
David Drießlein, Helmut Küchenhoff, Gerhard Tutz, Pia-Maria
Wippert

Variable Selection and Inference in a follow-up
Study on Back Pain

Technical Report Number 211, 2017
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


Variable Selection and Inference in a

follow-up Study on Back Pain

David Drießlein 1, Helmut Küchenhoff 1, Gerhard
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Abstract: The Lasso of Tibshirani (1996) is a useful method for estimation and

implicit selection of predictors in a linear regression model, by using a `1-penalty, if

the number of observations is not markedly larger than the number of possible pre-

dictors. We apply the Lasso to a predictive linear regression model in a study with

baseline and follow up measurement for unspecific low back pain with a focus on the
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selection of psycho sociological predictors. Practitioners want to report measures of

uncertainty for estimated regression coefficients, i.e. p-values or confidence intervals,

where post selection classical t-tests are not valid anymore. In the last few years

several approaches for inference in high-dimensional data settings have been devel-

oped. We do a selective overview on assigning p-values to Lasso selected variables

and analyse two methods in a simulation study using the structure of our data set.

We find out that Multi Sample Splitting (Wasserman and Roeder, 2009; Meinshausen

et al., 2009) may not be helpful for generating p-values, while the LDPE approach

of Zhang and Zhang (2014) produces promising results for type-I-errors and power

calculations on single hypotheses. Therefore, we apply the LDPE for the analysis of

our back pain study.

Key words: Lasso; Multi Sample Splitting; LDPE; inference; post selection infer-

ence, MiSpEx Network

1 Introduction

1.1 Variable Selection via the Lasso

The analysis of high-dimensional data occurs in a multitude of scientific disciplines.

Therefore, the development and improvement of appropriate statistical methods plays

an important role for regression models being applicable in high dimensional predic-

tors to achieve a selection of relevant predictors. A selective review for variable

selection in high-dimensional situations is given by Fan and Lv (2010).
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The Lasso of Tibshirani (1996), a regularization approach based on the `1-norm of the

coefficient vector enables an estimation of the unknown parameter vector in a linear

regression model, as well as an implicit variable selection. With its straightforward

applicability, its interpretability equivalent to regression models and a multitude of

established implementations in R the Lasso commends itself to practitioners. In

contrast to the common approach of stepwise selection the Lasso allows a continuous

and simultaneous selection while penalizing the coefficients in the regression model.

In the current literature, a strong theoretical foundation of Lasso properties has been

given, as well as different efficient and fast algorithms. Additionally the Lasso has

been extended to further model classes than linear regression models, see e.g. Groll

and Tutz (2014). On the other hand, there is limited opportunity to achieve inferential

guarantees for a Lasso selected model or its (refitted) coefficients. Statistical inference

for Lasso is a contemporary open field of research, which has gathered increasing

attention in the past few years. The steady growing literature and research proposes

different approaches and methods to do inference in high-dimensional data settings

and especially for the Lasso.

1.2 Outline

In the following section, we describe our data set and specify the goal of a predictive

model for back pain, with 174 possible predictors. Section 3 characterizes the problem

of statistical inference after a selection procedure and gives an overview about different

inference approaches associated with a Lasso selection. The Multi Sample Splitting

(MSS) approach of Wasserman and Roeder (2009) and Meinshausen et al. (2009) and

the Low Dimensional Projection Estimator (LDPE) of Zhang and Zhang (2014) are
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emphasized, on which we base our simulation study of section 4. The application of

Lasso selection to our data set, as well as possible inference results are presented in

section 5. Conclusively we summarize and discuss our results in section 6.

2 Data and aims

2.1 Epidemiological background

Low back pain (LBP) is a musculoskeletal problem which can lead to long-term

disability and frequent use of health services (Ibrahim et al., 2008). The lifetime

prevalence of LBP is around 84% (Airaksinen et al., 2006). Germany shows a rate

of 80% with a point prevalence of 30–40% and yearly costs between 16–22 billion

Euro (Gesundheitsreport , 2014). Many LBP episodes only last for a few days/weeks

and resolve spontaneously, but around 40% of patients develop persistent problems

(Menezes Costa et al., 2012). For this group LBP is a socioeconomic burden leading

to an economic problem for health services and an increase in long-term disability

claims. The yearly treatment costs for LBP patients at rehabilitation clinics are

around 2 billion Euro (Statistisches Bundesamt, 2010). These costs can be reduced

if high-risk patients are identified at an early stage. Prognostic factors for LBP

chronicity include psychosocial factors such as stress, anxiety, depression or social

isolation (Nicholas et al., 2011). Several research groups have developed standards

for the identification of prognostic factors and the conduction of prognosis studies for

LBP (e.g. PROGRESS, Hemingway et al. (2013), Riley et al. (2013), Hingorani et al.

(2013)). The basic idea is to support clinicians in therapeutic and clinical routines
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with an easy screening which warns of potential poor outcomes. Existing screening

tools [Hill et al. (2008), Hill et al. (2010), Traeger et al. (2015), Traeger et al. (2016),

Lentz et al. (2016)], are mainly used for secondary prevention and based on experts

opinion. Further they suffer from a short prognosis time frame (only Janwantanakul

et al. (2015) offer a one-year prognosis) and from a statistical point of view from weak

mathematical or algorithmic models. The objective of our analysis is the identification

of psycho-sociological indicators for a one-year predictive model for chronic unspecific

back pain.

2.2 Data

Design: The data originate from a longitudinal study in which n = 1071 participants

were consecutively enrolled at four clinical study sites in Germany. Finally n = 1046

participants (age: M = 40.4 ys., SD = 13.4, f = 57%, m = 43%) were assessed

at the beginning and six further measurement points (M1 to M7) over a two-year

period (date range 02/2012 until 08/2014). The study methodology was previously

described in detail by Wippert et al. (subm.).

Participants: Participants were eligible for study if they were between 18 and 65

years old, able to speak and read German, suffering from nonspecific low back pain and

contacting the doctor for the first time about LBP. Exclusion criteria were suffering

from acute pain (last 7 days), inability to stand upright, complete a questionnaire,

give sick leave information or showing red flags (e.g. inflammatory diseases). All

patients provided written informed consent prior to study participation and received

written and oral information about the project.

Measures: The relevant outcome variable pain intensity was taken from M5 and its



6 David Drießlein et al.

baseline from M1 and was assessed by the Chronic Pain Grade questionnaire (CPG;

Von Korff et al. (1992)) using the scale for subjective pain intensity (PI: 0 = no pain

to 100 = the worst pain imaginable) in the past three months. The total score from 0

to 100 based on additively aggregated items inquiring subjective pain strength of par-

ticipants. Psychosocial risk factors and potential predictors were gained by different

standardized questionnaire which are usually used for the assessment of yellow flags.

At baseline, sociodemographic factors (e.g. sex, age, job, education, income (Lechert

et al., 2006)), medical care (Pfingsten et al., 2007) and lifestyle factors (individual

sleep and health satisfaction, weekly duration of sporting activity, smoking and alco-

hol behaviour, use of medicines) were assessed as well as all dynamic characteristics

(personality states) including Fear-Avoidance, Chronic Stress, Anxiety and Depres-

sion, Vital Exhaustion, Sleep and Health Behavior, relationships. In detail: Fear-

Avoidance were gathered by the Fear-Avoidance-Beliefs-Questionnaire (FABQ-D, Pf-

ingsten et al. (1997)), chronic stress by the Trier Inventory for chronic stress (TICS,

Schulz et al. (2004)), Anxiety and depression by the German Hospital Anxiety and

Depression Scale (HADS-D, Herrmann et al. (1995)), vital exhaustion by the Maas-

tricht Vital Exhaustion Questionnaire (VE, Maastricht Vital Exhaustion, Schnorpfeil

et al. (2002)) and relationships by the attachment category model (Bartholomew and

Horowitz, 1991). Further self-efficacy (I-SEE, Inventory for the Measurement of Self-

Efficacy and Externality, Krampen (1991)), Social Support (Berlin Social Support

Scales, Schwarzer and Schulz (2000)) and Life events were assessed as well as fear

avoidance and endurance behavior was gathered by the Pain Persistence Scale of the

Avoidance-Endurance-questionnaire (AEQ-PPS, Hasenbring et al. (2009)).
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3 Inference approaches for Lasso

The core task of statistical inference in the sense of hypothesis testing and confidence

intervals is to quantify uncertainty of estimators. Compared to the state of research

for methods, algorithms and properties of the Lasso, statistical inference is developed

far less. For a practitioner, who wants to use the Lasso to get a selection of the most

influential predictors, it might be useful to access p-values and confidence intervals

for the estimated coefficients of selected predictors. The simple Lasso-estimator is

infeasible for hypothesis testing. On the one hand it is not representable in a closed

form and therefore has no explicit distribution, on the other hand, it is not possible

to determine a limiting distribution. Its distribution is non steady with point mass in

zero (Knight and Fu, 2000) making classical bootstrap invalid. Furthermore refitting

the selected predictors in a regression model and placing inference on the usual t-

statistic is invalid after a previous variable selection.

A variety of approaches has been proposed using the sample once or multiply, assess-

ing the hypothesis testing unconditioned or conditioned on the selection procedure.

We consider two approaches in our simulation study: The Multi Sample Splitting

(MSS) of Wasserman and Roeder (2009) and Meinshausen et al. (2009) and the Low

dimensional projection estimator (LDPE) of Zhang and Zhang (2014), which are

explained in detail in the following subsections.

3.1 Multi Sample Splitting (MSS)

The fundamental approach of applying sample splitting for generating p-values is

given by Wasserman and Roeder (2009). In a simple version the data set is split
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into two parts. On the first part a Lasso selection is done by cross validating the

optimal penalty strength. Thereafter the coefficients of selected variables are refitted

in a linear regression model on the second part of the data set. The usual t-statistic,

which serves for calculation of p-values stays valid, if independent sample splits are

used for selection and inference. Meinshausen et al. (2009) extend this approach to

a repetition of splitting, selection and calculation of p-values and a final aggregation

of multiple p-values for each predictor, while controlling the family wise error rate

(FWER). The repeated splitting is less sensitive regarding the selection of a single

split.

A formal description illustrates the steps in detail: For sample splitting repetition

b = 1, . . . , B the data is randomly split into two disjunct subsets with row indices

I
(b)
1 , I

(b)
2 ⊂ {1, . . . , n} for which |I(b)1 | = bn/2c, |I(b)2 | = n − bn/2c, I(b)1 ∩ I(b)2 =

∅ and therefore I
(b)
1 ∪ I(b)2 = {1, . . . , n}. Applying the Lasso on the subset with

indices I
(b)
1 returns the indices Ŝ(b) ⊂ {1, . . . , p} for selected predictors, for which

is assumed |Ŝ(b)| ≤ |I(b)1 | = bn/2c ≤ |I(b)2 | in order to achieve subsequently a least

squares estimation on the second half of the data set with indices I
(b)
2 . While the

corresponding p-values P̃
(b)
j , j ∈ Ŝ(b) are based on the model, the p-values of all other

variables are assumed to take a value of one: P̃
(b)
j = 1, j /∈ Ŝ(b).

In order to aggregate the for multiple testing adjusted p-values P
(b)
corr,j = min(P̃

(b)
j ·

|Ŝ(b)|, 1), j = 1, . . . , p, b = 1, . . . , B over B repetitions, quantiles of their empirical

distributions are calculated. With γ ∈ (0, 1) and the empirical quantile function qγ(·)

Qj(γ) = min
{
qγ(P

(b)
corr,j/γ; b = 1, . . . , B), 1

}
, j = 1, . . . , p (3.1)

gives for every fixed value of γ multiple testing adjusted p-values for each covariate.

Finding an optimal value for γ, whilst ensuring a FWER-control is proposed to be
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data driven and achieved through

Pj = min

{
(1− logγmin) · inf

γ∈(γmin,1)
Qj(γ), 1

}
, j = 1, . . . , p (3.2)

with γmin ∈ (0, 1) and recommended by Meinshausen et al. (2009) to be 0.05. The

adaptive search for an optimal value of γ is compensated through the correction factor

(1− log γmin).

Compared to a single sample split, the repetition of selection and inference allows

some stability and reproducability regarding the aggregated p-values. The approach

centers on the control of FWER, aiming the asymptotic validity of P(V > 0) ≤ α,

with V denoting the number of falsely rejected null hypotheses. This is succeeded

by the adjusted, aggregated p-values of equation (3.2) and a p-value based variable

selection.

Meinshausen et al. (2009) point out the suitability of MSS compared to least squares

(LS) estimation, if the ratio n/p < 1.5. An intuitive explanation is the increasing

variance of LS-estimates, which reduces the ability to determine relevant coefficients.

In our simulation study, we consider unadjusted calculated p-values in equation (3.1).

3.2 Low dimensional projection estimator (LDPE)

Zhang and Zhang (2014) propose a method, bias correcting a linear estimator for

regression coefficients and constructing confidence intervals based on an asymptotic

distribution for the estimator.

To understand their approach it is useful to draw on the geometrical interpretation of

the LS-estimator. The outcome vector y ∈ Rn is projected into the column space of
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X ∈ Rn×p, which is put up by the linear independent covariate vectors x(1), . . . ,x(p) ∈

Rn. The predicted vector ŷ is the projection into the column space and is orthogonal

to the residual vector ε̂, such that ε̂′ŷ = 0. In addition ε̂ is located in the orthogonal

complement of the column space, i.e. ε̂′x(j) = 0, ∀j = 1, . . . , p.

An alternative formulation for the LS-estimator is given by β̂j;LS = y′ε(j)

x(j)′ε(j)
with

ε(j) denoting the residual vector of regressing x(j) on the design matrix without the

column of the j-th covariate X(−j). For all k 6= j: ε(j)
′
x(k) = 0. In the case p > n

a regularized projection of x(j) on X(−j) is necessary, therefore the residuals z(j)

are calculated by a cross validated Lasso model. Cause there exists no z(j) being

orthogonal to the p− 1 column vectors, x(k)
′
z(j) = 0 is not fulfilled for j 6= k.

Equivalent to the LS-estimator a linear estimator is given by

β̂j =
y′z(j)

x(j)′z(j)
= β∗j +

ε′z(j)

x(j)′z(j)
+
∑

k 6=j

x(k)′z(j)

x(j)′z(j)
β∗k (3.3)

where y has been replaced by the model equation. While in the case of p < n with

x(k)′z(j) = 0 the sum over k 6= j is removed, for p > n every covariate contributes

linearly to an unavoidable bias of β̂j, caused by x(k)′z(j) 6= 0. The authors propose a

correction of this bias by adducting the Lasso estimators β̂k,lasso of y regressed on X

as initiating estimator for β∗k (k 6= j), such that

b̂j = β̂j −
∑

k 6=j

x(k)′z(j)

x(j)′z(j)
β̂k,lasso =

y′z(j)

x(j)′z(j)
−
∑

k 6=j

x(k)′z(j)

x(j)′z(j)
β̂k,lasso (3.4)

gives a bias corrected estimator. Zhang and Zhang (2014) call this estimator low

dimensional projection estimator (LDPE) and show that under suitable conditions

√
n(b̂j − β∗j )
σεΩ

1/2
jj

a∼ N(0, 1) with Ωjj =
z(j)

′
z(j)

(z(j)′x(j))2
∀j = 1, . . . , p. (3.5)
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Using an estimate σ̂2
ε for the residual variance hypotheses can be tested and (si-

multaneous) confidence intervals constructed. The possibility of an implicit variable

selection may be given by selecting covariates, whose estimated coefficients exceed a

predefined threshold. Lockhart et al. (2014b) state that it is not clear how to connect

p-values calculated by this approach to Lasso selected variables, in a sense of post

selection inference.

3.3 Further approaches

Beside the two approaches we investigate in our simulation study, there are further

ideas and developments for high-dimensional inference. A variety of approaches has

been proposed using the sample once or multiply, assessing the hypothesis testing

unconditioned or conditioned on the selection procedure. These include a modified

bootstrap procedure, see Chatterjee and Lahiri (2011). Javanmard and Montanari

(2014) propose an estimator given by the simple formula θ̂
corr

= θ̂lasso + 1
n
MX ′(y−

Xθ̂lasso) correcting the bias of the Lasso estimator θ̂lasso. The key role is played by

the matrix M , serving to de-correlate the columns of the design X. Under given

assumptions the distribution of θ̂
corr

is approximately Gaussian, which allows the

construction of confidence intervals and p-values.

The covariance test statistic of Lockhart et al. (2014a) is a novel approach within the

Lasso framework, proposing a conditional test sequence oriented by the coefficient

paths of a Lasso selection. The coefficient paths of a Lasso estimation represent the

order in which predictors with non-zero coefficients at decreasing degree of penaliza-

tion are chosen for the Lasso model. Their test sequence is based on the null hypothe-

sis that a Lasso model at a given penalty degree contains all truly active variables and
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therefore tests the significance of a predictor entering this model. Bühlmann et al.

(2014) point out, that compared to fixed tests on single predictors, the conditional

hypothesis do not allow an interpretation of p-values in the classical sense.

3.4 Implementation in R

With implementations for different inference approaches the R-package hdi of Meier

et al. (2014) allows the construction of p-values and confidence interval in high-

dimensional settings. Dezeure et al. (2015) compare those implemented approaches

regarding power calculations and familywise error rates in a wide range of simulation

studies.
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4 Simulation study

To evaluate the reliability and performance of the two chosen inference approaches

MSS and LDPE in our concrete data problem, we ran a simulation study. We create

the setting similar to our data set. This should allow us to assess the performance of

both methods regarding practical applicability and their sensitivity in the underlying

data. As computational implementation of these methods in R serves the package hdi

from Meier et al. (2014) and the therein contained functions multi.split for MSS

and lasso.proj for LDPE.

4.1 Setup and evaluation criteria

We chose a simulation setting with n = 200 observations and 174 predictors, which

corresponds to the application we consider. To obtain a data structure that is close

to the application the observed predictors in the simulation were sampled randomly

from the real data set. The data set on which our simulation was built contained

171 predictors, the baseline-measurement of pain intensity and the control variables

sex and age. Since the Lasso selects 15 predictors we chose p∗ = q + 3 = 15 active

predictors. A two step procedure describes the assignment of active predictors and

their assumed true coefficient values:

1. The lasso.firstq-function from hdi determines the first q variables selected

on the Lasso-path from a Lasso-model that includes 171 items, sex, age and the

baseline as predictors and the intensity of pain as outcome.

2. A linear model (LM) with the selected q variables and the fixed variables sex,

age and the baseline (y1) is used to estimate the coefficients β∗y1 , β
∗
sex, β

∗
age, β

∗
1 ,
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. . ., β∗q , which were interpreted as the true variable weights. In addition one

obtains an intercept β∗0 and the residual variance σ2
LM .

New outcome values ysimi for individual i were generated by using the linear predictor

consisting of the q selected variables and three fixed variables:

ysimi = β∗0 + yi,1 · β∗y1 + xi,sex · β∗sex + xi,age · β∗age + xi,1 · β∗1 + . . .+ xi,q · β∗q + ε, (4.1)

where ε ∼ N(0, c2 · σ̂2
LM) denotes a randomly chosen error term, which uses the

residual variance of the linear model and a factor c ∈ {1
3
, 2
3
, 1}, which allows to vary

the dispersion of the simulated outcomes.

The main simulation scenario contains B = 30 repetitions, where the above mentioned

model serves as a base model. For each repetition b = 1, . . . , B the design matrix Xb

varies by the repetition specific n = 200 observations (rows), randomly sampled from

the complete data set of 395 observations. Additionally in each of the B repetitions

with design Xb, 100 different versions of the outcome values for each observation in

Xb were simulated according to the linear model. These 100 outcome versions, which

are called inner repetitions, allow to compute 100 estimated p-values for each of the

predictors in every repetition b = 1, . . . , B.

The p-values are based on the predictor specific hypothesis H0,j : β∗j = 0 vs. HA,j :

β∗j 6= 0, j = 1, . . . , p. The p-values of the inactive predictors j ∈ S∗ = {j : β∗j =

0, j = 1, . . . , p} were used to determine the type-I-error, the p-values of the active

predictors j ∈ S∗ = {j : β∗j 6= 0, j = 1, . . . , p} were used to determine the power,

defined in the following.
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1) To obtain an empirical version of the power for a single hypothesis as the proba-

bility of rejecting the null hypothesis, P(H0,j is rejected, j ∈ S∗), we used the number

of cases of the inner repetitions, in which a p-value beneath the fixed significance level

α = 0.05 was generated. The corresponding empirical power was computed by

Powerj =
1

B

B∑

b=1

(
1

L

L∑

`=1

I(p`,bj ≤ 0.05)

)
, j ∈ S∗, (4.2)

where ` = 1, . . . , L (L = 100) denotes the inner repetitions, in which for fixed design

an outcome vector y` was simulated that yielded the p-value for variable j p`,bj . I(.)

denotes the indicator function, taking the value 1, if p`,bj ≤ 0.05, and 0 otherwise.

2) For inactive predictors the type-I-error is reported, giving the probability of

falsely rejecting the null hypothesis, P(H0,j is rejected, j ∈ S∗). The empirical version

was computed by

type-I-errorj =
1

B

B∑

b=1

(
1

L

L∑

`=1

I(p`,bj ≤ 0.05)

)
, j ∈ S∗. (4.3)

4.2 Results

The p-values generated by MSS and LDPE are first used to compute the power

and the type-I-error for each predictor and each repetition aggregated over the inner

repetitions. Then we consider the aggregation over all repetitions. We distinguish

varying degrees of dispersion and compare the presented results to scenarios that are

not shown.

In Figure 1, the results concerning power and type-I-error are presented. For each
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repetition and variable the percentage of p-values smaller than 0.05 is counted. These

percentages are displayed in boxplots, which are obtained from the outer repetitions.

The results for MSS are given on the left, the results for LDPE on the right, the rows

represent varying degrees of dispersion. Within each panel the results for the relevant

predictors are shown on the left of the vertical line. On the right the results for a

selection of irrelevant predictors is shown.

For the relevant variables the boxes represent the power. The order of the vari-

ables is determined by the effect sizes, which were computed as the product of the

true coefficients and the empirical standard deviations of the predictors, that is,

β∗j · sd(x(j)), j ∈ S∗. As expected, the smaller the effect size, the lower the percentage

of p-values smaller than 0.05. For higher dispersion the power drops drastically, ex-

cept for the baseline-predictor. The power obtained for MSS indicate that for higher

dispersion the relevant predictors cannot be detected.

For the irrelevant variables the percentage correspond to type-I-errors of every repe-

tition. Its control at the 5% level is marked by the dashed horizontal line. The MSS

p-values are rarely beneath 0.05 indicating that the error level is not kept. Actually,

the construction of these method results most often in p-values placed on one. In

contrast the type-I-errors of LDPE are spread at 5%. Except for single predictors

with higher type-I-errors, which can be explained by correlations with relevant pre-

dictors. In scenarios with decorrelated irrelevant predictors increased type-I-errors

disappeared.
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Figure 1: Inner repetitions percentages of p-values smaller than 0.05 of relevant and

irrelevant predictors using MSS (left column) and LDPE (right column) and varying

degrees of outcome dispersion (rows).
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Figure 2: Empirical type-I-error of single hypothesis testing for each irrelevant pre-

dictor for varying outcome dispersion on LDPE p-values.

4.2.1 Type-I-error

Figure 2 depicts to what extend a type-I-error of 5% is kept by LDPE. For each irrele-

vant predictor the empirical type-I-error according to formula 4.3 has been calculated

over all repetitions and is presented in histograms for varying outcome dispersion.

While for higher dispersion the type-I-error spreads less, it is not symmetrically dis-

tributed at a level of 0.05. Although their mean is slightly beneath 0.05 there exist

some outlier till 0.2. Again this behavior disappears when irrelevant and relevant

predictors are de–correlated. In this not depicted case the errors are spread narrowly

at 0.05.

To conclude the results of p-values of irrelevant predictors, we provide their empirical

cumulative distribution functions (ecdf) for each predictor in figure 3. Under the null

hypothesis the distribution functions of the p-values should correspond to uniform

distributions on the interval (0, 1). In the left handed panel a distribution function

for each predictor of one scenario repetition shows them spread around the diagonal of
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Figure 3: Empirical cumulative distribution functions F(p-value) of LDPE p-values

of irrelevant predictors. Functions for each predictor of a single repetition (left) and

over all repetitions (right) for maximum outcome dispersion (1 · σ̂LM).

the unit square, except for some concave functions of stronger correlated predictors.

In the right handed panel an ecdf for each predictor over all inner repetitions shows

nearly perfect diagonals. In the case of decorrelation they spread symmetrically and

narrowly around the diagonal. The observation that almost all MSS p-values are

placed at a value of one makes its presentation obsolete.

4.2.2 Empirical power

In a last step we analyse the power of single hypothesis testing for each relevant

variable over all repetitions calculated according to formula 4.2 and depicted in figure

4 for varying outcome dispersion and under consideration of effect sizes. The baseline-

predictor stays withhold, having an distinctly higher effect size of 9.12 and keeping a

constant power of one. For all other predictors the empirical probability of correctly

rejecting the null hypothesis tends to zero for increasing outcome dispersion and
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Figure 4: Empirical power values of single hypothesis testing for relevant predictors

based on LDPE and MSS calculated p-values for varying outcome dispersion consid-

ering different effect sizes.

smaller effect sizes. Especially for MSS it will not be possible to detect truly active

variables.

4.2.3 Further scenarios

We increased the number of observations used for the simulations design matrices

from n = 200 to n = 350 respectively the number of relevant predictors from p∗ = 15

to p∗ = 30, while keeping all other parameters of the main scenario unchanged. In

the former variant we observed for LDPE slightly increased power values and a mean

type-I-error of 0.053. In contrast, although we nearly doubled the data base the power

increased only little, while the type-I-error stayed near zero. In the latter variant we

added the next 15 predictors of the lasso path as relevant variables. The power values

of LDPE generated p-values increased little for predictors common in both scenarios

and type-I-errors spread stronger, with a total mean of 0.054.
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4.2.4 Conclusion

In all we observed for LDPE p-values a type-I-error slightly above the requested value

of 0.05. Outliers were caused by correlations with relevant predictors. For predictors

with low effect sizes the power of hypothesis testing will be small, even reduced by

higher outcome dispersion. In this study MSS seems an inappropriate method for

generating p-values. The power of hypothesis testing seems very small and caused

by construction of these method, error-rate is not keepable. Additionally MSS will

get computational difficulties, if variables have to few different values, resulting in

inestimable model coefficients. Depending on the number of considered predictors

the computational costs and time for LDPE are far higher than for MSS.
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5 Analysis of pain study

5.1 Method

According to our aim of a one-year prediction for pain intensity, we formulated a linear

regression model. As possible predictors we used the baseline, psycho sociological

items from the previously mentioned questionnaires and individual characteristics.

In total the model contained 206 predictors, while 237 observations without missing

values were available.

For the purpose of selecting the most relevant predictors via Lasso we applied the

R-package penalized of Goeman (2010). We conduct the modeling procedure in

two steps. In the first step variables are selected with the function profL1(), which

generates coefficients for each predictor for a sequence of penalty values. At that we

allow all predictors to be penalized and therefore selected, except the unpenalized

control variables age, sex and center of survey. The optimal penalty strength is

determined in the optL1()-function via 10-fold crossvalidation. In the second step

we refit the coefficients of selected and unpenalized predictors in a linear regression

model. This returns unbiased coefficients, in contrast to biased Lasso coefficients.

LDPE generated p-values are opposed to those selected and not selected predictors

and interpreted according to the findings of the simulation study.

5.2 Results

A detailed contentual description and interpretation of the Lasso-results is given

in Wippert et al. (subm.). Therefore we focus upon the methodical aspects and
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Figure 5: Coefficient paths with highlighted selected predictors for the crossvalidated

optimal degree of penalization (vertical dashed line).

comparison to our simulation study. Coefficient paths of the Lasso selection are

depicted in figure 5 representing for each predictor its against zero shrinking coefficient

for increasing degree of penalization on an equidistant grid. An optimal degree of

penalization calculated via 10-fold cross validation is marked by the vertical dashed

line.

The application of Lasso shows the expected immense reduction of dimensionality

of the coefficient vector from 206 to 15. Among those selected predictors, denoted

in the plot, we find the marked baseline predictor of pain intensity named base. Its

coefficient, compared to those of all other covariates, is very slowly shrunken to zero

at an increasing degree of penalization.

To the estimates for each selected predictor we added the p-value calculated by the

LDPE of Zhang and Zhang (2014) based on the initial data set. While ten predictors
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categorized p-value unselected selected

[0, 0.01] 0 2

(0.01,0.05] 8 8

(0.05,0.1] 9 4

(0.1,1] 179 1

Table 1: Frequency of categorized LDPE p-values for unselected and selected predic-

tors.

show a significant p-value at the error level of 5 %, the remaining five predictors have

a non significant p-value. In table 1 we compare p-values of selected and unselected

predictors in four categories. Besides the previously mentioned p-values of selected

predictors eight of the remaining predictors received a significant p-value, too.

5.3 Conclusion

According to our simulation study we expect the small number of significant p-values

caused by relevant variables with small effect sizes, compared to the effect size of

the baseline predictor. As well as significant p-values of unselected predictors may be

caused by correlations to selected predictors, keeping in mind that Lasso selects single

covariates out of groups of correlated ones. The results of the simulation study for

MSS generated p-values were confirmed in the analysis of the pain study. Except of

the baseline predictor all predictors received a p-value of one making its presentation

unnecessary.
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6 Conclusion and discussion

In the past five years various approaches for inference in high-dimensional data set-

tings have been proposed. There is missing experience regarding their performances

and suitability for a broad application in practical data analysis. We analyzed p-

values calculated by Multi Sample Splitting and the Low Dimensional Projection

Estimator in a simulation study. The study was guided by our leading question of

selecting one-year predictive psychometric items on back pain using the Lasso. Our

model setting with n = 237 and p = 206 returned 15 selected predictors, including

the baseline predictor. After selection We fitted their coefficients in a linear regression

model, which results in invalid p-values of the usual t-statistic. The LDPE p-values

based on Zhang and Zhang (2014) indicated significant effects for selected, as well as

for unselected predictors.

The simulation study for LDPE and MSS p-values based on a setting of n = 200

and p = 174 and varying degrees of outcome dispersion. For LDPE p-values it

showed strongly decreasing power for single hypothesis tests on active predictors for

decreasing effect size and increasing outcome dispersion. Type-I-error calculations for

tests on inactive predictors pointed out, that a level of 5% was kept on average. The

level was exceeded by single correlated predictors to a type-I-error of 0.2.

In contrast the MSS calculated p-values showed no satisfying results and can not be

recommended for our data setting. While in all settings the type-I-error for tests

on inactive predictors almost always took a value of zero, power calculations failed

those of LDPE. This behaviour is caused by a non stable predictor selection in the

repetitions of MSS. It seems questionable for reliable p-values, to use only half of
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available information for selection in a setting, where observations are rare at all.

Restrictively we have to emphasize that our modeling framework is dominated by the

baseline predictor, with a strong association to the pain outcome.

Finally the relationship between p-values based on tests for all covariates and the p

values of the Lasso selected ones has to be further explored.
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