with nontargeted β-gal 
siRNA (50 n M ) or siRNA against c-Met (50 n M ). The effectiveness of the siRNAs was verified by Western blot 
analysis of c-Met expression 72 h after transfection.  a  One representative blot out of three performed experiments 
is shown.  b  Cell viability in siRNA-treated BON1 and NCI-H727 cells was measured with Cell Titer 96 kit (Pro-
mega) 72 h after transfection. The mean values ± SD of three independently performed experiments are shown.                   
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  Fig. 4.  Differential effects of INC280, cabozantinib and tivantinib 
on c-Met activity and EGFR, Akt and MAPK signaling.      a  Human 
pancreatic neuroendocrine BON1 and bronchopulmonary NCI-
H727 cells were incubated with INC280, cabozantinib and tivan-
tinib, respectively, in increasing concentrations of 1–10,000 n     M  for 
24 h. Subsequently, the expression of phospho-c-Met Y1234/5, c-
Met and β-actin loading control was evaluated by Western blot 
analysis. One representative blot out of three independently per-
formed experiments is shown. Human pancreatic neuroendocrine 

BON1 ( b ) and bronchopulmonary NCI-H727 ( c ) cells were incu-
bated with INC280 (10,000 n M ), cabozantinib (10,000 n M ) and ti-
vantinib (10,000 n M ) for 2, 24, 48 and 72 h, respectively. Subse-
quently, the expression of phospho-c-Met Y1234/5, c-Met, pEGFR 
Y1068, EGFR, pIGFR Y1135, IGFR, pAkt S473, Akt, p4EBP1 S65, 
p4EBP1 T37/47, 4EBP1, pp70S6K T389, pERK1/2 T202/Y204, 
ERK1/2, pGSK3 S21/9, GSK3 and β-actin loading control was eval-
uated by Western blot analysis. One representative blot out of three 
independently performed experiments is shown .              

(For figure 4c see next page.)
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( fig. 5 b), nor in H727 cells with 27.1 ± 6.1% (n.s.) versus 
26.6 ± 6.4% G2 phase in the control group ( fig. 5 d).

  Differential Effects of INC280, Cabozantinib and 
Tivantinib on c-Met Activity and Various Parameters 
of Cell Cycle Regulation and Apoptosis 
 Human pancreatic BON1 and bronchopulmonary 

NCI-H727 cells were incubated with INC280 (10,000 
n M ), cabozantinib (10,000 n M ) and tivantinib (10,000 
n M ) for 2, 24, 48 and 72 h, respectively, followed by pro-
tein extraction and Western blot analysis ( fig. 6 a, b).

  Cabozantinib and tivantinib demonstrated late-onset 
effects at 72 h with inhibition of the expression of cyclin 
D1 and proliferation marker PCNA in BON1 cells ( fig. 6 a) 
and H727 cells ( fig. 6 b). Tivantinib upregulated cyclin B1 
expression at 24 h in BON1 cells ( fig. 6 a) and H727 cells 
( fig. 6 b). While these findings indicate that cabozantinib 
and tivantinib affect cell cycle regulation, cabozantinib or 
tivantinib had no effect on cleavage of the apoptosis 
marker PARP ( fig. 6 a, b).

  Cabozantinib and tivantinib cause a G2 arrest in BON1 
and H727 cells ( fig.  5 ). Therefore, we also investigated 
protein expression of the G2 checkpoint regulator Chk1. 

The effects of cabozantinib or tivantinib on pChk1S345/
Chk1 expression were different in BON1 and H727 cells 
( fig. 6 a, b), indicating a cell type-specific regulation.

  Cabozantinib and Tivantinib Inhibit Cell Migration 
of Neuroendocrine Tumor Cells, while the Specific 
c-Met Inhibitor INC280 Has No Effect 
 Human pancreatic neuroendocrine BON1 ( fig. 7 a, b) 

and bronchopulmonary NCI-H727 ( fig. 7 c, d) cells were 
incubated with INC280, cabozantinib and tivantinib, re-
spectively, at a concentration of 100 n M  and 10 μ M  for
72 h. The gap width at 0 and 72 h, respectively, for each 
treatment group was analyzed ( fig. 7 b, d). In BON1 cells, 
cabozantinib and tivantinib at the highest concentration 
of 10,000 n M  inhibited cell migration into the gap and re-
stored the gap width with 84.7 ± 3.4% (p < 0.05) and 82.9 
± 17.9% (n.s., p = 0.1), respectively ( fig. 7 b). In contrast, 
INC280 had no significant inhibitory effect on cell migra-
tion into the gap and did not restore the gap width in 
comparison to control with 9.3 ± 11.3% (n.s., p = 0.1) ver-
sus 29.2 ± 19.2% ( fig. 7 b). In H727 cells, cabozantinib and 
tivantinib inhibited cell migration into the gap and re-
stored the gap width with 102.5 ± 20.6% (p < 0.05) and 
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66.1 ± 2.2% (p < 0.05), respectively ( fig. 7 d). In contrast, 
INC280 had no significant inhibitory effect on cell migra-
tion into the gap and did not restore the gap width in 
comparison to control with 33.7 ± 16.8% (n.s., p = 0.5) 
versus 38.9 ± 7.0% ( fig. 7 d).

  Thus, these data demonstrate that cabozantinib and 
tivantinib at a concentration of 10 μ M  inhibit cell migra-
tion in human neuroendocrine tumor cell lines, while 
INC280 does not. The antimigratory effects of INC280, 
cabozantinib and tivantinib ( fig. 7 ) are not correlated and 
not congruent with their efficacy as a c-Met inhibitor 
( fig. 4 ), as demonstrated before. 

 Next, we evaluated whether the antimigratory effects 
of cabozantinib and tivantinib are mediated by epithelial 

mesenchymal transition (EMT) markers. However, no 
effects were detected in Western blot analysis of a panel 
of appropriate EMT markers ( fig. 8 ).

  Discussion 

 The HGF/HGF receptor c-Met axis has been defined 
as a potential target in cancer therapy of various tumor 
entities  [7–10] . In this study, we aimed to investigate 
whether single c-Met inhibition is sufficient to inhibit 
neuroendocrine tumor cell growth and migration in vi-
tro, and to further characterize the role of the HGF/c-Met 
axis in neuroendocrine tumors. The effects of the multi-
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  Fig. 5.  Differential effects of INC280, cabozantinib and tivantinib 
on G2 arrest of neuroendocrine tumor cells. Human pancreatic 
neuroendocrine BON1 (     a ,  b ) and bronchopulmonary NCI-H727 
( c ,  d ) cells were incubated with INC280, cabozantinib and tivan-
tinib, respectively, at a concentration of 10,000 n M  for 24 h. FACS 
analysis analyzed G2, S, G1 and sub-G1 events, respectively.  a ,  c  A 

representative FACS analysis out of three independently per-
formed experiments is shown.  b ,  d          The mean values ± SD of three 
independently performed experiments are shown. Statistical anal-
ysis with t test showed significant results with  *  p < 0.05,  *  *  p < 0.01 
and  *  *  *  p < 0.001. 

(For figures 5c and d see next page.)
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TKIs cabozantinib and tivantinib and of the highly spe-
cific c-Met inhibitor INC280 were investigated in human 
pancreatic neuroendocrine BON1, bronchopulmonary 
NCI-H727 and midgut GOT1 cells in vitro.

  All three human neuroendocrine tumor cell lines 
BON1 (pancreatic NET), NCI-H727 (bronchopulmona-
ry carcinoid) and GOT1 (midgut carcinoid) expressed
c-Met ( fig.  1 a). The functionality of c-Met was proven
by rhHGF-induced stimulation of phospho-c-Met in all 
three cell lines. HGF stimulation also induced down-
stream Akt and ERK signaling. HGF-induced phosphor-
ylation of c-Met and its downstream signals Akt and Erk 
were inhibited by the specific c-Met inhibitor INC280.

  Expression of c-Met has been reported as a putative 
target in neuroendocrine tumors  [31, 32] . In 39 pancre-
atic neuroendocrine neoplasms, protein expression anal-
ysis revealed c-Met overexpression in 17% (4/24) of non-
metastasized NET, 33% (5/15) of metastasized NET, 57% 
(4/7) of lymph node metastases and 56% (5/9) of liver 

metastases, respectively  [33] . In human pancreatic neu-
roendocrine BON1 cells, microarray analysis using a 
small array of 2,503 genes revealed 101 HGF-responsive 
genes, including genes with a putative function in onco-
genesis, cell proliferation, apoptosis or cell adhesion/mo-
tility  [34] . In 10 gastrinomas, protein expression of HGF 
receptor c-Met was detectable in 90%, while competitive 
PCR in 38 gastrinomas revealed c-Met overexpression in 
14% compared to normal pancreas  [35] . Overexpression 
of c-Met was a negative prognostic indicator in gastrino-
mas  [35] . In 17 ileal NETs and 28 nonileal NETs, high 
staining of c-Met immunoreactivity was found in 100% 
of ileal NETs and 32% of nonileal NETs  [36] . The hu-
man midgut carcinoid cell line CNDT2 expresses c-Met 
 [37] . In bronchopulmonary neuroendocrine neoplasms, 
strong c-Met expression was observed in 66% (25/38) of 
typical carcinoids, 67% (4/6) of atypical carcinoids, 50% 
(17/34) of SCLC and 55% (6/11) of LCNEC  [38] . A strong 
expression of activated phospho-c-Met was observed in 
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50% (19/38) of typical carcinoids, 67% (4/6) of atypical 
carcinoids, 68% (23/34) of SCLC and 36% (4/11) of 
LCNEC  [38] . C-Met mutations have been reported to be 
relatively rare in bronchopulmonary neoplasias with 
6.5% in 46 SCLC and 8.3% in 36 NETs  [39] . These muta-
tions were not functionally relevant in regard of c-Met 
phosphorylation status  [39] . Serum levels of HGF were 
significantly higher in patients with bronchopulmonary 
carcinoid tumors than in healthy controls  [40] .

  INC 280, cabozantinib and tivantinib inhibited c-Met 
phosphorylation in neuroendocrine tumor cells ( fig. 4 ). 
Comparing equimolar concentrations, INC280 was the 
most potent c-Met inhibitor compared to cabozantinib 
and tivantinib ( fig. 4 a). This finding is in accordance with 

the literature. For the ATP-competitive c-Met inhibitor 
INC280 (synonyms: INCB28060, capmatinib) an IC50 of 
0.13 n M  towards c-Met in a kinase assay and an IC50 for 
c-Met phosphorylation in cells in vitro of 0.3–1.1 n M  have 
been reported  [41] . For the ATP-competitive c-Met in-
hibitor cabozantinib (synonym: XL184), an IC50 of 1.3 
n M  towards c-Met in a kinase assay has been demonstrat-
ed  [42] . The non-ATP-competitive c-Met inhibitor tivan-
tinib (synonym: ARQ197) has been demonstrated as a 
calculated inhibitory constant Ki of 355 n M  towards c-
Met in a kinase assay and an IC50 for c-Met phosphoryla-
tion in cells in vitro of 100–300 n M   [43] . Thus, according 
to the literature  [41–43] , INC280 inhibits c-Met phos-
phorylation in vitro with an approximately 10-fold high-
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  Fig. 6.  Differential effects of INC280, cabozantinib and tivantinib on c-Met activity and various parameters of 
cell cycle regulation and apoptosis. Human pancreatic neuroendocrine BON1 (     a ) and bronchopulmonary NCI-
H727 ( b ) cells were incubated with INC280 (10,000 n     M ), cabozantinib (10,000 n M ) and tivantinib (10,000 n M ) 
for 2, 24, 48 and 72 h, respectively. Subsequently, the expression of phospho-c-Met Y1234/5, c-Met, cyclin B1, 
cyclin D1, cyclin D3, CDK4, CDK6, pChk1 S345, Chk1, PCNA, pRb S780, Rb, PARP and β-actin loading control 
was evaluated by Western blot analysis. One representative blot out of three independently performed experi-
ments is shown               .              

(For figure 6b see next page.)
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er efficacy compared to cabozantinib and with an approx-
imately 100- to 1,000-fold higher efficacy compared to 
tivantinib. This different potency in inhibition of c-Met 
phosphorylation was also found in our experiments com-
paring INC280, cabozantinib and tivantinib ( fig.  4 a). 
Similar to our data, also in epithelioid sarcoma cell lines 
has the highly selective c-Met inhibitor INC280 been
reported to inhibit phospho-c-Met at concentrations of
1 n M   [44] .

  Although in our study equimolar concentrations (10 
μ M ) of cabozantinib and tivantinib potently inhibited cell 
viability ( fig. 2 ) and cell migration ( fig. 7 ), the highly spe-
cific c-Met inhibitor INC280 had no effect on cell viabil-
ity ( fig. 2 ) or cell migration ( fig. 7 ). Similarly, equimolar 
concentrations (10 μ M ) of cabozantinib and tivantinib 
caused a potent G2 arrest in neuroendocrine tumor cells, 
while INC 280 had no effect ( fig. 5 ). Knockdown experi-
ments with c-Met siRNA also demonstrated no effect or 
only minor effects on neuroendocrine tumor cell viability 
( fig. 3 ). Our in vitro data suggest that c-Met inhibition 

alone is not sufficient to exert direct antitumoral or anti-
migratory effects in neuroendocrine tumor cells in vitro. 
In contrast, the multi-TKIs cabozantinib and tivantinib 
show promising antitumoral and antimigratory effects in 
neuroendocrine tumor cells, which are most probably 
‘off-target’ effects, not mediated by c-Met.

  In the Rip-Tag2 mouse model of pancreatic neuroen-
docrine tumors, the multi-TKI cabozantinib (with activity 
against c-Met, VEGFR2, c-KIT, FLT3, RET and TIE2) has 
been demonstrated to be superior in comparison to com-
pounds with anti-VEGF activity only in inhibition of tu-
mor angiogenesis, tumor invasiveness and metastasis  [19, 
21] . Further studies in the Rip-Tag2 mouse model with an 
anti-VEGF antibody or sunitinib in combination with the 
c-Met inhibitor PF-04217903  [19, 21]  also showed addi-
tive antitumoral effects. The antitumoral effects of cabo-
zantinib in the Rip-Tag2 mouse model have been dis-
cussed to be due to simultaneous inhibition of VEGF and 
c-Met signaling by cabozantinib  [19, 21] . However, due to 
the multi-TKI function of cabozantinib (with known ac-
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tivity against c-Met, VEGFR2, c-KIT, FLT3, RET and 
TIE2), these studies cannot prove the efficacy of c-Met 
inhibition for the antitumoral effects of cabozantinib  [19, 
21] . Our in vitro data suggest that c-Met inhibition alone 
is not sufficient to exert direct antitumoral or antimigra-
tory effects in unstimulated neuroendocrine tumor cells.

  Nevertheless, in neuroendocrine tumor cells with 
compensatory upregulation of phospho-c-Met expres-
sion, inhibition of c-Met might be a specific target for 
antitumoral and antimigratory effects  [21] . In human 
pancreatic cancer cells in vitro, INC280 inhibited HGF-
induced cell growth and migration, while no effect of 
INC280 was observed on constitutive cell growth and mi-
gration in cells that were not stimulated by HGF  [45] . In 

hepatocellular tumor cell models, cabozantinib caused a 
G1 arrest in the phospho-c-Met-overexpressing tumor 
cell lines MHCC97L and MHCC97H (cabozantinib IC 50 
values for inhibition of cell growth 9–13 n M ), while in the 
non-phospho-c-Met-expressing tumor cell lines SK-
HEP1 and HepG2 (cabozantinib IC 50 values for inhibi-
tion of cell growth 4,300–5,000 n M ), a G2 arrest was ob-
served  [46] . These data suggest different c-Met-depen-
dent and c-Met-independent mechanisms of cabozantinib 
on cell cycle in tumor cells  [46] .

  In accordance with our results in neuroendocrine tumor 
cells, tivantinib has recently been reported to exert antitu-
moral effects in various tumor entities, which are an off-
target of c-Met inhibition  [13–16] . In thyroid cancer cells, 
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  Fig. 7.  Differential effects of INC280, cabozantinib and tivantinib 
on cell migration of neuroendocrine tumor cells. Human pancre-
atic neuroendocrine BON1 (     a ,  b ) and bronchopulmonary NCI-
H727 ( c ,  d ) cells were incubated with INC280, cabozantinib and 
tivantinib, respectively, at a concentration of 100 n M  and 10 μ M  for 
72 h. The gap width between the two monolayers was analyzed at 

0 and 72 h of the incubation period, respectively. A representative 
experiment out of three independently performed experiments is 
shown (   a ,  c ).  b ,  d  The gap width at 0 and 72 h, respectively, for each 
treatment group was analyzed. The mean values ± SD of three in-
dependently performed experiments are shown. Statistical analysis 
with t test showed significant results with          *  p < 0.05 and  *  *  p < 0.01.       

(For figures 7c and d see next page.)
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siRNA-mediated downregulation of c-Met did not induce 
cell cycle arrest or apoptosis  [14] . There was no correlation 
between the c-Met inhibitory potency of crizotinib and ti-
vantinib and their respective antitumoral efficacy in thy-
roid tumor cells  [14] . In various tumor cell entities, tivan-
tinib inhibited c-Met addicted and nonaddicted tumor cells 
in a similar fashion  [15, 16] , suggesting a c-Met-indepen-
dent mechanism of action. Tivantinib has been suggested 
to cause antitumoral effects by alternative mechanisms as 
microtubule disruption  [15, 16, 43]  or inhibition of GSK3α 
and GSK3β  [44] . Tivantinib caused a significant G2 arrest 
in various tumor cells  [13–16] , while the c-Met inhibitors 
crizotinib and PHA-665752 caused a G1 arrest  [15] .

  In our neuroendocrine tumor cell model in vitro, ca-
bozantinib and tivantinib demonstrated late-onset 72-
hour effects with inhibition of the expression of pEGFR 
( fig. 4 ), pAktS473 ( fig. 4 ), p4EBP1S65 ( fig. 4 ) and cyclin 
D1 ( fig. 6 ). In addition, cabozantinib constantly induced 
GSK3 phosphorylation at pGSK3 S21/9 in both cell lines 

at 72 h ( fig. 4 ). Cabozantinib and tivantinib modestly in-
hibited the proliferation marker PCNA at 72 h ( fig. 6 ) and 
caused a potent G2 cycle arrest ( fig. 5 ) in BON1 and H727 
cells. These data indicate that cabozantinib and tivanti-
nib decrease tumor cell viability, most probably due to 
inhibition of cell proliferation mediated by inhibition of 
pAkt and its downstream signals and by upregulation of 
pGSK3. In contrast, no PARP cleavage as a marker of 
apoptosis was detected ( fig. 6 ). Accordingly, c-Met inhib-
itors have been reported to inhibit downstream Akt and 
MAPK signaling cascades in various tumors  [7, 9, 46] . 
Inhibition of Akt/mTOR signaling is a proven, important 
target in neuroendocrine tumor cells  [28, 30] . The phos-
phorylation of GSK3 causes its inactivation  [47] .

  Cabozantinib and tivantinib cause a G2 cycle arrest in 
BON1 and H727 cells ( fig. 5 ). Accordingly to our data, a 
G2 arrest has also been reported in other in vitro cancer 
models with cabozantinib  [42]  and tivantinib  [13–16] . Ti-
vantinib has been reported to cause G2 cell cycle arrest in 
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various c-Met addicted and nonaddicted cancer cell lines 
and to cause microtubule disruption  [15] . Phosphoryla-
tion and activation of the cell cycle G2 checkpoint regula-
tor Chk1 is known to cause subsequent phosphorylation 
and inactivation of the phosphatase CDC25. Inactivation 
of CDC25 phosphatase prevents dephosphorylation and 
activation of CDK1 in the cyclin B/CDK1 complex and 
finally inhibits progression to mitosis  [48] . On the other 
hand, Chk1 inhibitors have been suggested as a potential 
target to sensitize cancer cells  [48] . The effects of cabo-
zantinib or tivantinib on the cell cycle G2 checkpoint
regulator Chk1 were different in BON1 and H727 cells 
( fig. 6 a, b), indicating a cell type-specific regulation. Fur-
ther studies are necessary to evaluate the mechanisms by 
which cabozantinib and tivantinib cause G2 cell cycle ar-
rest in our neuroendocrine tumor cell model.

  Our study clearly demonstrates that single c-Met inhi-
bition with the highly specific c-Met inhibitor INC280 is 
not sufficient to exert direct antiproliferative effects or 
inhibition of tumor cell migration in neuroendocrine tu-
mor cells in vitro under constitutive conditions. Neuro-
endocrine tumor cells without pretreatment were not de-
pendent on c-Met signaling for growth, survival or mi-
gration. Thus, based on our in vitro data, it seems not to 

be a promising strategy to target neuroendocrine tumors 
in monotherapy with highly specific c-Met inhibitors. 
However, the limitations of an in vitro model of NET to 
study their tumor biology have to be stated as follows: (a) 
there is only a limited number of human cell lines avail-
able  [24, 27] , and (b) the cell proliferation rates of many 
rapidly growing cell culture models do not match the slow 
proliferation index Ki-67 of typical G1 and G2 NET.

  In contrast, we observed potent antiproliferative ef-
fects and inhibition of tumor cell migration by the multi-
TKIs cabozantinib and tivantinib in neuroendocrine tu-
mor cells in vitro. Our data suggest these in vitro effects 
of cabozantinib (multi-TKI with known activity against 
c-Met, VEGFR2, c-KIT, FLT3, RET and TIE2) and tivan-
tinib (c-Met inhibitor with additional ‘off-target’ effects 
 [13–16] ) to be most likely mediated by ‘off-target’ effects 
besides c-Met. These findings may have implications for 
the rationale of future selection of multi-TKIs for neuro-
endocrine tumor treatment and for the evaluation of 
phospho-c-Met expression as a potential biomarker for 
response prediction in neuroendocrine tumors.

  Single c-Met inhibition seems insufficient to exert direct 
antitumoral effects in unstimulated neuroendocrine tumor 
cells. Nevertheless, a synergistic action of c-Met inhibition 
during combination therapy targeting several signaling 
cascades cannot be excluded by our data. As stated above, 
in cancers with compensatory upregulation of phospho-c-
Met expression, inhibition of c-Met seems to exert antitu-
moral and antimigratory effects  [21, 49] . In other various 
tumor entities, resistance against EGFR inhibition or resis-
tance against anti-VEGF therapy has been demonstrated to 
be mediated by compensatory upregulation of phosphory-
lated c-Met as an alternative signaling pathway. Inhibition 
of c-Met has been discussed as a potential target in combi-
nation therapies in order to overcome a c-Met-induced es-
cape from EGFR inhibition  [50–56]  or escape from anti-
VEGF therapy  [31, 57–60] , as has been demonstrated in 
various tumor entities. These mechanisms have also been 
discussed for neuroendocrine tumors  [19–21, 31, 61] . Fur-
ther preclinical in vivo studies in xenograft models of hu-
man NET treated with appropriate combination therapies 
including the highly specific c-Met inhibitor INC280 
should be performed to address this issue.

  Conclusions 

 Specific inhibition of c-Met in neuroendocrine tumor 
cell lines under constitutive conditions in vitro did not 
cause antiproliferative or antimigratory effects. INC280 
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  Fig. 8.  Lack of effect of INC280, cabozantinib and tivantinib on 
EMT markers. Human pancreatic neuroendocrine BON1 and 
bronchopulmonary NCI-H727 cells were incubated with equimo-
lar concentrations (10,000 n M ) of INC280, cabozantinib and tivan-
tinib, respectively, for 24 h. Subsequently, the expression of E- 
cadherin, N-cadherin, β-catenin, src, twist, vimentin, ZO-1 and 
β-actin loading control was evaluated by Western blot analysis. 
One representative blot out of three independently performed ex-
periments is shown                               .              
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is a highly selective c-MET inhibitor, and its further eval-
uation in c-Met-dependent tumor entities, as cancers 
with constitutive or compensatory upregulation of phos-
pho-c-Met expression, is warranted.

  Our in vitro data demonstrate that cabozantinib and 
tivantinib with potent antiproliferative effects in neuro-
endocrine tumors are most probably mediated by ‘off-
target’ effects not mediated by c-MET inhibition. Fur-
ther investigation of these compounds as antitumoral 
agents in neuroendocrine tumors is warranted. Cur-
rently, a clinical phase 2 study of cabozantinib in 
 neuroendocrine tumors (NCT01466036) is recruiting 
patients.
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