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Abstract

Background: Enrichment analysis of gene expression data is essential to find functional groups of genes whose
interplay can explain experimental observations. Numerous methods have been published that either ignore
(set-based) or incorporate (network-based) known interactions between genes. However, the often subtle benefits
and disadvantages of the individual methods are confusing for most biological end users and there is currently no
convenient way to combine methods for an enhanced result interpretation.

Results: We present the EnrichmentBrowser package as an easily applicable software that enables (1) the
application of the most frequently used set-based and network-based enrichment methods, (2) their straightforward
combination, and (3) a detailed and interactive visualization and exploration of the results. The package is available
from the Bioconductor repository and implements additional support for standardized expression data preprocessing,
differential expression analysis, and definition of suitable input gene sets and networks.

Conclusion: The EnrichmentBrowser package implements essential functionality for the enrichment analysis of
gene expression data. It combines the advantages of set-based and network-based enrichment analysis in order to
derive high-confidence gene sets and biological pathways that are differentially regulated in the expression data
under investigation. Besides, the package facilitates the visualization and exploration of such sets and pathways.

Keywords: Gene expression, Differential expression, Pathway analysis, Gene set enrichment, Gene network
enrichment

Background
Genome-wide gene expression studies with microarrays
or RNA-seq typically measure several thousand genes at
a time [1]. This makes biological interpretation challeng-
ing. To approach this task several statistical filters can be
applied to obtain an easier tractable number of genes and
to concentrate further investigation effort on genes that
are differentially expressed. Subsequently, analysis focuses
on whether disproportionately many of the remaining
genes belong to known functional sets of genes. Such
an enrichment for certain gene functions, sets or path-
ways immediately generates important hypotheses about
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underlying mechanisms of e.g. an investigated clinical
phenotype.
A recent review divides existing enrichment methods

into three generations [2]. The first generation of methods
is centered around the traditionally used overrepresen-
tation analysis, which tests based on the hypergeometric
distribution whether genes above a predefined signifi-
cance threshold are overrepresented in functional gene
sets [3]. The second generation of methods resolves the
restriction to the subset of significant genes, and instead
scores the tendency of gene set members to appear rather
at the top or bottom of the ranked list of all measured
genes [4].
First and second generation methods have in common

that they ignore known interactions between genes. Those
methods are thus denoted as set-based in this manuscript.
Methods that do incorporate known interactions belong
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to the third generation of methods and are denoted as
network-based in the following (reviewed in [5]).
While each generation is represented by numerous pub-

lished methods with individual benefits and disadvan-
tages, there is currently no gold standard enrichment
method agreed upon. This makes the decision for a partic-
ular method intricate. It also leads users, actually intend-
ing a better biological understanding of their data, to
decide based on criteria not necessarily relating to bio-
logical insight such as frequency of usage and ease of
application.
Combination of methods has been proven superior to

individual methods in different areas of computational
biology, as it increases performance [6] and statistical
power [7] and biological insights often complement each
other [1, 8].
In this article, we propose and implement the straight-

forward combination of major set- and network-based
enrichment methods. We demonstrate that this filters
out spurious hits of individual methods and reduces the
outcome to candidates accumulating evidence from dif-
ferent methods. This increases the confidence in resulting
enriched gene sets, and, thus, substantially enhances the
biological interpretation of large-scale gene expression
data.

Implementation
The EnrichmentBrowser is implemented in the
statistical programming language R [9] and the pack-
age is included in the open-source Bioconductor
project [10].

Overview
Given gene expression data sampling different conditions,
specific functional gene sets, and optionally a regula-
tory network of known interactions between genes, the
EnrichmentBrowser performs three essential steps:
(1) chosen set- and network-based enrichment methods
are executed individually, (2) enriched gene sets are com-
bined by selected ranking criteria, and (3) resulting gene
set rankings are displayed as HTML pages for detailed
inspection (Fig. 1).

Data preprocessing
The typical starting point for the EnrichmentBrowser
is normalized gene expression data. The data are usu-
ally microarray intensity measurements or RNA-seq read
counts for several thousand genes between two condi-
tions, each represented by a group of samples.
Two inputs are required: (1) the expression matrix, in

which each row corresponds to a gene and each column to
a sample, and (2) a binary classification vector dividing the
samples in cases and controls. In case of paired samples or
sample blocks, e.g. indicating different treatments of cases

and controls, a vector defining the blocks can optionally
be supplied.
While each dataset typically shows individual charac-

teristics that need to be specifically normalized for, the
EnrichmentBrowser provides several well-established
standard routines for that purpose. This includes within-
array/-lane and between-array/-lane normalization for
microarray and RNA-seq data based on functionality from
the limma [11] and EDASeq [12] package, respectively.
In case of microarray data, once it has been read in, the

data is transformed from probe to gene level. This incor-
porates a mapping from probe to gene identifiers, which
is automatically done for recognized platforms (i.e. a
corresponding Bioconductor annotation package such as
hgu95av2.db [13] exists) or required as a user input
otherwise. An important parameter is the summariza-
tion method determining, in case of multiple probes for
one gene, whether an average value is computed or the
probe that discriminates themost between the two sample
groups is kept.

Differential expression
Differences in gene expression between the two sample
groups are computed using established functionality from
the limma package [11], involving the voom transforma-
tion [14] when applied to RNA-seq data. Alternatively,
differential expression analysis for RNA-seq data can also
be carried out based on the negative binomial distribu-
tion with edgeR [15] and DESeq2 [16]. Resulting log2
fold changes and derived p-values for each gene can be
inspected in several ways (Fig. 2). This includes a gene
report that lists the respective measures of differential
expression for each gene, and several overview graphics
such as:

(1) Heatmap: clustered overview of gene expression
between the two groups for all genes, and separately,
only for significant genes satisfying predefined
thresholds of fold change and p-value.

(2) Volcano plot: fold change versus p-value plot that
illustrates the correspondence of amount, direction
and statistical significance of expression changes
(supporting immediate identification and exploration
of significant genes by mouse-over and linking to the
corresponding gene entries).

(3) P-value distributions: histogram of raw and adjusted
p-values.

Multiple testing correction is performed using the
p.adjust function from the stats package, which
implements several frequently used corrections from
which the user can choose (reviewed in [17]). This
includes the stringent Bonferroni correction and the less
conservative method of Benjamini and Hochberg.
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Fig. 1Workflow. Expression data as measured with microarrays or RNA-seq is tested for enrichment of specific functional gene sets, e.g. as defined
in the Gene Ontology or the KEGG pathway annotation. Additional information from regulatory networks annotated in specific databases such as
the RegulonDB or Yeastract can be exploited. Implemented methods can be carried out individually and combined by selected ranking criteria.
Resulting gene set rankings can be browsed as HTML pages allowing detailed inspection (as illustrated in Fig. 2)

Enrichment analysis
Set-based enrichment analysis
The EnrichmentBrowser implements several ways to
assemble the gene sets that should be tested for enrich-
ment. User-defined gene sets can be parsed from suit-
able formats such as GMT [18] or extracted from path-
way XML format [19]. Frequently used organism-specific
gene sets from GO [20] and KEGG [21] can be down-
loaded exploiting functionality from the topGO [22] and
KEGGREST [23] package, respectively.
Currently supported are the following major set-based

enrichment methods:

(1) ORA: Overrepresentation Analysis, simple and
frequently used test based on the hypergeometric
distribution (reviewed in [3]),

(2) SAFE: Significance Analysis of Function and
Expression, implements a resampling version of
ORA, includes other test statistics such as
Wilcoxon’s rank sum, and allows to estimate the
significance of gene sets by sample permutation [24],

(3) GSEA: Gene Set Enrichment Analysis, frequently
used and widely accepted, uses a
Kolmogorov-Smirnov statistic to test whether the

ranks of the p-values of genes in a gene set resemble
a uniform distribution [4],

(4) SAMGS: Significance Analysis of Microarrays on
Gene Sets, extending the SAMmethod for single
genes to gene set analysis [25].

ORA is a first generation method, whereas SAFE,
GSEA, and SAMGS belong to the second generation of
enrichment methods. The EnrichmentBrowser uses
its own implementation of ORA, while it integrates
SAFE as implemented in the safe package. Implemen-
tations of GSEA and SAMGS are adapted from [26, 27],
respectively.
SAFE, GSEA, and SAMGS use sample permutation

for estimating the gene set significance, which involves
recomputation of their individual local t-like statistics for
each gene. As this is not per se suitable for RNA-seq read
count data, the EnrichmentBrowser provides specific
local statistics based on the limma/voom-transformed
t-statistic, the LR-statistic from edgeR, and the Wald-
statistic from DESeq. Global statistics for each gene set
are accordingly chosen as the KS-statistic (for GSEA),
Wilcoxon’s rank sum (for SAFE), and Hotelling’s T2 (for
SAMGS). Permutation testing with selected local and
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Fig. 2 Navigation. Structured access to enrichment analysis results is provided by an index page that links overview graphics, a gene report that
includes measures of differential expression for each gene under investigation, and the full flat gene set rankings for each executed method (and,
optionally, their combination). In addition, a top table for each method is linked containing detailed set-based (SBEA page) and network-based
(NBEA page) views of significant gene sets. The SBEA page for a gene set is composed of (1) an interactive volcano plot (fold change vs. DE p-value)
allowing immediate identification of significant genes bymouse-over, and (2) two heatmaps displaying the expression of all set genes and the subset
of significant genes. The NBEA page illustrates interactions within a gene set by projecting it onto the underlying regulatory network, and for KEGG
gene sets by additionally highlighting corresponding pathway maps. Results of method combination are linked in a combined page that displays
the combined ranking alongside the individual rankings, and which can be interactively sorted and filtered according to user-selected criteria. See
Additional files 2, 3 and 4 for several application examples and the vignette of the EnrichmentBrowser package for details of the various options

global statistics is carried out using the general framework
implemented in the safe package.

Network-based enrichment analysis
Gene regulatory networks represent known interactions
between genes as derived from specific experiments or
compiled from the literature [28]. There are well-studied
processes and organisms for which comprehensive and
well-annotated regulatory networks are available, e.g. the
RegulonDB for E. coli [29] and Yeastract for S. cere-
visiae [30]. While it is recommended to use these spe-
cific networks, and the EnrichmentBrowser supports
their download and formatting, there are also cases where
such a network is not easily available. For these cases
the EnrichmentBrowser implements the possibility to
compile a network from regulatory interactions annotated
in the KEGG database. This incorporates downloading
and parsing of the pathways for a selected organism mak-
ing use of the KEGGREST and KEGGgraph package [31],
respectively.
Currently integrated network-based enrichment analy-

sis methods are

(1) GGEA: Gene Graph Enrichment Analysis, evaluates
consistency of known regulatory interactions with
the observed expression data [32],

(2) SPIA: Signaling Pathway Impact Analysis, combines
ORA with the probability that expression changes
are propagated across the pathway topology [33],

(3) NEA: Network Enrichment Analysis, applies ORA on
interactions instead of genes [34],

(4) PathNet: Pathway analysis using Network
information, applies ORA on combined evidences of
the observed signal and the signal implied by
connected neighbors in the network [35].

GGEA is implemented as the default network-based
enrichment method of the EnrichmentBrowser and
is also incorporated in the network-based visualization
of gene sets. SPIA, NEA, and PathNet are integrated
as implemented in the SPIA, neaGUI, and PathNet
package, respectively.

Generic plug-in of additional methods
The goal of the EnrichmentBrowser is to provide
the most frequently used enrichment methods. However,
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it is also possible to exploit its functionality with addi-
tional methods not among the currently implemented
ones. This requires to implement a function that takes
the characteristic arguments eset (expression data), gs
(gene sets), alpha (significance level), and in case of
network-based enrichment also grn (gene regulatory net-
work). In addition, it must return a vector storing the
resulting p-value for each gene set in gs.

Combining results
Different enrichment analysis methods usually result in
different gene set rankings for the same dataset. To com-
pare results and detect gene sets that are supported by
different methods, the EnrichmentBrowser package
allows to combine results from the different set- and
network-based enrichment methods. The combination of
results yields a new ranking of the gene sets under inves-
tigation according to a defined ranking and combination
function.
The ranking function determines by which statistic the

individual gene set rankings are sorted and which type
of ranks are computed. The ranking statistic is typically
chosen to be the gene set p-value or score (sorted in
ascending and descending order, respectively). Predefined
rank types include:

(1) Absolute ranks rA are assigned from 1 to n according
to the sorting of the ranking statistic. Intuitively, n is
identical to the number of gene sets NGS if the
ranking statistic takes a different value for each gene
set. As ties can occur, which yields the same rank for
gene sets with equal value, n corresponds to the
number of distinct values of the ranking statistic
(denoted as ND).

(2) To account for a differing number of gene sets in the
individual rankings, relative ranks rR can be derived
from absolute ranks via rA/n · 100.

(3) Although frequently used to rank gene sets, absolute
and relative ranks can be misleading in case of
extensive presence of ties. Especially, when
comparing a coarse-grained (ND � NGS) and a
fine-grained ranking (ND ≈ NGS). Here, similar
absolute/relative ranks imply a very different
meaning. To resolve this, we introduce competitive
ranks rC calculated as the percentage of gene sets
with a value of the ranking statistic at least as
extreme as observed for the gene set to be ranked.

The default ranking function returns competitive ranks
based on gene set p-values.

The combination function determines how ranks are
combined across methods and can be chosen from pre-
defined functions such as mean, median, min, and sum

(default). User-defined ranking and combination func-
tions can also be plugged in.

Visualization and exploration
The standard output of existing enrichment tools is a
ranking of the gene sets by the corresponding p-value.
The EnrichmentBrowser package provides additional
visualization and interactive exploration of resulting gene
sets far beyond that point. Based on functionality from the
ReportingTools package [36], the resulting flat rank-
ing can be accompanied by a HTML report from which
each gene set can be inspected in detail (Fig. 2).
Instead of providing individual visualization capabili-

ties for each method, the EnrichmentBrowser imple-
ments general set- and network-based visualizations
(SBEA and NBEA page). They represent results of meth-
ods of the corresponding class, but can also be incorpo-
rated independent of the enrichment method executed.
It is thus possible to carry out e.g. set-based methods,
while including a network-based visualization of signifi-
cant gene sets in the result report.
The SBEA page is composed as described for the global

differential expression report (the set of all measured
genes). Thus, a gene set under study is visualized with an
interactive volcano plot alongside 2 heatmaps for all and
only differentially expressed set members.
The composition of theNBEA page depends on the gene

set source and whether a regulatory network is available.
For KEGG gene sets, differential expression is visualized
directly on the pathways by overplotting the original path-
way maps with pathview [37]. In addition, connected
subgraphs within a pathway are displayed separately and
can be inspected by mouse-over (involves the imageMap
function from biocGraph [38]). In case a regulatory net-
work has been provided, gene sets can also be viewed as
GGEA graphs. Such a graph displays for a gene set of
interest the consistency of each interaction in the network
that involves a gene set member. Nodes (genes) are col-
ored according to expression (up-/down-regulated) and
edges (interactions) are colored according to consistency,
i.e. how well the interaction type (activation/inhibition)
is reflected in the correlation of the observed expression
of both interaction partners (see the legend in Additional
file 1: Figure S1). Although GGEA graphs have been orig-
inally implemented for illustrating gene sets according to
GGEA, they are apparently useful for depicting mecha-
nisms exploited by network-based methods in general.
The combined result view additionally enables an inter-

active ranking either based on the combined ranks across
methods, or with respect to one of the chosen methods.

Results and discussion
In the following, we demonstrate the application of
the EnrichmentBrowser to microarray and RNA-seq
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data. Subsequently, we systematically evaluate the individ-
ual methods integrated in the package and the effect of
combining methods. See Additional file 1 for supplemen-
tary material and methods. A comparative evaluation to
existing Bioconductor packages and stand-alone tools
such as SegMine [39] and graphite web [40] can also
be found in Additional file 1.

Application example 1: ALL microarray data
To demonstrate the functionality of the package for
microarray data, we consider expression values of patients
suffering from acute lymphoblastic leukemia [41]. A fre-
quent chromosomal defect found among these patients
is a translocation, in which parts of chromosome 9 and
22 swap places. This results in the oncogenic fusion
gene BCR/ABL created by positioning the ABL1 gene
on chromosome 9 to a part of the BCR gene on
chromosome 22.
The data is available from Bioconductor in the ALL

data package [42] and contains normalized intensity mea-
surements on a log-scale for 12,625 probes across 79
patients. Case and control group were defined accord-
ing to presence or absence of the BCR-ABL gene fusion.
We use functionality of the EnrichmentBrowser for
transformation from probe to gene level and differen-
tial expression analysis (see Implementation, sectionData
preprocessing and Differential expression). Human KEGG
pathways were downloaded as gene sets, i.e. ignoring
interactions between genes.
We apply ORA to detect overrepresented KEGG path-

ways using the default significance level α of 0.05 (Table 1;
and Additional file 2 for the detailed HTML summary).
Resulting pathways can be divided in three categories: (1)
clearly linked to the phenotype such as transcriptional
misregulation in cancer, apoptosis and basal cell carci-
noma, (2) unknown and secondary effects of phenotype or
treatment like myocarditis, which can be caused by can-
cer radiation therapy, and (3) clearly irrelevant such as
legionellosis (drinking water contamination) and shigel-
losis (foodborne illness).
We investigate next whether these findings can be

explained by known regulatory interactions. This means,
whether regulators such as transcription factors and their
target genes are expressed in accordance to the connecting
regulations. Therefore, we apply GGEA using a network of
regulations compiled from the KEGG database. For com-
parison, we select the same number of gene sets as for
ORA from the top of the GGEA ranking (Table 1; and
Additional file 2 for the detailed HTML summary).
To identify relevant pathways reported by both meth-

ods, we combine the rankings of ORA and GGEA by rank
sum, including only gene sets in the intersection of both
rankings. This yields a new ranking in which irrelevant
pathways such as legionellosis and shigellosis are filtered

Table 1 Combination of top ranked gene sets of ORA and GGEA
by rank sum (ALL microarray data)

ID Title ORA GGEA
∑

hsa05416 Viral myocarditis 1 1 2

hsa04520 Adherens junction 4 2 6

hsa05217 Basal cell carcinoma 9 3 12

hsa04622 RIG-I-like receptor 2 12 14

hsa04210 Apoptosis 6 10 16

hsa05202 Transcript. misreg. in cancer 7 13 20

hsa05130 Pathogenic E. coli infection 3 - -

hsa05134 Legionellosis 5 - -

hsa05131 Shigellosis 8 - -

hsa05412 Arrhytm. cardiomyopathy 10 - -

hsa05100 Invasion of epithelial cells 11 - -

hsa04670 Leukocyte trans. migration 12 - -

hsa05206 MicroRNAs in cancer 13 - -

hsa04350 TGF-β signaling - 4 -

hsa04550 Pluripotency of stem cells - 5 -

hsa05211 Renal cell carcinoma - 6 -

hsa04310 Wnt signaling - 7 -

hsa04660 T cell receptor - 8 -

hsa05144 Malaria - 9 -

hsa04514 Cell adhesion - 11 -

Shown are the absolute ranks returned by ORA and GGEA and the resulting rank
sum in the last column (see Implementation, section Combining results)

out (Table 1; and Additional file 2 for the detailed HTML
summary). Thus, combining ORA with GGEA yields a
ranking reduced to the most plausible pathways, which
are supported by several mechanistic explanations in the
GGEA graphs.

Application example 2: TCGA RNA-seq data
The EnrichmentBrowser integrates specific methods
for preprocessing and differential expression analysis of
RNA-seq data. Accordingly, enrichmentmethods that rely
on sample permutation are adapted to incorporate spe-
cific local statistics for recomputation of per-gene differ-
ential expression (see Implementation, section Set-based
enrichment analysis). To demonstrate the functionality,
we apply the package for the analysis of RNA-seq data
from The Cancer Genome Atlas (TCGA, [43]). We con-
sider here uterine corpus endometrial carcinoma (UCEC),
which is one of the most common cancers of the female
reproductive system [44].
The data is available from GEO under accession

GSE62944 [45] and contains integer sequencing read
counts for 554 UCEC tumor and 35 adjacent normal
samples. We apply the limma/voom-based differential
expression analysis and make use of the KEGG gene set
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catalogue and regulatory network described in the previ-
ous section.
For set-based enrichment analysis, we choose GSEA

as it is among the methods specifically adapted in
the EnrichmentBrowser for the analysis of RNA-
seq data. In addition, we apply PathNet and NEA for
network-based enrichment analysis (full rankings can
be found in Additional file 3). To investigate the effect
of method combination, we combine the 3 individ-
ual gene set rankings by rank sum as for the ALL
example.
We find cancer-specific pathways such as p53 signal-

ing pathway and Pathways in cancer clearly consolidated
in the combined ranking (Fig. 3a). On the other hand,
unspecific pathways such as Olfactory transduction and
Morphine addiction, which were top ranked by the indi-
vidual methods, are distinguishably downgraded in the
combined ranking (Fig. 3b).
Thus, independent of the expression data type under

study (microarray/RNA-seq) and the enrichment
methods combined (previously: ORA/GGEA, here:
GSEA/NEA/PathNet), the combination has shown to
improve individual rankings by increasing confidence
in specific target pathways and removing irrelevant
pathways from the top of the ranking.

Systematic evaluation: GEO2KEGG benchmark set
We have observed beneficial effects of combining enrich-
ment methods at the example of specific microarray and
RNA-seq datasets. We investigate next whether these
effects can be observed systematically when applied to
many datasets.
For that purpose, we use a compendium of 27 GEO

datasets derived from the KEGGdzPathwaysGEO and the
KEGGandMetacoreDzPathwaysGEO benchmark sets [46,
47]. See Additional files 1 and 4 for details. These datasets
have been specifically selected as they investigate a certain
human disease for which a corresponding KEGG pathway
exists (e.g. Alzheimer’s disease). These pathways are thus
denoted as the target pathways in the following.
We investigate first how well the individual set- and

network-based methods detect the target pathways and,
subsequently, whether the detection can be improved by
combining methods.

Individual methods
When applying the 8 methods to the 27 datasets of the
GEO2KEGG benchmark set, an issue of practical rele-
vance is runtime (Fig. 4). As expected, runtime of the
methods depends mainly on whether permutation testing
is used to estimate gene set significance, and whether this
is efficiently implemented.
ORA, applying the hypergeometric test without per-

mutation, can thus be performed with almost no effort,

Fig. 3Method combination consolidates cancer-specfic pathways
and downgrades unspecific pathways (TCGA RNA-seq data). a
Competitive rank distributions of selected cancer-specific pathways
(listed top right) for GSEA, NEA, and PathNet when applied to the
UCEC RNA-seq data from TCGA. The orange rightmost boxplot
depicts the corresponding rank distribution when combining the
individual rankings by rank sum. Analogously, b depicts the rank
distributions of selected unspecific pathways (listed at the top of the
respective panel) that were top ranked by the 3 individual methods

displaying a constant runtime of around half a second per
dataset. GSEA, applied with a default of 1000 permuta-
tions, is slower by two orders of magnitude taking around
1 min 40 sec per dataset. It should be mentioned that
the original GSEA R script [26], which has been straight-
forward translated from Java, is considerably slower.
The version integrated in the EnrichmentBrowser has
been substantially optimized by making use of vectorized
calculations. SAFE and SAMGS, taking typically 5–10 sec
depending on the dataset, although methodically simi-
lar to GSEA are much faster as they do not rely on the
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Fig. 4 Runtime. Shown are the distributions of the elapsed
processing times (y-axis, log-scale) when applying the enrichment
methods indicated on the bottom x-axis to the 27 datasets of the
GEO2KEGG benchmark set. The x-axis on top of the plot indicates the
number of permutations that have been used to estimate gene set
significance. Elapsed runtime of NEA when using 100 and 1000
permutations, respectively, are shown in Additional file 1: Figure S2

computationally intensive cumulative KS-statistic. How-
ever, using the npGSEA permutation approximation [48]
reduces the runtime of GSEA to ≈2 sec per dataset.
Concerning the network-based methods, SPIA

and PathNet display similar runtime as observed for
permutation-based GSEA. NEA seems to be inefficiently
implemented, requiring already for 10 permutations ≈13
min on average and up to 2 1/2 days for 1000 permuta-
tions (Additional file 1: Figure S2). On the other hand, the
code of GGEA has been highly optimized and yields short
computation times. The permutation-based version takes
≈4 sec per dataset. Using a similar permutation approxi-
mation as for GSEA reduces the runtime of GGEA to ≈2
sec per dataset.
Resulting gene sets returned by the enrichment meth-

ods are typically ranked by gene set p-value. However,
given that a method can return the same p-value for more
than one gene set impairs a straightforward ranking. This
applies especially to permutation p-values, which typically
lack a suitable granularity [48]. We have thus introduced
competitive ranks, defined as the percentage of gene sets
with a p-value at least as extreme as observed for the gene
set to be ranked (see Implementation, section Combining
results).
Competitive rank distributions of the target pathways

when applying the 8 methods to the 27 datasets of the

GEO2KEGG benchmark set are shown in Fig. 5a. With
the exception of SAMGS and, to a lesser extent, NEA, p-
value based rankings of the remaining 6 methods appear
to well discover the relevance of the target pathways.
Their rank distributions are clearly shifted towards the
top of the ranking (median ranging from 19% for SPIA
to 30% for GSEA). This can be interpreted as a clear sign
for relevance of the target pathways for the correspond-
ing datasets. However, this also shows that there is no
clearcut relation between target pathway and dataset as it
would be indicated by throughout top rankings of the tar-
get pathways. This is presumably due to interfering issues
inherent to KEGG such as incompleteness of the path-
way definition as well as overlap and crosstalk between
pathways [46, 49].
Nevertheless, there are several notable observations that

can bemade here: (1) GSEA, typically assumed superior to
ORA by incorporating all measured genes, does not dis-
play an increased potential for discovering the target path-
ways. This indicates that most of the variance observed
for these sets is explained by genes that are significantly
differentially expressed. (2) Similarly, rank distributions
of the network-based methods do not deviate signifi-
cantly from the set-based methods, although they are
typically assumed to better reflect the regulatory mecha-
nisms within sets. This indicates that the KEGG network
used here is of limited suitability. As it predominantly
contains protein-protein interactions and only a small
fraction of transcriptional regulatory interactions, quan-
titative changes in transcriptomic data reflecting effects
of interactions are presumably rare. (3) Detailed inspec-
tion of the rank distributions shown in Fig. 5a reveals
that none of the methods is best suited for all datasets
(Additional file 1: Figure S3). There are ≥2 datasets for
each method yielding the best ranking (among methods)
of the target pathway. (4) SAMGS returns typically a p-
value of zero for 70–80% of the gene sets tested, rendering
this p-value a measure not suitable for ranking. As per-
mutation p-values should never be zero [50], usage of this
p-value is also not recommended for expressing statistical
significance. Similarly, permutation p-values reported by
NEA, although obtained with large computational effort
(see runtime discussed earlier), appear also not suitable
for ranking.
Given the observed issues for NEA and SAMGS when

ranking results by gene set p-value, we also ranked the
target pathways by gene set score (Fig. 5b). While rank-
ing of the other 6 methods remained almost invariant
(GGEA slightly better, SAFE and SPIA slightly worse),
this substantially improved rankings returned by SAMGS
and NEA. However, inspecting the rank distributions for
each dataset in more detail (Additional file 1: Figure S4)
showed again that no single method consistently returned
best rankings. We observed at least one dataset for each
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Fig. 5 Evaluation of individual methods on the GEO2KEGG
benchmark set. Depicted are competitive rank distributions of the
KEGG target pathways according to (a) gene set p-value and (b) gene
set score of the individual methods when applied to the 27 GEO
datasets. The x-axis on top of both plots indicates the number of
datasets for which the corresponding method resulted in the best
ranking (among methods) of the target pathway. As an example, the
leftmost blue boxplot in (a) shows for ORA a median rank of ≈20%,
i.e. ORA returned for half of the datasets a competitive rank below
20%. Depicted on top, #best = 7 means that ORA returned for 7
datasets the best ranking (among methods) for the target. Detailed
rank distributions for each dataset can be found in Additional file 1:
Figure S3 and S4

method with the best ranking (among methods) of the
corresponding target pathway.

Method combination
Motivated by the results observed for individual methods
in the previous section, we investigated next the effect

of combining results of methodically similar methods.
Therefore, we computed combined ranks by rank sum
for the 4 set- (SBEA) and the 4 network-based (NBEA)
methods (Fig. 6a).
The NBEA-combination yielded for 6 of the 27 datasets

(SBEA: 3 datasets) a ranking of the corresponding tar-
get pathway, which was at least as good as obtained
for all 4 individual methods. Importantly, the combina-
tion returned for almost all datasets (SBEA: 26 datasets,
NBEA: all 27 datasets) a ranking of the corresponding tar-
get pathway, which was at least as good as obtained for
1 of the 4 methods. This indicates that combining meth-
ods is typically safe, i.e. is rarely worse than the worst
individual ranking. On the other hand, the combination
resulted in many cases in improved rankings of rele-
vant target pathways. In addition, re-ranking by rank sum
yielded significantly better ranks of the target pathways
as obtained by simply averaging individual ranks across
methods (compare dashed and solid lines in Fig. 6a).
As observed for the microarray and RNA-seq applica-

tion example, combination allowed to filter out, i.e. down-
grade irrelevant pathways reported by individual meth-
ods. Therefore, we counted for all pairwise combinations
of the 4 network-based methods the total number of
unspecific pathways ranked at least as good as the target
pathway (Fig. 6b). A pathway was denoted as unspecific,
if it did not share any genes with the target pathways, and
the pathway title suggested no relevance for the diseases
studied in the GEO2KEGGbenchmark set (such as Synap-
tic vesicle cycle and Vitamin digestion; see Additional file
1: Table S1). We found that all 6 pairwise combinations
considerably reduced the number of unspecific pathways
ranked as good or better than the target. Considering the
GGEA/NEA-combination the number of unspecific path-
ways was reduced by >50% for both methods. On the
other hand, combination with PathNet that displayed the
least unspecific pathways, allowed to downgrade up to
70% unspecific pathways for NEA (while decreasing the
number for PathNet even further). We also computed all
pairwise combinations of the 4 set-based methods, the
effect was however not as pronounced as observed for the
network-based methods (Additional file 1: Figure S5).
In summary, given the heterogeneous individual rank-

ings that we observed for the GEO2KEGG benchmark set,
combining methods can, of course, not in all situations
be expected to be superior to applying individual meth-
ods. However, we observed that the combination rarely
results in loss of crucial information, but rather yielded
in many cases a gain in confidence of relevant pathways
while reducing the fraction of unspecific pathways.

Conclusion
The ongoing development of individual enrichmentmeth-
ods impairs a straightforward decision for the method of
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Fig. 6 Combination of methods improves individual rankings on the
GEO2KEGG benchmark set. a Combined ranks by rank sum (solid
lines) were computed for the SBEA-combination of the 4 set-based
methods (blue) and the NBEA-combination of the 4 network-based
methods (green). Depicted is the number of GEO datasets (y-axis) for
which the combination yielded a ranking of the corresponding target
pathway, which was at least as good as obtained from x of the
individual methods. As an example, the green point at x = 3 and
y = 15 indicates that the NBEA-combination returned for 15 of the 27
datasets (55.6%) a ranking of the target as good or better as obtained
for 3 of the 4 individual methods (i.e. only one method yielded a
ranking better than the combination). For comparison, the dashed
lines depict corresponding results when, instead of re-ranking by rank
sum (solid lines), ranks are averaged across methods. b shows the
total number of unspecific pathways ranked at least as good as the
target pathway (y-axis) for the 4 network-based methods and each
pairwise combination. Unspecific pathways are defined in the main
text and listed in Additional file 1: Table S1. Corresponding values for
the NBEA-combination of the 4 network-based methods and the
ALL-combination of all 8 methods (4 set- and 4 network-based) are
indicated with the green and the brown dotted line, respectively

choice. The EnrichmentBrowser offers a pragmatic
solution by enabling the execution and combination of
several major set- and network-based enrichment meth-
ods. Whereas no single method is best suited for all appli-
cation scenarios, this allows to use them all at the same
time facilitating a simple direct comparison of the results.
It seamlessly displays inconsistencies reported by the
applied methods, which makes the user aware that inter-
pretation is needed and has to be done with care in order
to derive valid conclusions. The combination can help to
avoid misleading results of individual methods by removal
of irrelevant gene sets, thus, reducing the outcome to can-
didates accumulating evidence from different methods.
Of course, such consensus combinations come at the cost
of less sensitivity but the EnrichmentBrowser does
not prohibit that the user accepts non-consensus results
from individual methods after careful assessment never-
theless. Detailed investigation of obtained gene sets and
pathways is supported by accompanying comprehensive
visualization and exploration capabilities. This exceeds
considerably the functionality of available tools and we
expect users and developers to likewise benefit from it.

Availability
• Project name: EnrichmentBrowser
• Project home page: http://bioconductor.org/

packages/EnrichmentBrowser
• Operating system(s): Platform independent
• Programming language: R
• Other requirements: Bioconductor
• License: Artistic-2.0
• Any restrictions to use by non-academics: none

Additional files

Additional file 1: Supporting Information. Supplementary material &
methods, comparative evaluation to existing tools, supplementary figures
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Unzip and open the contained index.html in the browser to view the
contents of this file (tested with Firefox 39.0). (ZIP 2775 kb)
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Unzip and open the contained index.html in the browser to view the
contents of this file (tested with Firefox 39.0). (ZIP 7116.8 kb)
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