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Abstract

Background: Technical advances in Next Generation Sequencing (NGS) provide a means to acquire deeper insights
into cellular functions. The lack of standardized and automated methodologies poses a challenge for the analysis
and interpretation of RNA sequencing data. We critically compare and evaluate state-of-the-art bioinformatics
approaches and present a workflow that integrates the best performing data analysis, data evaluation and annotation
methods in a Transparent, Reproducible and Automated PipeLINE (TRAPLINE) for RNA sequencing data processing
(suitable for Illumina, SOLiD and Solexa).

Results: Comparative transcriptomics analyses with TRAPLINE result in a set of differentially expressed genes, their
corresponding protein-protein interactions, splice variants, promoter activity, predicted miRNA-target interactions and
files for single nucleotide polymorphism (SNP) calling. The obtained results are combined into a single file for
downstream analysis such as network construction. We demonstrate the value of the proposed pipeline by
characterizing the transcriptome of our recently described stem cell derived antibiotic selected cardiac bodies
('aCaBs').

Conclusion: TRAPLINE supports NGS-based research by providing a workflow that requires no bioinformatics
skills, decreases the processing time of the analysis and works in the cloud. The pipeline is implemented in the
biomedical research platform Galaxy and is freely accessible via www.sbi.uni-rostock.de/RNAseqTRAPLINE or the
specific Galaxy manual page (https://usegalaxy.org/u/mwolfien/p/trapline—manual).
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Background
In comparison to other high-throughput methods, Next
Generation Sequencing (NGS) technologies enable
genome-wide investigations of various phenomena, in-
cluding single-nucleotide polymorphisms, epigenetic
events, copy number variants, differential expression,
and alternative splicing [1]. RNA sequencing (RNAseq)

uses the NGS technology for discovering novel RNA se-
quences, and quantifying all transcripts in a cell [2, 3].
Like genome tiling arrays, an RNAseq experiment can
capture evidence for yet unannotated genes and iso-
forms. The utility of RNAseq to uncover new transcripts
is well documented [3–8]. Several laboratories have pro-
vided evidence that cDNA library preparation and RNA
sequencing sets are technically well reproducible and in
contrast to microarrays RNAseq offers a broader dy-
namic range, which makes this platform more sensitive
in the detection of transcripts with low abundance [9].
The steady increase of publications involving RNAseq

experiments generated a need for statistical and compu-
tational tools to analyze the data. Basically, all RNAseq
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analyses involve the following tasks: pre-processing,
quality control, read mapping and further analyses like dif-
ferential expression (DE) analysis, single nucleotide poly-
morphism (SNP) analysis or gene isoform and splicing
variant detection. However, the availability of tools follow-
ing a standardized analysis protocol are limited [10].
A number of software packages and pipelines have

already been introduced to deal with these tasks. These
software packages are mainly based on programming
languages like C, Python or R and require advanced ex-
pertise in programming or computer science for proper
implementation and use or they do not provide ad-
vanced analytical tools like gene network inference
methods, miRNA-target predictions and/or the integra-
tion of protein-protein interactions [11–16]. Addition-
ally, the possibility of discovering alternatively spliced
genes or promoter activity would be desirable. Further-
more, there is no common RNAseq data analysis strat-
egy, despite the obvious need for such a standardized
pipeline [17]. The increased dependence on computa-
tional approaches in life sciences has revealed grave con-
cerns about the accessibility and reproducibility of the
computed results [5]. Galaxy is a free web-based plat-
form for omics research that addresses the following
needs [18, 19]:

� Accessibility: Galaxy enables users to perform
integrative omics analyses by providing a unified, web-
based interface for obtaining omics data and applying
computational tools to analyze these data. Learning a
programming language or the implementation details
is not necessary.

� Reproducibility: Galaxy produces metadata about
every possible analysis step and automatically tracks
descriptive information about datasets, tools, and
parameter values to ensure reproducibility. User
annotations and tagging is possible at each step of
the pipeline.

� Transparency: Galaxy includes a web based
framework for sharing models including datasets,
histories, workflows and repositories. It also allows
users to communicate and discuss their
experimental results in an online forum.

Implementation
Using Galaxy, we developed a comprehensive, Transpar-
ent, Reproducible and Automated analysis PipeLINE,
named TRAPLINE, for RNAseq data processing (opti-
mized for Illumina FASTQ reads, but also suitable for
other sequencing platforms like SOLiD or Solexa), evalu-
ation and prediction. The predictions are based on mod-
ules which are able to identify protein-protein interactions,
miRNA targets and alternatively splicing variants or pro-
moter enriched sites. A schematic representation of the

analysis pipeline is illustrated in Fig. 1. TRAPLINE can be
accessed via the published Galaxy page of TRAPLINE
(https://usegalaxy.org/u/mwolfien/p/trapline—manual) or
via www.sbi.uni-rostock.de/RNAseqTRAPLINE.
TRAPLINE implements the following tools and re-

sources: (i) FASTQ quality trimmer, FASTXclipper and
FastQC for pre-processing and quality control, (ii)
TopHat2 for read mapping, (iii) Picard Toolkit for read
correction and SNP identification, (iv) Cufflinks2/Cuff-
diff2 for DE analysis, splicing and promoter testing (v)
the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) for gene annotation and func-
tional classification, (vi) miRanda for miRNA target
prediction, (vii) BioGRID for protein-protein interactions
and, finally, a compiling module for ready to use net-
work construction files. For detailed instructions regard-
ing the usage of TRAPLINE please see the manual in
the Additional file 1.

Results
To show the effectiveness of our automated pipeline, we
exemplarily applied TRAPLINE to RNAseq data gener-
ated from our recently described antibiotic selected car-
diac bodies (“aCaBs”), which are highly pure clusters of
mouse embryonic stem cell (mESC) derived cardiomyo-
cytes generated via Myh6 promoter based antibiotic se-
lection plus a standardized differentiation protocol
(Additional file 2: Figure S1) [20, 21]. Their RNA expres-
sion profiles were compared to control embryoid bodies
(EBs) derived from the same cell line without adminis-
tration of the antibiotic.

TRAPLINE includes state-of-the-art quality control
processes
TRAPLINE analyses RNAseq reads obtained from Illu-
mina, SOLiD and Solexa platforms with the help of
“FASTQ Groomer” [22] that converts the specific for-
mats as a first step. In the following pre-processing step,
adapter sequences, which have been added to the 5’ and
3’ ends of the cDNA fragments during the sample prep-
aration phase, are being clipped (no influence towards
other platforms). In the Illumina sequencing procedure,
sequences are extended on both ends by - 62 nucleotide
long adapters that may influence the results of the sub-
sequent analysis [23]. These adapters are only used dur-
ing the Illumina bridge amplification procedure to
immobilize the cDNA transcripts. In TRAPLINE we im-
plemented the tool “FASTXClipper” (http://hannon-
lab.cshl.edu/fastx_toolkit/index.html) for this purpose.
It is necessary to discriminate sequencing errors from

biological variation by using quality scores (Q) [24].
Therefore, in the last pre-processing step uncalled and
wrongly called bases are removed (Quality Trimming).
Standard approaches rely on the associated quality
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scores to retain the read, or a portion of it, if the score is
above a predefined threshold [22]. As suggested by
Mbandi et al. [24] we excluded reads with a score Q < 20
to ensure reliable genome mapping results. For the pur-
pose of discarding low quality reads, we implemented
the widely used tool “FASTQ Quality Trimmer” which
returns a quality control report for each dataset that was
analyzed. The effects achieved by quality trimming our
data are shown in Additional file 3: Figure S2.
We compared the fraction of mapped reads with and

without applying data pre-processing (Fig. 2a). Our ob-
servations confirm the findings of Chen et al. [25], who
demonstrated the necessity of applying the described
pre-processing steps in a read-mapping benchmark.

TopHat2 - the most accurate alignment tool in Galaxy
To select the most suitable read alignment tool, we ana-
lyzed the overall mapped transcript coverage on the gen-
ome (accuracy) of the most commonly used alignment
tools, which are based on the exon first approach. Figure 2b
shows the results of our comparison between BWA [26],

Bowtie [27], Bowtie2 [28], and TopHat2 [29], and their
average accuracy in the mapping of six different datasets.
The overall alignment accuracy of the mapped reads to the
reference genome is between 70 % and 85 %. Bowtie2 and
TopHat2, that share a similar algorithm, produce a signifi-
cantly higher accuracy in comparison to the BWA and
Bowtie alignment tools (based on a significance level α =
0.05). In our case, the Bowtie2 alignment algorithm was
able to map in average 2.5 million more reads to the gen-
ome than the BWA/Bowtie algorithm (total amount reads:
24–26 million). Our observations are consistent with the
results of Kim et al. [30], who found that TopHat2 gener-
ates more accurate alignments than competing tools, using
fewer computational resources. Because of the significantly
superior mapping accuracy of TopHat2, in contrast to
Bowtie/BWA, and the additional functionality to find splice
junctions and promoter regions, we decided to include
TopHat2 into TRAPLINE. The outputs of TopHat2 are
BAM files which contain the aligned reads to the reference
genome and text files summarizing the accuracies of the
mapped reads for each FASTQ file.
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Fig. 2 (See legend on next page.)
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Correction of reads is necessary for SNP detection
The presence of duplicates is a major issue in single/
paired short reads from NGS platforms. PCR amplifica-
tion is one of the major sources of duplicates, which are
usually introduced during sequencing library amplifica-
tion [31]. These duplicates might have a serious impact
on research applications, especially towards SNP detec-
tion, because they can confound the expression data of a
particular gene and, therefore, are usually removed [32].
A popular tool for this task is “MarkDuplicates” from
the Picard toolkit (https://github.com/broadinstitute/pic-
ard), which finds the 5’ coordinates and mapping orien-
tations of each read pair and removes them. During this
procedure, the tool considers all clipping that has taken
place as well as any gaps or jumps in the alignment. To
investigate the influence of the duplicate removing step
with Picard tools, we determined the read duplication
rates and the number of reads mapped to the same loca-
tion using the “RSeQC” Python module [33]. The results
are visualized in Fig. 2c and d. RSeQC uses two strat-
egies to determine read duplication rates: (i) sequence
based (blue dots), which means reads with identical se-
quences are regarded as duplicated reads; (ii) mapping
based (red dots) which expresses reads that are mapped
to exactly the same genomic location. A comparison of
both figures clearly shows an elevation of the mapping-
base. The red dots are refined in Fig. 2d in contrast to
Fig. 2c, meaning that there were many aligned reads
with a similar mapping sequence but with a different lo-
cation on the genome, which was corrected by “Mark-
Duplicates”. The corrected bam-files can be further
investigated by a SNP calling analysis software such as
GATK [34] or CRISP [35].

Cuffdiff2 adds value to the standard DE analysis
The different DE analysis methods are based on (i) nega-
tive binomial models, such as edgeR, DEseq, baySeq, (ii)
non-parametric approaches, such as SAMseq, NOIseq
and (iii) transcript-based detection methods, such as
Cuffdiff2 and EBSeq [36]. We compared the perfor-
mances of the most widely used DE tools from each
group, which are Cuffdiff2 [37], edgeR [38] and SAMseq
[39], to show how they compare and to underline the

DE analysis efficiency of TRAPLINE. Prior to the ana-
lysis reads were mapped to the reference genome with
different methods (Bowtie for edgeR/SAMseq and
TopHat2 for Cuffdiff2), because each tool has different
data input requirements. Figure 2e shows only slight dif-
ferences between the applied DE methods. All tools
nearly identified the same amount of genes as signifi-
cantly upregulated among in aCaBs compared to EBs
(~250), however different amounts of genes were classi-
fied as downregulated. In general, the statistical ap-
proaches used by edgeR and SAMseq are more liberal in
defining significant differences than the Cuffdiff2 algo-
rithm [17]. In agreement with our results, these widely
used methods have recently been compared by several
research groups [17, 36, 40, 41]. Cuffdiff2 estimates ex-
pression at transcript-level resolution and controls the
variability and read mapping ambiguity by using a beta
negative binomial model for fragment counts [37]. Fur-
thermore, the tool enhances the comparability between
experiments, because it uses the derived “reads per kilo-
base per million” (RPKM) mapped reads metric [3]
which normalizes for both gene size (more reads or frag-
ments can be mapped to larger genes) and the total
number of reads or fragments (per million mapped).
Seyednasrollah et al. [17] stated Cuffdiff2 as the most
conservative DE method with the lowest false positive
rate. Therefore, we included Cuffdiff2 for RNAseq DE
analysis in TRAPLINE to retrieve precise results with
highly significant genes.
As default setting Cuffdiff2 considers genes as sig-

nificant for p ≤ 0.05, and a fold change (FC) higher
than two. Another reason to integrate Cuffdiff2 into
TRAPLINE is the possibility to determine differential
splicing events and to perform differential promoter
testing [42]. This possibility qualifies the pipeline to in-
vestigate for genes with two or more splice variants
and genes producing two or more distinct primary
transcripts (multi-promoter genes). Multiple splice and
promoter isoforms are often co-expressed in a given
tissue [3].
We have performed a performance test between TRAP-

LINE and other tools. A summary of the ratio of mapped
reads, discarded reads and significantly differentially

(See figure on previous page.)
Fig. 2 Evaluating the different analyses modules of TRAPLINE. a A fraction of mapped reads with and without applying pre-processing modules
(QT: quality trimming; C: clipping). TopHat2 was used for genome mapping. Error bars indicate the standard deviation. Asterisks indicate a significant
difference: # Welch’s t-test with α = 0.05; § ANOVA with α = 0.05; (n = 6). b Comparison of different genome mapping tools. The bars indicate the
transcript accuracy of the reads aligned to the genome in %, including the standard deviation. Marks indicate significant difference: # Welch’s t-test
with α = 0.05, Bonferroni test with α = 0.05; (n = 6). c and d Comparison of read correction procedure by Picard Toolkit, before (c) and after (d), to
visualize and correct for multiple RNA sequences in the experimental datasets. RSeQC shows the two specific read duplication correction possibilities:
"Sequence-base" reads have the same nucleotide sequence (blue), "Mapping-base" reads have the same mapped sequence, but are aligned to
different locations on the genome (red). e Comparison of three different DE analysis tools (edgeR, SAMseq and Cuffdiff2), after read mapping with
Bowtie (edgeR, SAMseq) TopHat2 (Cuffdiff2). The total number of significantly differentially expressed genes is based on FDR < 0.05 and divided into
upregulated and downregulated genes. f Vulcano plot illustrating significantly differentially expressed genes (red dots: FC≥2; p≤0.05)
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expressed genes obtained with the indicated tools is
shown in Additional file 4: Table S1.

Gene annotation, miRNA target prediction and protein-
protein interactions with TRAPLINE
Additionally, we included three data annotation and pre-
diction steps into TRAPLINE. First, filtering modules
were implemented to scan the list of differentially
expressed genes and extract sets of upregulated and
downregulated genes. Additionally, users receive a link
to DAVID [43] to evaluate the functional influences of
the significantly upregulated/downregulated transcripts
within their data. In general, DAVID finds Gene Ontol-
ogy terms (GO terms), signaling pathways (based on da-
tabases like Panther, KEGG, Biocarta, etc.) or protein
domains (e.g. based on InterPro) that are predominantly
associated with lists of genes (e.g. from a DE analysis).
Moreover, DAVID performs a functional annotation
clustering analysis that groups these terms into function-
ally related clusters which gives the user a first and quick
insight into the biological impact of the discovered dif-
ferences [44]. Second, TRAPLINE includes modules for
miRNA target prediction that use significantly upregu-
lated and downregulated miRNAs and automatically
spot possible targets among the downregulated or up-
regulated mRNAs in the analyzed datasets. For this pur-
pose we provide formatted text files of conserved and
non-conserved miRNAs and their predicted targets for
different species (human, mouse, rat, fruitfly and nema-
tode), based on the latest version of the microRNA.org
database (release 2010; [45]). The files can be obtained
via a Galaxy history and have to be uploaded as TRAP-
LINE “miRNA targets” input. Third, we implemented a
module which is able to identify verified interactions be-
tween proteins of significantly upregulated and downreg-
ulated mRNAs. The protein-protein interactions are
based on data from peer-reviewed publications deposited
in the BioGRID database (release 3.3.122; [46]). Similar
to the miRNA targets, we provide protein-protein inter-
actions from five different species (human, mouse, rat,
fruitfly and nematode) in the form of Galaxy history files
and will continuously extend the species.

Identifying transcriptomic differences of EBs and aCaBs
A step by step description on how to use TRAPLINE is
provided in the Supplementary Material section. In
summary, users upload FASTQ files from a RNAseq ex-
periment, select the reference genome for the species
under investigation and run the pipeline to obtain the
significantly differentially expressed transcripts. Optionally,
one can upload the provided miRNA target and protein
interaction files to use the full potential of TRAPLINE. Ex-
emplarily, we applied the developed pipeline on RNAseq

data from our murine ESC derived aCaBs [21] in compari-
son to control EBs.
We uploaded in total six datasets (as fastqsanger files),

the murine reference annotation (as gtf or gff3 that can
be obtained from http://geneontology.org/page/refer-
ence-genome-annotation-project), the mm9 miRNA tar-
gets file (from the provided Galaxy history), the mm9
protein interactions file (also from the history) and ran
TRAPLINE with the default parameter settings. After a
processing time of ~10 h we retrieved the results. We
found ~550 significantly differentially expressed tran-
scripts, 260 of which were upregulated. The volcano plot
shown in Fig. 2f illustrates the results of the DE analysis.
It shows the ratio of the significantly differentially
expressed genes (red) against the non-significant genes
(black). At this point one might want to lower the cutoff
of the p-value to obtain less reads marked as significant,
which is easily possible by tuning the corresponding
Cuffdiff2 parameter. However, we took the 260 upregu-
lated genes as input for the subsequent functional classi-
fication analysis with DAVID, which revealed several
annotation clusters. The first three annotation clusters
contain 160 genes in total and suggest a biological im-
pact on the cytoskeleton, actin and the contractile fibers
(Additional file 5: Table S2). Based on the annotated bio-
logical processes described by GO terms, we created a
network to show the links and significance of each GO
term using the Cytoscape application ClueGo [47]. The
network is shown in Fig. 3 and illustrates the 260 upreg-
ulated genes that are associated with enriched biological
processes. The distribution of significant biological pro-
cesses is illustrated in Additional file 6: Figure S3. These
genes could be a starting point for subsequent analyses.
We also predicted miRNA interactions of downregu-

lated mRNAs. Their associated GO terms suggest an im-
pact on cardiac cell differentiation. Exemplarily, we show
the significantly upregulated miRNA “mmu-mir369” with
5.522 predicted targets which include 57 genes that are
downregulated in aCaBs (Additional file 7: Table S3).
These 57 genes were functionally classified by DAVID and
reveal a high probability to affect the cell cycle and to sup-
port cell differentiation. Among these genes is “Atp1a2”
which is known to negatively regulate heart function [48].
Furthermore, we analyzed the ~550 significantly differen-
tially expressed mRNAs and identified ~230 verified pro-
tein interactions, 10 splice variants and 12 multi promoter
regions (Additional file 8: Table S4).

Discussion
We developed TRAPLINE for RNAseq data analysis to
link differentially expressed transcripts to the corre-
sponding phenotypic changes and biological phenomena.
There exist other tools such as the Bioconductor pack-
ages edgeR and DEseq [49], that are with no doubt
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valuable resources to support the analysis of NGS data.
Our pipeline, however, includes pre-processing and gen-
ome mapping modules and, is furthermore, easily applic-
able. TRAPLINE mainly addresses researchers with
limited or no programming skills e.g. in R or Python.
We are confident that the graphical user interface of
TRAPLINE, which is implemented in the Galaxy plat-
form, greatly supports the accessibility of our RNAseq
data analysis pipeline to users with no computational
background. Furthermore, we have carefully selected a
set of best performing interconnected modules that
evade compatibility or file formatting issues. The entire
RNAseq data analysis workflow can thus be performed in
one go without losing the flexibility that experienced users
appreciate when being enabled to adjust module parame-
ters to their own needs. Different to other automated
workflows like MeV, Chipster, RobiNA or Grape our pipe-
line is additionally predicting spliced variants, enriched
promoter sites, miRNA targets and protein-protein inter-
actions to enable users getting a comprehensive insight to

the analyzed samples [11–14]. There are several other
Galaxy pipelines available online, for example the widely
used Oqtans workbench [15]. Oqtans is a collection of
tools without a pre-defined pipeline. In contrast, our work
for the first time introduces an automated Galaxy work-
flow that includes detailed data analysis and data annota-
tion on a public Galaxy server. TRAPLINE is using all
benefits of Galaxy and is independent of computational
resources (i.e. no need for high performance computers).
Researchers can access and share their data and the results
worldwide via the internet, however Galaxy also offers pri-
vate accounts and the possibility to install a local Galaxy
instance on a private machine, which is beneficial in case
of limited internet connectivity. Moreover, Galaxy enables
a synchronous work, e.g. four read mapping tasks at a time
are possible. In our case study the time for the analysis was
reduced to 10 h in comparison to a desktop PC requiring
24 h (Additional file 9: Table S5). Additionally, to accom-
plish a transparent computing speed analysis, we per-
formed a comparison between a standard TRAPLINE run

Fig. 3 ClueGo visualization of a gene ontology interaction network obtained after functional classification analysis with DAVID. The network
shows interconnections among different biological processes of 350 enriched significantly upregulated genes. Subnetworks are grouped based
on GO superclasses (bold label). The colors range from red (less significant; pV = 0.05) to brown (highly significant; pV ≤ 0.05*10−3)
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at the public Galaxy instance and a local desktop PC based
on a randomly selected publicly available SRA dataset (Bio-
Project:PRJNA292442; SRA study: SRP062238) [50].
The implementation of Cuffdiff2 for detecting differen-

tially expressed genes enhances the comparability between
various RNAseq experiments, because the method is ac-
companied by RPKM normalization [37]. Nevertheless, it
has to be considered that the RPKM value for a gene from
a deep library may have more statistical meaning than an
equivalent value from a more shallow library [51].
It is known that spatial biases along the genome exist,

resulting in a non-uniform coverage of expressed tran-
scripts [3]. Especially when using Cufflinks, it has been
shown that DE analysis attempting to correct for differ-
ences in gene length have the tendency of introducing a
bias in the per gene variances, in particular for lowly
expressed genes [52]. These spatial biases hinder com-
parisons between genomic regions and will therefore ad-
versely affect any analysis where such a comparison is
integrated. To overcome this problem the current ver-
sion of Cufflinks2 has an integrated bias correction algo-
rithm [53]. In our investigated datasets there was no
need for a bias correction, therefore, we turned this fea-
ture off (Additional file 10: Figure S4). It can be re-
imported manually by setting the respective Cufflinks
parameter.
With respect to the biological reliability of the results,

the number of our above described 550 significantly dif-
ferentially expressed genes could be further reduced
based on p-value and fold change adjustments. Please be
aware that the performance of our pipeline was evalu-
ated based on the Illumina sequencing platform that was
used to generate the experimental data. Additionally, it
is possible to apply different multiple testing correction
method like Bonferroni or Benjamini-Hochberg [54].
Using the same parameters, all three applied methods
deliver similar results for differentially expressed genes.
With the default parameter values, the pipeline also con-
siders genes which are only slightly up or downregulated
(|FC| ≥ 2). The gene annotation clustering approach en-
ables enrichment in information and a pointer to the
biological relevance of the apparently large number of
differentially expressed genes. Gene Ontology terms and
especially the gene set enrichment analysis performed by
DAVID are established methods for gaining first insights
into phenotype variations between the tested experimental
conditions [43]. Interestingly, the first three enriched GO
term clusters in our case study relate to biological pro-
cesses concerning the cytoskeleton and actin regulation
which are two core factors of cardiomyocytes and thus
provide a proof of principle for our pipeline (Additional
file 5: Table S2).
After successful DE analysis, there are several possibil-

ities for further data evaluation and characterization of

the transcripts. As we already showed, the GO terms
and differentially expressed mRNAs can be visualized as
interaction networks using Cytoscape. miRanda predic-
tions have the largest relative overlap with other miRNA
prediction algorithms/tools [55], which is why we chose
to include miRanda predictions into TRAPLINE in the
first place. A SNP analysis with respective tools can also
be done by simply using the SNP output of TRAPLINE.
Additionally, a co-expression network analysis could be
performed to identify co-expressed mRNAs that are sim-
ultaneously dis-regulated [56].

Conclusion
Taken together, our proposed pipeline includes all rele-
vant RNA sequencing data processing modules, is easily
applicable, and needs no time consuming installation
processes. TRAPLINE guides researchers through the
NGS data analysis process in a transparent and auto-
mated state-of-the-art pipeline. Experimentalists will be
able to analyze their data on their own without learning
programming skills or advanced computational know-
ledge. The data can be accessed worldwide and can op-
tionally be shared among researchers. Gaining quickly
in-depth insights into the biology underlying the investi-
gated data, our work for the first time introduces an au-
tomated Galaxy workflow including detailed data
processing, data evaluation and annotation modules
(www.sbi.uni-rostock.de/RNAseqTRAPLINE).

Availability and requirements
Project name: TRAPLINE
Project home page: https://usegalaxy.org/u/mwolfien/

p/trapline—manual
Operating system(s): Platform independent
License: Galaxy Web Portal Service Agreement (https://

usegalaxy.org/static/terms.html)

Materials and methods
Cell culture and aCaB-Generation
Murine ES cell lines described previously [57] were grown
in high glucose DMEM with stable glutamine (GIBCO)
containing 10 % FBS Superior (Biochrom), 100 μM non-
essential amino acids (GIBCO), 1 % Penicillin/Streptamy-
cin (GIBCO) and 100 μM β-Mercaptoethanol (Sigma) in
presence of 1000 U/mL of Leukemia inhibitory factor
(LIF, Milllipore). Differentiation of aCaBs was performed
in hanging drop culture for two days using 1000 cells as
starting material for one EB in Iscove’s basal medium
(Biochrom) containing 10 % FBS (Biochrom), 100 μM
non-essential amino acids (GIBCO), 1 % Penicillin/Strep-
tamycin (GIBCO) and 450 μM 1-Thioglycerol. For add-
itional 4 days, the cells were differentiated in suspension
culture, and at day 6 of differentiation consistently 15 EBs
were seeded on one well of a 24-well-plate. Antibiotic
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selection with 400 μg/mL G418 (Biochrom) was initiated
at day 8 post seeding. 4 days thereafter, aCaBs were iso-
lated via treatment with 6000 U/mL Collagenase IV
(GIBCO) for 30 min. To obtain single cells for subsequent
experiments, the bodies were further dissociated with
100 % Accutase (Affimetrix) for 15 min. To ensure suc-
cessful generation of aCaBs, potential mycoplasma con-
tamination was routinely controlled twice a week using
the PCR based MycoSPY kit system (Biontex).

RNA-Sequencing
For library generation and sequencing, cultured adherent
cells were drained from the culture medium, washed
and directly lysed by addition of lysis buffer. 1 ul of this
lysate was used for cDNA Synthesis and amplification
with the SMARTer kit (Clontech, Mountain View CA,
USA) according to the manufacturer’s instructions. In
brief, cDNA synthesis was initiated by annealing a
polyA-specific primer and adding a reverse transcriptase
with terminal transferase activity. The newly synthesized
first strand cDNA is then tailed first with a homopoly-
mer stretch by terminal transferase and then with a spe-
cific amplification tag by template switching. The
resulting double-tagged cDNA was amplified by PCR,
fragmented by sonication (Bioruptor, Diagenode, Liege
Belgium; 25 cycles 30 s on/30 s off ) and converted to
barcoded Illumina sequencing libraries using the NEB-
next Ultra DNA library preparation kit (New England
Biolabs, Ipswich MA, USA). After PCR enrichment the
libraries were purified with AmpureXP magnetic beads
(Beckman-Coulter, Brea CA, USA) and quantified on a
Bioanalyzer 2100 (Agilent, Santa Clara CA, USA). Librar-
ies were pooled at equimolar amounts and sequenced on
an Illumina GenomeAnalyzer IIx in single-read mode with
a read-length of 78 nucleotides and a depth of 21 million
to 32 million raw reads per replicate.

Additional files

Additional file 1: TRAPLINE manual: Step by Step instructions for
the usage. (DOC 35 kb)

Additional file 2: Figure S1. Flowchart for aCaB Generation. Cartoon is
displaying sequential steps for the generation of aCaBs, combining Myh6-
promoter selection and an additional cell-dissociation step [21]. (TIF 90 kb)

Additional file 3: Figure S2. Visualization for RNA transcript quality
control and comparison of per base quality score Q. The images are
taken before (A) and after (B) quality trimming procedure (removes reads
with Q ≤ 20) to estimate the effect of trimming. The quality score Q is
plotted to the read position by using the FastQC package in Galaxy
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The color
indicates the quality of the read: "red" low quality, "orange" median
quality, "green" good quality. Red line expresses the mean of the
measured values (yellow boxes are inter-quartile range) and the blue line
represents the mean quality. (ZIP 81 kb)

Additional file 4: Table S1. Performance comparison of TRAPLINE vs
other tools. (DOC 28 kb)

Additional file 5: Table S2. Example for DAVID functional gene
annotation clustering of significantly differentially expressed genes from
aCaBs and EBs. (DOC 48 kb)

Additional file 6: Table S3. Exemplarily we show a result of a miRNA
target prediction analysis of TRAPLINE. (TIF 84 kb)

Additional file 7: Figure S3. Pie chart illustrating enriched biological
processes of upregulated genes in the aCaB derived cardiomyocytes. The
chart presents the enriched GO superclasses. (DOC 26 kb)

Additional file 8: Table S4. Exemplarily results of protein-protein
interaction prediction, splice variants and multi promoter regions.
(DOC 37 kb)

Additional file 9: Table S5. Benchmarking results of TRAPLINE
performed on a public Galaxy server and on a local desktop PC (based
on computing speed). (DOC 31 kb)

Additional file 10: Figure S4. A comparison of experiments without
(A) and with (B) bias correction performed with the help of Cufflinks2.
The dots represent the dependency of the log ratio of two FPKM values
(M) and their mean average (A). The MA plot is a common method to
investigate the biases of datasets [53]. (PPTX 236 kb)
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