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Abstract

The prediction of the values of ordinal response variables using co-
variate data is a relatively infrequent task in many application areas.
Accordingly, ordinal response variables have gained comparably lit-
tle attention in the literature on statistical prediction modeling. The
random forest method is one of the strongest prediction methods for
binary response variables and continuous response variables. Its basic,
tree-based concept has led to several extensions including prediction
methods for other types of response variables.

In this paper, the ordinal forest method is introduced, a random
forest based prediction method for ordinal response variables. Or-
dinal forests allow prediction using both low-dimensional and high-
dimensional covariate data and can additionally be used to rank co-
variates with respect to their importance for prediction.

Using several real datasets and simulated data, the performance
of ordinal forests with respect to prediction and covariate importance
ranking is compared to competing approaches. First, these investi-
gations reveal that ordinal forests tend to outperform competitors in
terms of prediction performance. Second, it is seen that the covariate
importance measure currently used by ordinal forest discriminates in-
fluential covariates from noise covariates at least similarly well as the
measures used by competitors. In an additional investigation using
simulated data, several further important properties of the OF algo-
rithm are studied.

The rationale underlying ordinal forests to use optimized score val-
ues in place of the class values of the ordinal response variable is in
principle applicable to any regression method beyond random forests
for continuous outcome that is considered in the ordinal forest method.

∗Corresponding author. Email: hornung@ibe.med.uni-muenchen.de.
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1 Introduction

In statistical applications it is sometimes of interest to predict the values
of an ordinal response variable. However, to date there are relatively few
prediction methods for ordinal response variables that make use of the ordi-
nal nature of such response variables; in particular, few such methods exist
that are applicable to high-dimensional covariate data. Ordinal response
variables are often treated as nominal variables, applying prediction tech-
niques for binary response variables to all paired combinations of classes of
the ordinal response variable.

In this paper, the ordinal forest (OF) method is introduced, an inno-
vative prediction method for ordinal response variables applicable to both
low-dimensional and high-dimensional covariate data that makes use of the
ordinal nature of the response variable. Roughly spoken, assuming a la-
tent variable model that is also underlying the well-known ordered probit
regression, the ordinal response variable is treated as a continuous variable,
where the differing extents of the individual classes of the ordinal response
variable are implicitly taken into account (see below for details). OFs are
closely related to conventional random forests (Breiman, 2001) for continu-
ous outcomes, termed regression forests in the following. In contrast to the
latter, OFs make use of the out-of-bag (OOB) error estimates during the
construction of the forest.

A straightforward forest-based prediction method for ordinal response
variables would consist of simply considering a regression forest using the
class values 1, . . . , J of the response variable for the corresponding classes.
However, this procedure is suboptimal as will be demonstrated in this pa-
per. An important reason for the suboptimality of this approach is the fact
that the extents of the classes of the ordinal response variable, from now on
denoted as “class widths”, differ from class to class. In the latent variable
model already mentioned above that is underlying OF, these class widths
are the widths of J adjacent intervals in the range of an underlying contin-
uous response variable; these J intervals correspond to the J classes of the
ordinal response variable. The single assumption in this model is that, un-
derlying the observed ordinal variable y, there exists a particular—known or
unknown—refined continuous variable y∗ that determines the values of the
ordinal variable. The relationship between this continuous variable y∗ and y
is such that the higher the value of y∗ is for an observation, the higher is the
class of the ordinal response variable for that observation. More precisely, if
y∗ falls into the jth interval of J adjacent intervals, y will take the value j.
As an illustration, school grades are usually determined by the total num-
ber of points the pupils score in all exercises composing the respective test.
Here, the grade and the corresponding number of points take the role of the
ordinal variable y and the underlying continuous variable y∗, respectively.

If the continuous variable y∗ is known, it can be used in regression tech-
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niques for continuous response variables. In the context of conditional infer-
ence trees, for situations in which y∗ is known, Hothorn et al. (2006) suggest
to use—as a continuous response variable—the midpoints of the intervals of
y∗ that correspond to the classes of y.

The OF method is, however, designed for the common situation in which
the underlying continuous variable was not measured or might not even be
known. In OF, interval boundaries in y∗ corresponding to the different
classes of y are estimated or rather optimized by maximizing the OOB pre-
diction performance of regression forests. Using score values that correspond
to these optimized class intervals instead of using the class values 1, . . . , J
leads to an improvement in prediction performance as will be seen in the
analyses presented in this paper. Note, however, that apart from considering
optimized score values for the class values, choosing arbitrary score values for
the class values does not necessarily impact the prediction accuracy notably.
This is also suggested by the results of a study performed by Janitza et al.
(2016), who considered regression forests with conditional inference trees as
base learners using the class values 1, . . . , J for the classes of the ordinal
response variable. In order to study the robustness of their results they con-
sidered the score values 1, 22, . . . , J2 in addition to the values 1, 2, . . . , J and
found no differing prediction accuracies between these two choices. Note that
conditional inference trees (Hothorn et al., 2006) are preferable over classical
classification and regression trees (Breiman et al., 1984) in the presence of
categorical covariates, because in this situation only the former allow unbi-
ased variable selection for splitting. However, for high-dimensional data us-
ing conditional inference trees in regression forests is computationally overly
demanding due to the large quantity of permutation tests necessary to con-
duct in the case of this approach. High-dimensional data has, however,
become a very common application field of random forests, in particular in
the biomedical field. Therefore, in this paper classical regression forests are
considered, which use regression trees (Breiman et al., 1984). Although the
prediction performance is increased by using score values that correspond
to class intervals obtained via maximizing the OOB prediction performance
instead of using the values 1, . . . , J , the widths of the estimated intervals
are not useful for interpretation purposes: they carry no useful information
on the actual class widths as will become evident in the analyses presented
in this paper.

The paper is structured as follows. In section 2 the OF algorithm and
how OF can be used for prediction and for ranking the importances of the
covariates is described. Subsequently, using five real datasets and simulated
data, in section 3 the performance of OF with respect to prediction accuracy
and quality of its variable importance measure is extensively compared to
that of other (forest-based) approaches. Moreover, several important prop-
erties of the OF algorithm are investigated empirically using simulated data
in this section. In the discussion (section 4) the most important findings of

3



the paper are summarized, further related points are discussed and possibil-
ities for future research are described.

2 Methods

2.1 Construction of OF prediction rules

Assume a sample {(x1, y1), . . . , (xn, yn)}, where xi (i ∈ {1, . . . , n}) desig-
nates the vector of covariates of observation i and yi ∈ {1, . . . , J} corre-
spondingly the class value of the ordinal response variable for that observa-
tion. Then an OF prediction rule is constructed as follows:

1. For b = 1, . . . , Bsets (e.g., Bsets = 1000):

(a) Draw J − 1 instances of a U(0, 1) distributed random variable
and sort the resulting values. The sorted values are designated
as db,2, . . . , db,J . Moreover, set db,1 := 0 and db,J+1 := 1. Note
that in the R package ordinalForest (see section 4) in which the
OF algorithm is implemented, a more sophisticated algorithm
for drawing db,2, . . . , db,J is used. See section A of Supplemen-
tary Material 1 for a description of this algorithm. It delivers
a more heterogeneous collection of sets {db,1, . . . , db,J+1} (b ∈
{1, . . . , Bsets}) across the iterations 1, . . . , Bsets. It is important
that the collection of sets {db,1, . . . , db,J+1} (b ∈ {1, . . . , Bsets}) is
heterogeneous enough across the iterations 1, . . . , Bsets to ensure
that the best of the considered sets {db,1, . . . , db,J+1} feature an
OOB prediction performance close to that of the best possible set
(see also section H.1 in Supplementary Material 1).

(b) Form a continuous response variable zb = zb,1, . . . , zb,n by re-
placing each class value j, j = 1, . . . , J , in the ordinal response
variable y = y1, . . . , yn by the jth value in the score set sb :=
{sb,1, . . . , sb,J}, where sb,j := Φ−1(cb,j) and cb,j := (db,j+db,j+1)/2
(j ∈ {1, . . . , J}).

(c) Grow a regression forest fsb with Bntreeprior trees (e.g., Bntreeprior =
100) using zb as response variable.

(d) Obtain OOB predictions ẑb,1, . . . , ẑb,n of zb,1, . . . , zb,n.

(e) Obtain OOB predictions of y1, . . . , yn as follows: ŷb,i = j if ẑb,i ∈
]Φ−1(db,j),Φ

−1(db,j+1)] (i ∈ {1, . . . , n}).
(f) Assign a performance score scb := g(y, ŷb) to fsb , where ŷb :=

ŷb,1, . . . , ŷb,n and g is a specific function, termed “performance
function” in the following, the choice of which depends on context
(see further down for details).

4



2. Be Sbest the set of indices of the Bbestsets (e.g., Bbestsets = 10) regression
forests constructed in 1. that feature the largest scb values. Then for
each j ∈ {1, . . . , J + 1} take the average of those db,j values for which
b ∈ Sbest, resulting in a set of J + 1 values denoted as d1, . . . , dJ+1.

3. Form a new continuous response variable z = z1, . . . , zn by replacing
each class value j, j = 1, . . . , J , in the ordinal response variable y =
y1, . . . , yn by the jth value in the optimized score set {s1, . . . , sJ},
where sj := Φ−1(cj) and cj := (dj + dj+1)/2 (j ∈ {1, . . . , J}).

4. Grow a regression forest ffinal with Bntree trees (e.g. Bntree = 5000)
using z as response variable.

Three different variants of the performance function g (see below) are pro-
vided in the R package ordinalForest (see section 4), where the user
chooses the most suitable version depending on the particular kind of per-
formance the OF should feature. For example, in many situations it is of
interest to classify observations from each class with the same accuracy in-
dependent of class sizes. In other situations, the main goal is to correctly
classify as many observations as possible. The latter goal implies prioritizing
larger classes at the expense of a lower classification accuracy with respect
to smaller classes. Sometimes, specific classes are of particular importance,
which should then be prioritized by the OF algorithm.

The performance function g has the following general form:

g(y, ŷ) :=

J∑

j=1

wj Yind(y, ŷ, j), (1)

where
∑

j

wj = 1, Yind(y, ŷ, j); = sens(y, ŷ, j) + spec(y, ŷ, j)− 1,

sens(y, ŷ, j) :=
#{yi = j ∧ ŷi = j : i ∈ {1, . . . , n}}

#{yi = j : i ∈ {1, . . . , n}} , and

spec(y, ŷ, j) :=
#{yi 6= j ∧ ŷi 6= j : i ∈ {1, . . . , n}}

#{yi 6= j : i ∈ {1, . . . , n}} ,

where ’#’ denotes the cardinality and ŷ := {ŷ1, . . . , ŷn} represents an esti-
mate of y. As is apparent from the above definitions Yind(y, ŷ, j) denotes
the Youden’s index calculated with respect to class j. The higher the weight
wj assigned to class j is chosen, the stronger the performance of the OF
with respect to distinguishing observations in class j from observations not
in class j will tend to be.

In the following, three important special cases of g are presented that
result from specific choices of w1, . . . , wJ :
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• If observations from each class should be classified with the same ac-
curacy, g should be specified as follows:

gclequal(y, ŷ) =
J∑

j=1

1

J
Yind(y, ŷ, j) (2)

• If as many observations as possible should be classified correctly, the
weights of the classes should be proportional to their sizes, leading to
the following choice for g:

gclprop(y, ŷ) =

J∑

j=1

#{yi = j : i ∈ {1, . . . , n}}
n

Yind(y, ŷ, j) (3)

Note that the prioritization of larger classes resulting from the use
of gclprop leads to a decreased classification performance for smaller
classes.

• If it is merely relevant that observations in class j can be distinguished
as reliably as possible from observations not in class j, g should be
specified as follows:

gclj(y, ŷ) = Yind(y, ŷ, j) (i.e., wj = 1) (4)

2.2 Prediction using OF

A prediction of the value of the response variable of an independent obser-
vation i∗ based on its covariate vector xi∗ is obtained as follows:

1. For b = 1, . . . , Bntree:

(a) Apply the bth tree in ffinal to observation i∗ and obtain a predic-
tion ẑi∗,b.

(b) Obtain a class prediction from the bth tree: ŷi∗,b = j if ẑi∗,b ∈
]Φ−1(dj),Φ

−1(dj+1)].

2. Obtain a final class prediction from ŷi∗,1, . . . , ŷi∗,Bntree by majority vot-
ing.

2.3 Variable importance measure of OF

The variable importance measure (VIM) of OF for covariate j is given as:

V Ij =
1

Bntree

Bntree∑

b=1

Err(yOOB,b,j , ŷ’OOB,b,j)− Err(yOOB,b,j , ŷOOB,b,j), (5)

where
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• yOOB,b,j denotes the vector of class values of the OOB data of tree b
from the OF ffinal,

• ŷ’OOB,b,j denotes the predictions of the class values of the OOB data
from tree b from ffinal obtained after randomly permuting the values
of covariate j in the OOB data of tree b,

• ŷOOB,b,j denotes the predictions of the class values of the OOB data
of tree b from ffinal without permuting the values of covariate j, and

• Err({a1, . . . , aM}, {b1, . . . , bM}) = (1/M)
∑M

m=1 I(am 6= bm), that is,
the misclassification error is (currently) used as error function in this
permutation variable importance measure.

3 Empirical studies

A real data analysis using five datasets and an extensive simulation study
were performed in order to compare the performance of OF to that of com-
peting (tree-based) methods for ordinal regression. Moreover, further spe-
cific properties of the OF algorithm were studied using the simulated data,
for example, the appropriateness of the choices of the default values of the
hyperparameters or the influence of the class distribution on the perfor-
mance. For the sake of completeness, it is pointed out that the OF algo-
rithm was developed prior to seeing the five datasets used in the real data
analysis and setting up the simulation design.

The comparison of OF with the alternative methods was performed with
respect to the following two aspects: aspect 1: prediction performance; as-
pect 2: quality of variable importance ranking. The following methods were
compared: OF, multi-class random forest (RF), and regression forests in
which the class values 1, . . . , J of the ordinal response variable are used
as score values. The latter are referred to as “naive OFs” in the follow-
ing. In the real data analysis ordered probit regression was included as a
fourth method. This method was, however, not suitable in the case of the
simulation study, because the simulation design featured high numbers of co-
variates and ordered probit regression is only suitable in situations in which
there is a small ratio between the number of covariates and the number of
observations.

In all analyses the performance function gclequal was used in the OF
algorithm. This choice was made because the classification performance
should in most applications not depend on the class sizes in the data.
Moreover, the following values for the hyperparameters of OF were used:
Bsets = 1000, Bbestsets = 10, Bntreeprior = 100, Bntree = 5000 (see section
2.1), and Nperm = 500 (for Nperm see section A of Supplementary Material
1).
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All R code written to perform and evaluate the analyses presented in
this paper and in Supplementary Material 1 as well as the datasets used in
the real data analysis are made available in Supplementary Material 2.

3.1 Real data analysis

3.1.1 Data

In this analysis five real datasets that were also recently considered in Janitza
et al. (2016) were used. This paper compared multi-class RF with naive OF,
both, however, using conditional inference trees as base learners. Table 1
gives an overview of the five datasets. For details on the backgrounds of the
datasets see Janitza et al. (2016).

3.1.2 Study design

Contrary to the case of simulated data, the effect sizes of the covariates
are not known for real data. Therefore, in real data analysis, the ordinal
regression methods can only be compared with respect to their prediction
performance, however, not with respect to the quality of the variable impor-
tance ranking (obtainable only from the forest-based approaches).

In order to avoid overoptimism which results from re-using the same
data to assess prediction performance that was previously used already for
learning the corresponding prediction rule, 10-fold stratified cross-validation
was used. First, the values of the ordinal response variable of the left out
fold were predicted for each iteration of the cross-validation. After having
obtained the predictions of the values of the ordinal response variable for all
left out folds, that is, for all observations, second, the quality of these predic-
tions was measured using a performance measure. This process was repeated
10 times to obtain more reliable results. Three performance measures were
used to assess the quality of the predictions: weighted Kappa using quadratic
weights, weighted Kappa using linear weights (Cohen, 1968), and Cohen’s
Kappa (Cohen, 1960) (i.e., weighted Kappa with zero off-diagonal weights).
The weighted Kappa is a metric well suited for measuring the quality of
predictions of ordinal data. This is because it allows one to consider also
the benefit of predictions that are close to the true class values on the or-
dinal scale instead of considering only predictions equal to the true values
as valuable (Ben-David, 2008). Quadratic and linear weights are the most
commonly used weighting schemes for weighted Kappa in practice. Com-
pared to the case of using linear weights, when using quadratic weights more
benefit to predictions that are further away from the true class values is at-
tributed. At the same time, when using quadratic weights, fewer benefit
is attributed to predictions very close to or equal to the true class values
than in the case of using linear weights. By contrast, in the case of Cohen’s
Kappa, benefit is attributed only to predictions that are equal to the true
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class values. Thus, when using Cohen’s Kappa, predictions that are not
equal to the true values are attributed no benefit, regardless of how close
these predictions are to the true values. To summarize, when using weighted
Kappa with quadratic weights, similar benefit is attributed to predictions
that are equal, similar, or only roughly similar to the true class values, when
using Cohen’s Kappa benefit is attributed only to predictions that are equal
to the true class values and weighted Kappa with linear weights poses a
compromise between the former two metrics.

The following is an illustration of the behavior of the different metrics:
a prediction rule that in many cases returns accurate predictions, but in
other cases results in predictions that are far from the true value would be
associated with a relatively high value of Cohen’s Kappa but a relatively
low level of weighted Kappa.

Note that Cohen’s Kappa and the weighted Kappa depend on the class
sizes and the number of classes (Jakobsson and Westergren, 2005). This
does, however, not pose a problem in the analysis performed in this paper,
because the different methods are compared with each other for a given
dataset (or given simulation setting in the case of the simulation, see section
3.2). Weighted Kappa and Cohen’s Kappa take values between zero and one,
where higher values indicate a better performance in terms of the respective
metric.

3.1.3 Results

Figure 1 shows the values of the linearly weighted Kappa obtained for each
of the five datasets. For the sake of clarity and because the linearly weighted
Kappa poses a compromise between the quadratically weighted Kappa and
Cohen’s Kappa, the values obtained for the latter two metrics are presented
in Supplementary Material 1 (Supplementary Figures 1 and 2). Correspond-
ingly, the descriptions of the results will first focus on the linearly weighted
Kappa and subsequently important differences in the results obtained for the
quadratically weighted Kappa and Cohen’s Kappa will be discussed briefly.
For the sake of brevity, “linearly weighted Kappa” will occasionally be de-
noted as “Kappa” for short in cases where there is no chance of confusion.

For two of the five datasets, OF performs notably better than naive OF
in terms of the linearly weighted Kappa. For the remaining three datasets
the values are similar between these two methods. Nevertheless, the means
over the 10 cross-validation iterations are higher for OF than for naive OF in
the cases of all five datasets. OF is also better than multi-class RF for those
two datasets for which OF is clearly better than naive OF. For the other
three datasets the means over the cross-validation iterations are similar be-
tween OF and multi-class RF. For the dataset “supportstudy” the means
over the cross-validation iterations are almost virtually identical between
OF and multi-class RF (OF: 0.40450, multi-class RF: 0.40454) and for the
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Figure 1: Values of linearly weighted Kappa for each of the five datasets and
each of the four methods considered. Each boxplot shows the values obtained
for the individual repetitions of the 10-fold stratified cross-validation.

datasets “vlbw” and “winequality” the means are slightly higher for OF. Or-
dered probit regression performs very similar to OF for two datasets, better
than OF for one dataset, and much worse than OF and the other meth-
ods for the remaining two datasets. For the latter two datasets there were
convergence problems in the case of ordered probit regression. Moreover,
one cross-validation iteration resulted in an error for one of these datasets
(“winequality”), which is why for this dataset, in the case of ordered probit
regression, the results of only nine instead of 10 repetitions of the 10-fold
stratified cross-validation are available.

The results are very similar for the quadratically weighted Kappa (Sup-
plementary Figure 1). While the Kappa values are generally higher for
quadratic weights than for linear weights, the improvement of OF over multi-
class RF tends to be stronger for the quadratically weighted Kappa. This
observation might be interpreted as follows: In contrast to multi-class RF,
OF takes the ordinal nature of the response variable into account. There-
fore, OF can be expected to deliver less often predictions that are far from
the true class value on the ordinal scale than does multi-class RF.

In the case of Cohen’s Kappa (Supplementary Figure 2), for which, as
mentioned above, benefit is attributed only to predictions that are equal to
the true class values, OF performs less well in comparison to multi-class RF:
For two datasets, OF performs slightly better than multi-class RF and for
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three datasets OF performs slightly worse. Thus, while OF can be expected
to deliver more often predictions that are close to the true class values than
multi-class RF, OF might at the same time be less performant with respect
to predicting the exact values of the true class values in comparison to multi-
class RF.

3.2 Simulation study

The real data analysis had the aim of comparing OF to alternatives with
respect to prediction performance. In terms of the linearly weighted Kappa,
OF outperformed multi-class RF for some datasets, where for other datasets
the two methods performed comparably well.

Using simulated data it was possible to study various further properties
of the OF algorithm. The simulation study had several aims:

1. Validate the findings on the prediction performance of OF compared
to that of naive OF and multi-class RF that were obtained in the real
data analysis.

2. Compare the variable importance measure of OF with that of naive
OF and multi-class RF with respect to the abilities of these measures
to discern influential variables from non-influential variables.

3. Investigate whether the class widths estimated by OF carry useful
information on the true class widths.

4. Investigate how the class distribution influences the prediction perfor-
mance of OF relative to that of naive OF.

5. Study whether the different variants of the performance function in
the OF algorithm are actually associated with the specific kinds of
prediction performance they are intended for.

6. Evaluate whether the default values chosen for the hyperparameters
of OF are actually appropriate and study the robustness of the results
obtained using OF with respect to changes in these default hyperpa-
rameter values.

3.2.1 Simulation design

Data with continuous response was simulated and the resulting continuous
values were subsequently coarsened to obtain the class values of the ordi-
nal response variable. This is in accordance with the latent variable model
underlying OF, in which it is assumed that the values of the observed ordi-
nal response variable are determined by a corresponding latent continuous
response variable.
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Janitza et al. (2016) whose work had a related scope to that of this paper
(see again section 3.1.1) performed an extensive simulation study in their
paper as well. They considered simulation settings with independent co-
variates, settings with sophisticated correlation patterns between influential
covariates and settings with high-dimensional covariate data.

The simulation design used in the present paper is based on that of Jan-
itza et al. (2016). Concerning the simulation of the covariates, the same
settings were considered as in Janitza et al. (2016). However, the response
was simulated differently in the present paper. Janitza et al. (2016) consid-
ered mixtures of pairs of proportional odds models where the corresponding
two mixture components differed with respect to the influences of the covari-
ates. As the simulation design considered in the present paper is not based
on a mixture model but features a latent continuous response variable, in
the present paper the first mixture components only were considered in each
setting.

First, to obtain the values of the latent continuous response variable the
values of the linear predictors of the respective first mixture components
were calculated and, second, Gaussian noise with unit variance was added.
In the calculation of the values of the linear predictors the values of the
coefficients in the linear prediction functions were the same as those in the
first mixture components in Janitza et al. (2016). Finally, the values of the
latent continuous response variable were coarsened to obtain the class values
of the ordinal response variable. In this step, two scenarios for the intervals
corresponding to the different classes of the ordinal response variable were
considered: scenario 1: intervals of equal width (starting / ending at the
0.001 quantile / 0.999 quantile of the marginal (normal) distribution of the
continuous response variable); scenario 2: intervals of random width. In the
case of scenario 2 the borders of the intervals were redrawn in iteration it
of the simulation in the following way: 1) Draw J − 1 instances of a U(0, 1)
distributed random variable and sort these values. Denote the sorted values
as dit,2, . . . , dit,J ; 2) Calculate lit,j = Q(dit,j), j = 2, . . . , J , where Q(·) de-
notes the (approximated) quantile function of the marginal distribution of
the latent continuous response variable. Set lit,1 = −∞ and lit,J+1 = +∞.
Finally, define ]lit,1, lit,2], . . . , ]lit,J , lit,J+1] as the intervals used for simulation
iteration it. The quantile functions Q(·) were approximated by sample quan-
tiles obtained from a simulated dataset of size 50,000 for each of the three
different scenarios “correlated”, “independent”, and “highdim” considered
for the linear predictor (see next paragraph).

The following three setting parameters were varied:

• covariates and sample size:

1. “correlated n200”: 65 covariates (15 with effect), partly corre-
lated covariates, 200 observations
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2. “independent n200”: 65 covariates (15 with effect), independent
covariates, 200 observations

3. “correlated n400”: 65 covariates (15 with effect), partly corre-
lated covariates, 400 observations

4. “independent n400”: 65 covariates (15 with effect), independent
covariates, 400 observations

5. “highdim”: 1015 covariates (15 with effect), partly correlated
covariates, 200 observations

• type of intervals in latent continuous response variable:

1. equal class widths

2. random class widths

• number of classes of ordinal response variable:

1. “nclass = 3”: 3 classes

2. “nclass = 6”: 6 classes

3. “nclass = 9”: 9 classes

All combinations of the above parameter values were considered, which led to
30 (5×2×3) simulation settings. For each setting, 100 training datasets were
generated and for each of these a corresponding independent test dataset of
size 10,000 was generated to evaluate the prediction performances of the
three considered methods.

3.2.2 Results

Prediction performance As in the case of the real data analysis, for
clarity, the results obtained for the linearly weighted Kappa are presented
in the paper and those obtained for the quadratically weighted Kappa and
Cohen’s Kappa are presented in Supplementary Material 1.

Equal class widths Figure 2, Supplementary Figure 3, and Sup-
plementary Figure 4 show the results obtained for all settings with equal
class widths for the linearly weighted Kappa, for the quadratically weighted
Kappa, and for Cohen’s Kappa. Again we will first focus on the results
obtained for the linearly weighted Kappa and subsequently, if applicable,
notable differences for the results obtained for the other two metrics will
be explored. For all settings with equal class widths, OF features notably
higher values of the linearly weighted Kappa than naive OF. Moreover, for
most settings, naive OF performs better than multi-class RF. The excep-
tions are all settings with “nclass = 3”. For these settings naive OF performs
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equally well as multi-class RF with the exception of the setting with high-
dimensional covariate data, where naive OF performs worse than multi-class
RF. The latter setting is also the only setting for which OF performs slightly
worse than multi-class RF. However, for this setting the Kappa values are
generally very small.
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Figure 2: Values of linearly weighted Kappa for each simulation setting with
equal class widths and each of the three methods considered. Each boxplot
shows the values obtained on the corresponding test dataset for each of the
100 simulation iterations.

For all three methods, the Kappa values are very small in the settings
with independent covariates and at the same time “nclass = 3”. A natural
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reason for the bad performance for settings with only three classes could be
that for these settings the latent continuous response variable is coarsened to
a very strong degree leading to a strong loss of signal. However, in cases of
settings with correlated covariates the Kappa values are high also for settings
with “nclass = 3”. The reason why we observe high Kappa values for the
correlated data but not for the uncorrelated data when considering three
classes will be explained in the following. The correlation matrices of the
influential variables in the settings with correlated covariates are structured
as follows: 6 of the 15 influential variables have a common correlation of
0.8 among each other, while the remaining 9 variables are uncorrelated.
Moreover, all regression coefficients are positive. As a consequence there are
frequent tuples of covariate values that are either all low or all high for the
same observation, which then features a low or a high value of the linear
predictor that corresponds to class 1 or class 3, respectively. Thus, tuples
of covariate values that are either all small or all high are associated with
class 1 or class 3, respectively. As these tuples occur both in the training
data and test data and as they are a characteristic pattern in the data that
is easily learned by the regression methods, the resulting prediction rules
perform comparably well with respect to predicting the classes 1 and 3. For
the scenario with independent covariates by contrast, the methods almost
always predict the large class in the middle. For this scenario, the relation
between the values of the linear predictor and the covariate values is more
complex, because the covariates all behave independently of each other.
Therefore in the setting with independent covariates there is a greater loss
of signal through the strong coarsening of the latent continuous response
variable for “nclass = 3”.

For the settings with high-dimensional covariate data, the improvement
of OF over naive OF is the strongest. With the exception of the setting
with independent covariates and at the same time “nclass = 3” the Kappa
values are higher for the larger training set sizes, as expected. The results
for the two training sets sizes do, however, differ hardly in terms of the
performances of the three methods relative to each other. Apart from the
observations made above, there seems to be no consistent influence of the
number of classes on the performances of the methods relative to each other.

The results obtained for the quadratically weighted Kappa (Supplemen-
tary Figure 3) are very similar to that obtained for the linearly weighted
Kappa (apart from the fact that the values are larger for the quadratically
weighted Kappa).

For Cohen’s Kappa (Supplementary Figure 4) the results are overall
similar to that obtained for the linearly weighted Kappa. However, for
Cohen’s Kappa there is slightly less improvement of OF over naive OF than
in the case of the linearly weighted Kappa except in the cases of the settings
with “nclass = 3”. Keeping in mind that for Cohen’s Kappa benefit is
attributed only to predictions equal to the true class values, whereas for
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weighted Kappa a similar benefit is attributed to predictions in the vicinity
of the true class values, this can be interpreted in the following way: in
the presence of equal class widths, there is more improvement of OF over
naive OF with respect to approximately true predictions than there is with
respect to exact predictions.

Random class widths Figure 3, Supplementary Figure 5, and Sup-
plementary Figure 6 show the results obtained for the settings with random
class widths.

In general, the differences between the three methods are much smaller
than in the settings with equal class widths. Nevertheless, for almost all
settings there is a small improvement of OF over naive OF. Moreover, for
all settings with number of classes larger than three, there is a small im-
provement of naive OF over multi-class RF.

For the settings with independent covariates and the settings with high-
dimensional covariate data the variances of the Kappa values are much
higher than in the settings with equal class widths. This is not surpris-
ing as the individual sets of class widths generated for each dataset in the
settings with random class widths can be expected to be associated with
differing prediction performances for all three methods.

It is, however, surprising that the improvements of OF over naive OF are
smaller for the random class widths than they were for the equal class widths.
By contrast, at first sight, it would seem more natural to assume that there
is no or only a slight improvement of OF over naive OF in the settings with
equal class widths. In naive OF the distances between the score values used
for the classes of the ordinal response variable are the same independently
of the level of the classes. That is, the distance between the first and the
second score is the same as that between the second and the third score and
so on. Accordingly, in the settings with equal class widths, the neighboring
interval midpoints have the same distances to each other. Therefore, it seems
natural to assume that for these settings optimizing the interval borders to
maximize prediction accuracy as performed by OF is unnecessary and that
it is, by contrast, sufficient to use the score values 1, . . . , J , that is, to use
naive OF. Thus, the finding that OF shows a considerable improvement over
naive OF in the presence of equal class widths is counter-intuitive at first
sight. In section “Influence of the class distribution on the performance of
OF” the reason for this fact will be explored.

For the settings with high-dimensional covariates the improvement of
OF over naive OF is stronger than for the other settings.

The results obtained for the quadratically weighted Kappa (Supplemen-
tary Figure 5) are again very similar to those obtained for the linearly
weighted Kappa.

For Cohen’s Kappa (Supplementary Figure 6) again the results are simi-
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Figure 3: Values of linearly weighted Kappa for each simulation setting
with random class widths and each of the three methods considered. Each
boxplot shows the values obtained on the corresponding test dataset for each
of the 100 simulation iterations.

lar to those obtained for the weighted Kappa. However, the improvement of
OF over naive OF for the settings with high-dimensional covariates and at
the same time number of classes greater than three is much smaller for Co-
hen’s Kappa than for the linearly weighted Kappa. Thus, for these settings
the same conclusion can be drawn as in the case of the equal class widths for
all settings with number of classes greater than three: the improvement of
OF over naive OF is greater with respect to approximately true predictions
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than with respect to exact predictions.

Variable importance The VIMs of OF, naive OF, and multi-class RF
were compared with respect to their abilities to discern influential covariates
from non-influential noise covariates. A good VIM should tend to attribute
higher VI score values to influential covariates than to noise covariates. A
suitable measure used in Janitza et al. (2016) to assess a variable ranking in
this respect is obtained as follows: Consider the covariates as observations,
where the influential covariates are “diseased” and the noise variables are
“healthy”, and the VI score values as score values of a medical test and
calculate the area under the ROC curve (AUC) for this scenario. This AUC
value can be interpreted as the estimated probability that an influential
variable has a higher VI score value than a noise variable.

Supplementary Figures 7 and 8 show the AUC values obtained for the VI
rankings of OF, naive OF, and multi-class RF for each simulated dataset in
each simulation setting (see section 3.2.1). While the AUC values are very
similar between the three methods for almost all settings with “nclass = 3”,
they tend to be higher for OF and naive OF than for multi-class RF for
all settings with “nclass = 6” and “nclass = 9”. Correspondingly, in their
simulation Janitza et al. (2016) found higher AUC values for naive OF using
conditional inference trees than for multi-class RF, also using conditional
inference trees. While we thus observe relevant differences between the AUC
values obtained for OF and naive OF on the one hand and multi-class RF
on the other, the differences between the AUC values obtained for OF and
naive OF are minimal and inconsistent.

Estimation of class widths Beyond utilizing OF to predict the values
of an ordinal response variable using covariate information and to rank the
importances of the covariates, it would be desirable to obtain information
on the true class widths using OF. As the range of the underlying latent
continuous response variable is not known, it is certainly not possible to
make inference on the absolute class widths. However, the magnitudes of
the estimated class widths relative to each other might carry information on
the magnitudes of the actual class widths relative to each other.

In section E of Supplementary Material 1 an extensive analysis of the
relation between the true class widths underlying the simulated datasets
(see section 3.2.1) and the corresponding class widths estimated by OF is
presented.

This analysis reveals the following: 1) For the low and high classes on
the ordinal scale there is a rather strong relation between true and estimated
class widths. This relation is, however, often negative and depends on the
setting; 2) The low and high classes on the ordinal scale tend to be associated
with large estimated class widths; 3) More generally: the closer the classes
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are to the center of the class value range the smaller their estimated class
widths tend to be.

Summarizing, it can be concluded that OF cannot be used to make
inference on the magnitudes of the class widths relative to each other.

Influence of the class distribution on the performance of OF In
section F of Supplementary Material 1 an analysis is presented in which it
was investigated whether there are specific kinds of class distributions for
which OF performs particularly well in comparison to naive OF. In this anal-
ysis the true partitions of [0, 1] considered in the simulation in the scenario
with random class widths (see section 3.2.1) for the individual datasets were
contrasted with the corresponding performances of OF relative to those of
naive OF.

It is seen from this analysis that the improvement of OF over naive OF is
stronger if there are large classes around the center of the class value range
and, at the same time, the low and the high classes tend to be small. This
explains the good performance of OF in comparison to that of naive OF in
the simulation in the case of the equal class widths: The class distributions
with equal class widths are associated with larger classes around the center
of the class value range and increasingly smaller classes for lower and higher
classes, respectively. The latter is due to the fact that the latent continuous
response variable is normally distributed (see section 3.2.1).

Influence of the choice of the performance function used in the OF
algorithm In section 2.1 three different variants of the performance func-
tions were introduced. The choice for one of these variants depends on the
kind of performance the OF should feature. In section G of Supplementary
Material 1 a simulation study is presented using which it was investigated in
how far these three different variants are actually associated with the spe-
cific kinds of prediction performance they are intended for. The data was
simulated as described in section 3.2.1, using, however, only 50 instead of
100 pairs of training and test datasets for each setting.

In this simulation, all of the three variants of the performance functions
were indeed associated with the specific kinds of prediction performance
they are intended for. Nevertheless, frequently, the differences between the
results when applying the different performance functions were not large.

Hyperparameters in the OF algorithm: appropriateness of their
default values and robustness of the results with respect to the
choices of their values As seen in section 2.1, the OF algorithm depends
on several hyperparameters. These are:

1. number Bsets of score sets tried prior to the calculation of the optimized
score set
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2. number Bbestsets of score sets with largest scb values, b ∈ {1, . . . , Bsets},
that are used to calculate the optimized score set

3. number Bntreeprior of trees in the regression forests fsb , b ∈ {1, . . . , Bsets},
that are constructed for each of the score sets tried

4. number Bntree of trees in the OF ffinal

5. number Nperm of permutations of the class width ordering to try for
the 2th to the Bsetsth score set considered prior to the calculation of
the optimized score set (see section A of Supplementary Material 1)

In section H of Supplementary Material 1, first, a detailed heuristic discus-
sion on the influences of these hyperparameters of the OF algorithm on its
performance is provided. Second, the results of a small simulation study are
presented which was conducted to assess the appropriateness of the default
hyperparameter values and the robustness of the OF performance with re-
spect to the choices of the values of the hyperparameters. The results from
this simulation study suggest that the chosen default values are indeed in a
reasonable range. Nevertheless, for ultra-high dimensional data it might be
necessary to choose a higher value for Bntreeprior than the considered default
value 100. The OF performance was, moreover, seen to be quite robust to
varying the values of the hyperparameters. The sensitivity of the results
was greater with respect to the choice of the combination of the values of
Bsets and Bbestsets and to that of the value of Bntreeprior than to the choices
of the values of Bntree and Nperm.

4 Discussion

In terms of prediction performance, OF tended to outperform both naive
OF (i.e., OF with score values fixed to 1, . . . , J) and multi-class RF in both
the real-data analysis and in the simulation.

The variable importance measures of both OF and naive OF outper-
formed that of multi-class RF with respect to their abilities to discern influ-
ential covariates from non-influential noise covariates. However, the variable
importance measures of OF and naive OF performed comparably well. The
variable importance measure of OF currently uses the misclassification error
as an error measure (see section 2.3). Considering an error measure that is
based on the respective performance function used in each case might lead
to an improved variable importance measure.

In section “Influence of the class distribution on the performance of OF”
we saw that OF performs particularly well in comparison to naive OF if the
middle classes are larger than the low and high classes. This pattern of the
distribution of the class sizes can be expected to be common in practice: the
low and high classes are on the margins of the class value range, that is, the
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extreme ends of the ordinal scale, which is why they tend to be represented
by less observations than the classes in the middle.

The variant of the performance function g to be used has to be chosen
by the user, where this choice depends on the specific kind of performance
the OF should feature. In section 2.1, three variants of this performance
function were provided: gclequal, gclprop, and gclj. In section “Influence of
the performance function used in the OF algorithm” we saw that each of
these three variants is actually associated with the specific kind of prediction
performance it is intended for. However, the differences in results obtained
when using the three different performance functions were in general not very
large. In particular, gclprop was only slightly superior to gclequal in terms of
the metric for which it should perform best from a theoretical point of view
(for details see section G, Supplementary Material 1). However, gclequal was
clearly superior to gclprop in terms of the metric for which this performance
function should perform best. Given that gclequal, therefore, did not perform
considerably worse than gclprop in any of the settings studied and was at
the same time superior to gclprop in many of the settings, it is reasonable
to recommend using gclequal as default performance function in situations
in which it is not clear which specific kind of performance the OF should
feature.

The OF algorithm features several hyperparameters. However, in section
“Hyperparameters in the OF algorithm” we saw that its prediction perfor-
mance is quite robust to the choices of the values of these hyperparameters,
which is why it should not be necessary to optimize them in most cases.
Similarly, in a work in progress by Probst et al. (prep) it is seen that the
random forest algorithm seems to be quite robust to the choice of the values
of its hyperparameters: using a large quantity of open source datasets Probst
et al. (prep) show that for random forests there is quite little improvement
by optimizing the values of the hyperparameters, in particular when com-
pared to other machine learning approaches. Independent of the robustness
of the OF algorithm to the choices of the values of its hyperparameters, the
analysis discussed in section “Hyperparameters in the OF algorithm” also
suggests that the default values used for the hyperparameters in the analyses
presented throughout this paper have reasonable orders of magnitude.

The main concept of OF is to use optimized score values in place of
the class values of the ordinal response variable in the vein of a latent vari-
able model that is also underlying classical ordered probit regression. This
concept is in principle applicable to any regression method for continuous
outcome. The corresponding algorithm could be performed analogously to
the OF algorithm, with the following differences: 1) In step 1 (c) the re-
spective regression method would be repeatedly fitted to bootstrap samples
using zb as response variable and in step 1 (d) the OOB predictions of
this bootstrapped prediction rule would be calculated; 2) In step 4 the re-
gression method would be fitted to the data using z as response variable.
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However, in the presence of high-dimensional covariate data this algorithm
would be too computationally intensive in general. In this algorithm, the
regression method has to be fitted very often and fitting a regression method
to high-dimensional data is computationally intensive in most cases. How-
ever, regression forests can be constructed very fast also in the presence
of high-dimensional data using the R package ranger (Wright and Ziegler,
2017), which is why the computational expense of the OF algorithm is rea-
sonable also for such data in general. Ultra-high dimensional data, never-
theless, could pose a problem. Another problematic setting is datasets with
very large numbers of observations, where applying the OF algorithm using
its default hyperparameter values could be difficult to infeasible, because
for such data the construction of the regression forests takes considerably
longer. For data with a very large number of observations that, at the same
time, features low-dimensional covariate data, an easy possibility to reduce
the computational burden considerably without affecting the precision no-
tably is to choose a small value for Bntreeprior (e.g., Bntreeprior = 10). The
reason why the precision of the OF is not considerably reduced by choosing
a small Bntreeprior in this situation is that in the case of a large number of
observations, the individual trees in the regression forests are more precise.
Thus, a smaller number of trees in the regression forests fsb , b = 1, . . . , Bsets,
is necessary to obtain reliable scb values.

A related concept to using optimized score values in place of class values
of the ordinal response variable is considered by Casalicchio et al. in a work in
progress. They consider the following approach: 1) Fit a regression model for
continuous outcome to the data using the score values 1, . . . , J for the values
of the ordinal response variable; 2) For obtaining predictions of the class
values of new observations, assign an observation to class j (j ∈ {1, . . . , J}),
if its predicted value ŷ is contained in the interval ]aj , aj+1], where a1 = −∞,
aJ+1 = +∞, and the values a2, . . . , aJ are chosen so that they minimize the
cross-validation error of the predictions of the class values. Casalicchio et al.
plan to compare the prediction performances obtained using this approach
for various regression methods for continuous outcome.

As seen in this paper, OF is a well-performing prediction method for
ordinal response variables. In addition to the purpose of predicting the
values of the ordinal response variable, OF can be used to rank the covariates
according to their importance for prediction. The estimated class widths
resulting as a by-product of the OF algorithm do not, however, contain
any useful information on the actual class widths. The OF algorithm is
implemented in the R package ordinalForest that is available on CRAN
in version 2.1 (Hornung, 2017).
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Supplementary Material 1: PDF file with further contents referred to in the pa-
per; url: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/
070_drittmittel/hornung/of_suppfiles/suppmat1_hornungtr.pdf

This PDF file contains the following sections:

• A Algorithm used in R package ordinalForest for generating the class width
sets

• B Supplementary Figures: real data analysis - (weighted) Kappa values

• C Supplementary Figures: simulation - (weighted) Kappa values

• D Supplementary Figures: simulation - AUC values obtained for variable
importance measures

• E Estimation of class widths

• F Influence of the class distribution on the performance of OF

• G Influence of the choice of the performance function used in the OF algo-
rithm

• H Hyperparameters in the OF algorithm: appropriateness of their default
values and robustness of the results with respect to the choices of their values

Supplementary Material 2: R code and datasets used in the real data analysis;
url: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/
070_drittmittel/hornung/of_suppfiles/suppmat2_hornungtr.zip

All R code written to perform and evaluate the analyses presented in this paper and
in Supplementary Material 1 as well as the datasets used in the real data analysis
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