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Plasminogen activator inhibitor-1 
and type 2 diabetes: a systematic 
review and meta-analysis of 
observational studies
James Yarmolinsky1, Natália Bordin Barbieri1, Tobias Weinmann2, Patricia K. Ziegelmann1,3, 
Bruce B. Duncan1 & Maria Inês Schmidt1

An emerging body of evidence has implicated plasminogen activator inhibitor-1 (PAI-1) in the 
development of type 2 diabetes (T2D), though findings have not always been consistent. We 
systematically reviewed epidemiological studies examining the association of PAI-1 with T2D. 
EMBASE, PubMed, Web of Science, and the Cochrane Library were searched to identify studies 
for inclusion. Fifty-two studies (44 cross-sectional with 47 unique analytical comparisons and 8 
prospective) were included. In pooled random-effects analyses of prospective studies, a comparison 
of the top third vs. bottom third of baseline PAI-1 values generated a RR of T2D of 1.67 (95% CI 
1.28–2.18) with moderate heterogeneity (I2 = 38%). Additionally, of 47 cross-sectional comparisons, 
34(72%) reported significantly elevated PAI-1 among diabetes cases versus controls, 2(4%) reported 
significantly elevated PAI-1 among controls, and 11(24%) reported null effects. Results from pooled 
analyses of prospective studies did not differ substantially by study design, length of follow-up, 
adjustment for various putative confounding factors, or study quality, and were robust to sensitivity 
analyses. Findings from this systematic review of the available epidemiological literature support a 
link between PAI-1 and T2D, independent of established diabetes risk factors. Given the moderate 
size of the association and heterogeneity across studies, future prospective studies are warranted.

Procoagulant and fibrinolytic markers have been proposed as risk factors for the development of type 
2 diabetes1. Plasminogen activator inhibitor-1 (PAI-1), a serine-protease inhibitor secreted primarily by 
adipocytes, endothelial cells, and hepatocytes, acts as a key negative regulator of fibrinolysis through 
its role as the primary inhibitor of tissue plasminogen activator (tPA). Experimental studies in mice 
homozygous for the PAI-1 null allele have found favourable effects on insulin and glycaemic measures2 
and protective effects against the development of obesity and insulin resistance when fed a high-fat/
high-carbohydrate diet3, as compared with wild-type mice. Likewise, early cross-sectional studies in 
humans have reported associations of elevated PAI-1 concentrations with measures of obesity4,5, insulin 
resistance4,6, impaired glucose tolerance (IGT)4,6, and T2D7,8. These findings have been extended to a 
prospective context by investigators of the Insulin Resistance Atherosclerosis Study (IRAS) who reported 
that elevated PAI-1 levels were an independent risk factor for the development of T2D in healthy sub-
jects, after 5.2 years of follow-up9.
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Since the publication of these initial studies, a considerable number of additional observational stud-
ies have been published, with many, but not all, reporting associations of PAI-1 with T2D10–17. To our 
knowledge, however, no attempt has been made to consolidate and synthesize the available epidemio-
logical literature on this topic in the form of a systematic review and meta-analysis. Thus, in light of the 
heterogeneity of findings and the need to quantify the relationship of PAI-1 with diabetes, we performed 
a systematic review and meta-analysis of observational studies examining the association between plas-
minogen activator inhibitor-1 and type 2 diabetes.

Methods
Literature Search. We conducted a comprehensive literature search of the bibliographic databases 
EMBASE, PubMed, Web of Science, and the Cochrane Library for all relevant studies, published from 
1945 to October 2014. Medical subject headings (MeSH) or equivalent and text word terms were uti-
lised. Search strategies were individualised to specific databases and are presented for each database in 
Supplementary Data 1. The study protocol is registered with the PROSPERO database of systematic 
reviews (http://www.crd.york.ac.uk; registration number CRD42014014009).

Titles and abstracts were screened by two independent reviewers (JY,NBB) for inclusion according 
to pre-specified criteria (see below). If an abstract was not available for a study, the full article was 
obtained and screened. If an article appeared to be potentially eligible for inclusion based on title and/
or abstract, the full article was obtained and formally screened for inclusion, otherwise it was excluded. 
When duplicate analyses appeared to be presented across more than one publication, we included only 
the first publication. Reference lists for included studies were screened for additional relevant studies. 
Lastly, corresponding authors were contacted for additional information pertinent to study inclusion if 
necessary.

Inclusion and exclusion criteria. Included studies had to meet all of the following inclusion criteria: 1)  
prospective or retrospective cohort, case-cohort, case-control, or cross-sectional study; 2) Measurement 
of plasma PAI-1 (antigen concentrations or activity levels); 3) Assessment of T2D (self-reported physi-
cian diagnosis and/or medication usage and/or laboratory diagnosed); 4) Adult study population (≥ 18 
years) at baseline; 5) Article was reported in English. In epidemiological studies of the association of 
plasma PAI-1 with T2D, PAI-1 is typically measured using either an assay that is sensitive to free PAI-1 
antigen (both active and latent forms) that is not complexed to plasminogen activators or an assay that 
detects activity level (active free PAI-1). Both free PAI-1 antigen and activity levels have been shown to 
strongly correlate with each other17. Thus, studies that examined plasma PAI-1 as antigen or as activ-
ity level were both included in this review and pooled in the meta-analysis of prospective studies. We 
excluded all animal studies, case reports, and editorials. Studies were further excluded if they provided 
outcome data solely on gestational diabetes or type 1 diabetes.

Data extraction and Quality Assessment. Using a standardized data extraction form, two inde-
pendent reviewers (JY,TW) extracted relevant information from each paper and this information was 
reported in accordance with guidelines established by the Meta-analysis of Observational Studies in 
Epidemiology (MOOSE) checklist18. Any discrepancies between reviewers were reconciled by consen-
sus. The following information (if available) was extracted from each study: authors, year of publica-
tion, country of origin, study design, sample demographic characteristics, number of cases and controls, 
covariates adjusted or “matched” for, mean or median PAI-1 concentrations of cases and controls for 
cross-sectional studies, and for prospective studies: duration of follow-up, method of incident T2D 
assessment, assay method, effect estimates with 95% CIs, and data pertinent to methodological quality 
assessment. If sex-specific analyses were presented, numbers of cases and controls and effect estimates 
from both sexes were extracted. For cross-sectional studies, if PAI-1 values for T2D groups with and 
without co-morbidities were presented, information from the group with no or minimal co-morbidities 
was extracted. If a study presented PAI-1 data for both antigen concentration and activity level, only 
PAI-1 antigen levels were extracted. Authors were contacted for additional information if any required 
data from a study was missing or unclear. Study quality was independently assessed by two reviewers 
(JY,NBB) using the Newcastle-Ottawa Quality Assessment Scale (NOS) to examine the selection of par-
ticipants and study design, comparability of groups, and ascertainment of exposure/outcome19. Scores 
for low (0–3), moderate (4–6), and high-quality studies (7–9) were assigned.

Statistical analyses. For prospective studies, relative risks (RRs) were used to measure the associa-
tion between PAI-1 levels and incident T2D. Hazard ratios (HRs) and odds ratios (ORs) were assumed 
to approximate the same measure of RR. In studies where associations between PAI-1 and incident T2D 
were presented through multiple sequentially-adjusted models, the effect estimate and 95% CIs from 
the most fully-adjusted model was extracted and used in the meta-analysis. In order to permit compar-
ison of effect between studies that used different categorical or continuous comparisons, a scaling factor 
was employed to convert reported RRs of seven studies to upper and lower tertile comparisons, using 
methods previously reported20. These scaling methods assume a log-normal distribution of baseline 
PAI-1 concentrations and a log-linear association with diabetes risk. Briefly, effect estimates from four 
studies that employed a 1-SD comparison of baseline PAI-1 were multiplied by a scaling factor of 2.18 
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(the equivalent of the difference between means in the top and bottom third of the distribution)9,12,21,22, 
the effect estimate from one study that employed an interquartile range comparison was scaled by  
1.61 (2.18/1.35; difference in means between top and bottom third of distribution)23, one study that 
employed a quartile comparison was scaled by 0.858 (2.18/2.54; difference in means between top and 
bottom quartile)24, and one study that compared unequal groups was multiplied by a study-specific 
scaling factor of 2.18/x where x is the difference in mean PAI-1 (in SD units) between the two groups10. 
Standard errors of the log RRs were calculated using published confidence limits and standardised in 
the same manner. Studies were weighted by the inverse of the variance of each transformed log RR and 
then pooled to generate estimates of average effect using random-effects models. The I2 statistic was used 
to determine the percentage of variability across studies due to heterogeneity beyond chance and its 
significance tested using the Cochran Q test. For cross-sectional studies, owing to considerable method-
ological heterogeneity and the lack of standardized PAI-1 measurement protocols, a meta-analysis of the 
data was not considered appropriate. Consequently, data from cross-sectional studies were summarized 
in aggregate.

Sources of heterogeneity among prospective studies were examined by comparing analyses stratified 
by study design (prospective cohort vs. nested case-control), duration of follow-up (median split), base-
line glucose tolerance status (normal glucose tolerance vs. glucose intolerance [IFG or IGT]), adjustment 
for glucose, adjustment for insulin measures (HOMA-IR, fasting insulin, insulin sensitivity index [SI]), 
adjustment for visceral adiposity (waist-hip ratio [WHR] or waist circumference [WC]), and adjust-
ment for inflammatory markers. Additionally, a meta-regression was performed by modelling duration 
of follow-up as a continuous variable with T2D risk. Sensitivity analyses were performed by comparing 
pooled risk estimates to those generated after: iteratively removing one study at a time to confirm that 
our findings were not driven by any single study, removal of studies with a NOS score < 7, and employing 
a fixed-effects model. The presence of publication bias in the meta-analysis was assessed using tests of 
asymmetry (Begg’s, Egger) and visual inspection of funnel plots25,26. All statistical tests were two-sided 
and significance was defined at p<  0.05. Statistical analyses were performed with R version 3.2.1 and 
Revman 5.2 (Nordic Cochrane Center).

Results
Literature Search. Our search strategy initially identified 6413 articles, which was reduced to 3741 
unique citations after removal of duplicate studies. From these studies, 3609 were excluded based on 
title and/or abstract, and 84 were further excluded after retrieval of full-text articles. Screening of refer-
ence lists of included studies identified an additional 4 studies for inclusion. Consequently, a total of 52 

Figure 1. Modified PRISMA flow diagram through study search and inclusion. 
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studies (44 cross-sectional with 47 unique analytical comparisons and 8 prospective) were included in 
this review [Fig. 1].

Study Characteristics and Statistical Analyses. Cross-Sectional Studies. Descriptive characteris-
tics of the 44 cross-sectional studies are presented in Table 19,10,12,21–24,27. In brief, 23 studies were con-
ducted in Europe, 12 in Asia, 5 in the U.S.A, 2 in South America, 1 in the Middle East, and 1 in Africa. 21 
studies reported adjustment for some covariates (mainly age and sex), while 23 did not report adjustment 
for covariates. 35 studies enrolled both men and women as participants, 4 enrolled exclusively one sex, 
and in 5 studies it was unclear. 30 studies assessed PAI-1 in its antigen form and 14 as activity level.

Overall, 34 out of 47 analytical comparisons (72%) reported statistically significant elevated mean 
or median PAI-1 (antigen or activity) among T2D cases as compared to controls, 2 (4%) reported sta-
tistically significant elevated mean PAI-1 antigen among controls versus cases, and 11 (24%) reported 
no association of PAI-1 with outcome status. 16 of 23 (70%) comparisons that reported some form of 
statistical adjustment for covariates reported significantly elevated PAI-1 among diabetes cases, as com-
pared to 18 of 24 (75%) that did not report any adjustment. 8 out of 13 (62%) comparisons from Asia 
reported significant elevated PAI-1 among diabetes cases, whereas 23 out of 30 (77%) from Europe or 
North America found elevated PAI-1 among cases. 4 out of 5 comparisons exclusively between women 
reported significantly elevated PAI-1 among cases, whereas 2 out of 5 between men reported elevated 
PAI-1 among cases.

Prospective Studies. Eight prospective studies, including a total of 9256 participants and 980 inci-
dent T2D cases, were included in this review [Table 2]9,10,12,21–24,27. Five studies were conducted in the 
U.S.A.9,12,23,24,27, two in Sweden10,22, and one in France21 and all included both men and women as par-
ticipants. Five studies were prospective cohort analyses9,10,12,23,24 and three were nested case-control stud-
ies21,22,27. Six studies examined baseline PAI-1 in its antigen form9,12,22–24,27 and two as activity level10,21. 
Length of follow-up ranged from four to nine years with a median length of 5.7 years. Incident diabetes 
was ascertained using a combination of fasting glucose ≥ 7.0 mmol/L (or ≥ 126 mg/dL) and self-report of 
diabetes diagnosis or diabetes medication use in five studies10,12,21–24,27. In two studies, postload glucose 
≥ 11.1 mmol was included as an additional criterion10,22. In one study, diabetes status was ascertained 
solely with a standard 75-g OGTT9. Most studies reported adjustment in their models for established 
diabetes risk factors including age, sex, triglyceride levels, BP or hypertension, measures of insulin or 
insulin resistance, and measures of overall or visceral adiposity. Lastly, in quality assessment of these 
studies, seven were categorised as being of “high” methodological quality (NOS score >  6) and one as 
“moderate” quality (NOS score = 6) [Tables 3–4].

When the eight prospective studies were pooled in a random-effects meta-analysis, a comparison of 
the top third vs. bottom third of baseline plasminogen activator inhibitor-1 concentrations generated 
a summary relative risk of T2D of 1.67 (95% CI 1.28–2.18) [Fig.  2]. There was moderate evidence for 
heterogeneity across studies (I2= 38.2%, p= 0.12), mostly accounted for by Stranges et al. which reported 
a non-significant “protective” association of elevated PAI-1 with diabetes risk (removal of this study from 
the meta-analysis reduced the I2 statistic to 25% (p= 0.24) without materially changing the pooled RR 
[1.74, 95% CI 1.37–2.22])27.

Studies that presented results stratified by baseline glucose tolerance status or limited participants 
exclusively to those with normal glucose tolerance at baseline suggested an increased risk of diabe-
tes, in relative terms, among participants with normal glucose tolerance at baseline compared to those 
with glucose intolerance (normal glucose tolerance: RR 2.54, 95% CI 1.78–3.63; glucose intolerance: 
RR 1.55, 95% CI 1.23–1.95; p= 0.02 for sub-group difference), though these analyses were limited to 
seven comparisons from four studies9,10,22,23 [Fig. 3]. Further, a sensitivity analysis performed by removal 
of Meigs et al. from both sub-groups attenuated these differences toward non-significance suggest-
ing substantial influence of this study on sub-group differences (normal glucose tolerance: RR 4.00, 

Figure 2. Individual and pooled risk ratios and 95% confidence intervals for random-effects model 
examining the association between the top vs. bottom third of baseline plasminogen activator 
inhibitor-1 levels and type 2 diabetes. 
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95% CI 1.95–8.23; glucose intolerance: RR 2.21, 95% CI 1.14–4.27; p= 0.23 for sub-group difference). 
Additionally, in secondary sub-group analyses comparing studies by adjustment for BMI, which were not 
specified a priori, we found a stronger association in studies that adjusted for BMI as compared to those 
that did not (adjustment for BMI: RR 2.18, 95% CI 1.60–2.96; no adjustment for BMI: RR 1.31, 95% 
CI 1.06–1.93; p-sub-group difference= 0.008). However, as in sensitivity analyses performed by baseline 
glycemia status, removal of Meigs et al. from this sub-group analysis attenuated these differences toward 
non-significance (adjustment for BMI: RR 2.18, 95% CI 1.60–2.96; no adjustment for BMI: RR 1.29, 
95% CI 0.73–2.31; p-sub-group difference= 0.12). No significant sub-group differences were found for 
all other sub-group analyses though statistical power may have been limited to detect any differences 
present [Fig. 3]. Additionally, we failed to find a significant linear association of duration of follow-up (in 
years) with T2D risk in a meta-regression (p= 0.94). Although it was our intention to look into potential 
differential associations of PAI-1 with diabetes by sex, the lack of studies reporting stratified analyses by 
sex prevented this.

Pooled effects were robust to sensitivity analyses performed by removal of one study with “moderate” 
methodological quality (NOS score: 6) from our pooled analysis, use of the “leave-one-out” method, 
and use of a fixed-effects model. Visual inspection of funnel plots did not reveal substantial asymmetry 
indicative of small-study bias [Fig. 4]. Results from Begg’s (p= 0.46) and Egger’s (p= 0.26) tests further 
suggested absence of publication bias.

Discussion
This systematic review of 52 epidemiological studies supports a link between plasminogen activator 
inhibitor-1 and type 2 diabetes, thus highlighting a potentially significant yet under-appreciated risk 
factor for diabetes. While cross-sectional studies were not aggregated in a meta-analysis, most studies 

Figure 3. Individual and pooled risk ratios and 95% confidence intervals for random-effects model 
examining the association between the top vs. bottom third of baseline plasminogen activator 
inhibitor-1 levels and type 2 diabetes, by sub-group analysis. 

Figure 4. Funnel plot for 8 prospective studies examining the association of plasminogen activator 
inhibitor-1 levels with risk of type 2 diabetes. 
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reported significantly elevated PAI-1 levels among individuals with T2D, as compared to controls. Pooled 
analyses of 8 prospective studies revealed a 67% increased risk of T2D (upper vs lower tertiles of base-
line PAI-1) at a median follow-up of 5.7 years. Notably, this association was maintained in analyses 
adjusted for established risk factors for diabetes, including various measures of the metabolic syndrome. 
In sub-group analyses, greater risk of T2D was reported for participants with normal glucose tolerance at 
baseline, as compared to those with glucose intolerance, though this difference was no longer statistically 
significant after removal of the largest study. Sensitivity analyses performed by removal of one “mod-
erate” methodological quality study, use of the “leave-one-out” method, and use of fixed-effects models 
did not substantially modify associations, thus supporting the robustness of our overall pooled effect 
estimate. Lastly, though relatively few studies contributed to our meta-analysis of prospective studies, we 
did not find evidence for publication bias.

The primary rationale for performing this systematic review and meta-analysis was to provide the 
first comprehensive summary of the available epidemiological literature on the association of PAI-1 with 
T2D, which we consider to be the primary strength of this review. Pooled prospective studies adjusted 
for a comprehensive panel of established diabetes risk factors, allowing for investigation of independent 
effects of PAI-1 on diabetes risk, though the presence of residual or unknown confounding from indi-
vidual studies cannot be ruled out. Finally, in quality assessment of the prospective studies included in 
our review, seven studies were considered to be of “high” methodological quality with the remaining one 
being considered “moderate” methodological quality.

Some limitations of this review deserve mention. Firstly, it is important to emphasize the inherent 
limitation in inferring causal direction of associations from cross-sectional studies. While pooled anal-
yses of prospective studies suggest that heightened levels of PAI-1 can predict development of T2D, 
we cannot rule out a potential aetiological role of the diabetic state in further influencing PAI-1 levels. 
Secondly, approximately half of the cross-sectional studies included in our review did not report any 
adjustment for the presence of possible confounding factors. However, the lack of a substantial difference 
in the proportion of unadjusted and adjusted cross-sectional studies that reported elevated PAI-1 levels 
among those with diabetes and the maintenance of an elevated risk of diabetes in pooled adjusted anal-
yses of prospective studies would not appear to suggest a strong role of known confounding influencing 
these results. Thirdly, while a comprehensive literature search was performed to identify all observational 
studies examining an association of PAI-1 with T2D, only eight prospective studies were identified and 
included in our meta-analysis. Consequently, the total number of incident cases in our meta-analysis 
was relatively small and statistical power was limited in sub-group analyses and tests for publication 
bias. Additionally, prospective studies were confined to American and European populations, potentially 
limiting external validity of findings to other genetically-distinct populations. This issue is particularly 
relevant in light of evidence suggesting significant differences in circulating PAI-1 levels between various 
ethnic groups28–30 in addition to the differences between these groups in both susceptibility to T2D31 
and in the relative contribution of established risk factors to diabetes development32. Lastly, we found 
moderate heterogeneity across studies, although a substantial contribution to this heterogeneity was pro-
vided by a single study which reported a “protective” association of elevated PAI-1 with diabetes risk. It 
is feasible that the relatively small size of this study may have contributed to a chance finding.

That other circulating markers of endothelial dysfunction such as coagulation factor VIII, E-selectin, 
intercellular adhesion molecule-1, and tPA have also been found to predict T2D10,33–37, also supports a 
role of PAI-1 in the pathogenesis of T2D. Of particular relevance are three studies that have reported 
associations of tPA activity and tPA antigen with risk of diabetes10,22,35, as PAI-1 serves as the primary 
regulator of tPA in the fibrinolytic pathway and the PAI-1/tPA antigens have been shown to be highly 
correlated38. Further, in a follow-up of their initial analysis in the IRAS, Festa et al. reported that change 
in PAI-1 over time, in addition to elevated baseline levels, predicted incident diabetes39. Additionally, 
alleles of various SNPs which elevate plasma PAI-1 have been found to be individually associated with 
an increased odds of T2D40. Lastly, successful randomised, controlled diabetes prevention trials involving 
lifestyle and pharmacological interventions have been shown to decrease plasma PAI-1 levels41–43.

Various putative mechanisms have been proposed to explain the association of PAI-1 with T2D. 
Animal models have suggested that PAI-1 may play a causal role in the development of obesity and insu-
lin resistance2,3 and elevated PAI-1 in humans has been shown to predict incident metabolic syndrome 
in two prospective studies21,44.

The majority of circulating PAI-1 is synthesized by adipose tissue45. Visceral fat has been shown to 
secrete more PAI-1 than subcutaneous fat tissue in the obese phenotype46–48 and WHR has been found 
to correlate more strongly with PAI-1 than BMI49–51. Lifestyle and dietary-mediated weight loss in the 
moderately overweight and obese has been associated with concomitant reductions in PAI-1 levels, fur-
ther supporting a causal link between adiposity and PAI-1 expression52–55. However, in our review, 7 of 
the prospective studies that adjusted for measures of overall (BMI) or visceral adiposity (WHR or WC) 
maintained a significant association between PAI-1 and diabetes, though the association was attenuated 
in some studies. Further, when we stratified our analyses by studies with adjustment for WHR or WC, 
we failed to find substantial heterogeneity in associations across studies that did and did not control for 
measures of visceral adiposity.

Adipose tissue is also responsible for the secretion of various pro-inflammatory cytokines, markers of 
low-grade chronic inflammation that have been linked with development of insulin resistance56. Further, 
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Study Country
No. of  

ases/controls Mean age (SD); % Women; Ethnicity Adjustments

Mean or median PAI-1, ng/
mLa

P-valueCases Controls

Auwerx (1988)76 Belgium 33/57 63.1 (9.4) for cases, 52.0 (12.0) for controls; 45.6%; 
European None 3.3 1.5 < 0.001

Juhan-Vague 
(1989)77 France 38/20 57.6 (12.0) for cases, 52.3 (9.1) for controls; 53.4%; 

European Age 21.8 7.7 <0.001

Rydzewski 
(1990)78 Japan 31/20 55.9 (11.9) for cases, 49.4 (20.8) for controls; 29%; 

Asian None 8.7 7.2 ≥ 0.05

Cho (1992)79 South Korea 49/16 51.3 (14.9) for cases, 49.8 (12.2) for controls; 51%; 
Asian Age 35.9 17.6 < 0.05

Potter van Loon 
(1993)80 Netherlands 10/9 52 (2) for cases, 47 (2) for controls; 42%; European None 44 34 < 0.01

Takada (1993)81 Japan 43/95 53.9 (12.7) for cases, N/A for controls; 0%; Asian None 5.9 15.0 < 0.001

Avellone (1994)82 Italy 22/20 48.5 (2.5) for cases, 47.5 (3.0) for controls; 60%; 
European Sex, age, BMI 6.6 1.4 < 0.01

Park (1994)83 South Korea 64/32 56.1 (9.5) for cases, 57.9 (8.9) for controls; 62.5%; 
Asian Sex, age, BMI, WHR 27.7 27.7 ≥ 0.05

Kario 199584 Japan 31/42 67 (9.9) for cases, 67 (6.6) for controls; 55%; Asian Sex, age, BMI 7.9 4.2 < 0.01

Ito (1996)85 Japan 77/10 59.1 (1.2) for cases, 40.0 (2.7) for controls; 44.8%; 
Asian None 9.3 4.3 < 0.05

Nagi (1996)8 U.K. 84/149 55.0 (8.0) for cases, 49.0 (8.0) for controls; 41.6%; 
Asian and Caucasian European Sex, age 23.0 17.1 < 0.001

Akanji (1997)86 Kuwait 32/68 47.8 (7.4) for cases, 39.1 (11.0) for controls; N/A; 
Middle eastern None 43.8 32.5 < 0.01

Gray (1997)87 U.K. 30/38 60.2 (9.0) for cases, 57.5 (8.1) for controls; 0%; 
European None 11.2 10.6 ≥ 0.05

Krekora (1997)88 Italy 59/50 63.0 (10.0) for cases, 59.8 (7.1) for controls; 28.4%; 
European Age 107 29.1 < 0.001

Bannan (1998)89 U.K. 60/60 60.3 (9.5) for cases, 44.5 (13.0) for controls; 50.0%; 
European Sex, age, BMI, 22.6 10.5 0.00001

Hughes (1998)17 Singapore  Men: 72/248; 
Women: 54/282  40–69 years; 51%; Asian Age, ethnicity Men: 28.6 

Women: 32.4
Men: 23.9 

Women: 24.6
Men: 0.06 

Women:< 0.01

Temelko-
va-Kurktschiev 
(1999)90

Germany 68/249 56.4 (0.9) for cases, 53.5 (0.5) for controls; 59.3%; 
European None 79.2 57.6 < 0.05

Testa (1998)91 Italy 66/31 62.7 (11.7) for cases, 57.3 (12.7) for controls; 33.0%; 
European None 29.0 29.1 ≥ 0.05

Festa (1999)4 U.S.A. 510/693
57.3 (0.4) for cases, 53.9 (0.3) for controls; 53.4%; 

Non-Hispanic white, African-American, Mexi-
can-American

Sex, age, ethnic 
group, clinic, BMI, 
insulin sensitivity

28.9 23.0 < 0.001

Testa (1999)92 Italy 49/87 62.2 (10.1) for cases, 64.1 (8.7) for controls; N/A; 
European None 29.4 30.8 ≥ 0.05

Hernandez 
(2000)93 Spain 41/40 59.8 (10.3) for cases, 43.0 (14.2) for controls; 60%; 

European None 51.3 23 < 0.05

Testa (2000)94 Italy 73/46 61.5 (10.5) for cases, 63.1 (12.7) for controls; 47.9%; 
European None 32.8 30.1 ≥ 0.05

Zareba (2001)95 U.S.A. 125/846 62.0 (11.0) for cases, 59.0 (12.0) for controls; 22.9%; 
White, black None 38 27 < 0.017

Aso (2002)96 Japan 112/69 57.9 (10.9) for cases, 54.5 (12.1) for controls; 49%; 
Asian Age 12.3 9.0 < 0.05

Brandenburg 
(2002)97 U.S.A. Men: 8/8 

Women: 8/8
42.0 (6.8) for cases, 39.0 (7.1) for controls; 50%; North 

American None Men: 27.7 
Women: 35.1

Men: 25.4 
Women: 24.0 

Men: ≥ 0.05 
Women: ≥ 0.05

Leurs (2002)98 Netherlands 47/51 69.0 (8.0) for cases, 65.0 (6.0) for controls; 52.0%; 
European Age 18 13 < 0.001

Fattah (2004)99 Egypt 15/15 41–65 years; N/A; North African Sex, age 4.3 2.0 0.001

Kanaya (2004)11 U.S.A. Men: 298/298 
Women: 221/221 

73.7 (2.9) for cases, 73.5 (2.9) for controls; 42.6%; 
White, black Sex, race, study site Men: 26 

Women: 33
Men: 17 

Women: 20
Men: < 0.001 

Women:< 0.001

Yu (2004)100 China 12/12 59.0 (3.0) for cases, 48.0 (8.0) for controls; 50.0%; 
Asian None 45.4 33.6 ≥ 0.05

Erem (2005)101 Turkey 92/40 50.1 (13.4) for cases, 49.8 (15.1) for controls; 52%; 
European Sex, age, BMI 44.6 21.4 < 0.0001

Continued
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these adipocytokines have all been shown to up-regulate production of PAI-157–62. Thus, the association 
of PAI-1 with incident T2D could simply reflect residual confounding of an association of one or more 
other inflammatory markers with diabetes. In our meta-analysis, four of the prospective studies that 
adjusted for C-reactive protein (CRP) did not report strongly attenuated associations after including this 
inflammatory marker in their models. Further, Kanaya et al. reported the maintenance of an association 
of PAI-1 with diabetes after adjusting their model for baseline concentrations of leptin and adiponectin, 
two other adipocytokines involved in regulating inflammatory tone which have been found to modulate 
T2D risk12,63,64. Likewise, we failed to find evidence of heterogeneous associations of PAI-1 with diabetes 
across studies stratified by adjustment for any inflammatory markers.

Though PAI-1 has been demonstrated to contribute to insulin resistance, insulin has also been 
shown to stimulate PAI-1 secretion by fat cells, in a pathway that is upregulated in hyperinsulinemia 
and hyperglycemia65,66, thus suggesting that the relationship between endothelial dysfunction and insu-
lin resistance is bi-directional67. In our review, an initial association of elevated PAI-1 with risk of T2D 
in Davidson et al. became non-significant upon adjustment for baseline insulin measures24. Similarly, 
an initial increased risk of T2D with elevated PAI-1 activity in Eliasson et al. was no longer significant 
after adjustment for fasting insulin, diastolic blood pressure, and triglycerides, though this may have led 
to over-parameterization in their model owing to the limited number of incident diabetes cases in the 
study (n= 15)10. In contrast, the three other prospective studies in our review that adjusted for insulin 
reported maintenance of their respective associations. When we compared associations of PAI-1 with 
diabetes across studies adjusting for measures of insulin (fasting insulin, HOMA-IR, SI), we failed to find 
evidence of differential risk across sub-groups.

Lastly, while elevated PAI-1 levels have been shown to predict incident hyperglycemia, plasma glucose 
levels may also influence PAI-1 secretion. For example, experimental studies in both animals and humans 
have shown that glucose up-regulates PAI-1 gene expression in vascular smooth muscle cells, endothelial 
cells, and adipose tissue68–71. Thus, it could be expected that as glucose levels rise, enhanced PAI-1 gene 
expression would result in elevated circulating PAI-1 concentrations. However, in sub-group analyses 
performed on studies stratified by adjustment for glucose we failed to find evidence for heterogeneous 

Study Country
No. of  

ases/controls Mean age (SD); % Women; Ethnicity Adjustments

Mean or median PAI-1, ng/
mLa

P-valueCases Controls

Kitagawa (2006)16 Japan 47/31 53.4 (13.6) for cases, 52.3 (11.5) for controls; 41.0%; 
Asian Age 82.7 52.9 < 0.05

Soares (2007)102 Brazil 7/16 52.1 (8.3) for cases, 52.3 (5.4) for controls; 52%; Latin 
American None 70.5 27.5 0.03

Le (2008)103 U.S.A. 104/59 32.0 (4.0) for cases and controls; 60.1%; Indian 
American Age 39 31 ≥ 0.05

Romuk (2008)104 Poland 20/21 61.1 (8.4) for cases, 47.9 (7.1) for controls; N/A; 
European None 10.6 3.9 < 0.0001

Sahli (2009)105 Sweden 55/73 52 (9) for cases, 48 (11) for controls; 48%; European None 39.7 10.5 < 0.0001 

Jax (2009)106 Germany 26/122 57(4) for cases, 58(5) for controls; N/A; European None 7.4 5.5 0.0017

Blaszkowski 
(2010)107 Poland 53/24 N/A; 47.2% for cases, N/A for controls; European Sex, age 55.3 27.7 < 0.0001

Kubisz (2010)108 Slovakia 42/42 61.8 (7.8) for cases, 55.4 (6.0) for controls; 54%; 
European None 72.0 27.9 < 0.0001

Kovalyova 
(2011)109 Ukraine 24/51 N/A; N/A; European None 166.0 151.0 < 0.05

Soares (2010)15 Brazil 25/12 55.2 (7.8) for cases, 51.9 (4.3) for controls; 100%; Latin 
American None 108.8 37.6 < 0.05

Al-Hamodi 
(2011)7 Malaysia 303/131 51.0 (8.1) for cases, 47.2 (14.0) for controls; N/A; 

Asian Gender, age, race 25.4 30.2 0.01

Mertens (2001)110 Belgium 30/30 63.0 (7.0) for cases, 62.0 (7.0) for controls; 100%; 
European

Age, weight, BMI, 
percent fat mass, 

total abdominal fat 
mass

20.4 14.4 0.004

Verkleij (2011)14 Netherlands 207/100 66 (10) for cases, 65 (10) for controls; 45%; European

Gender, age, 
smoking, calcium 

medication, 
antihypertensive 

medication

98 57 0.038

Zhong (2012)111 China 123/151 57.6 (8.0) for cases, 53.1 (7.3) for controls; 59.5%; 
Asian None 6.2b 2.0b < 0.01

Table 1. Characteristics of cross-sectional studies of plasminogen activator inhibitor-1 and type 2 
diabetes. aPAI-1 measured as activity level (IU/mL, U/mL, or AU/mL) is indicated in italics. bpmol/dL.
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associations across studies that did and did not include glucose measures in their models. On the con-
trary, results from our sub-group analyses of studies stratified by baseline glucose tolerance status of par-
ticipants suggested a significantly greater risk of T2D with heightened PAI-1 levels among participants 
with normal, as compared to elevated glucose levels, at baseline, though this difference appeared to be 
driven primarily by one study.

Recently, a novel explanation for the relationship between PAI-1 and diabetes was provided by Lee 
et al. who examined the association of a group of inflammatory markers with longitudinal changes 
in the Metabolic Clearance Rate of Insulin (MCR) in the Insulin Resistance Atherosclerosis Study72. 
It was reported that among 784 non-diabetic participants, higher baseline levels of plasma PAI-1, but 
not of CRP, TNF-α , leptin, or fibrinogen, were associated with a decline in the MCR after five years of 
follow-up. This association remained significant after adjustment for measures of adiposity, fasting blood 
glucose, insulin sensitivity, and CRP.

Taken together, the available literature appears to support a role of PAI-1 as both contributor to and 
consequence of the metabolic syndrome. However, our meta-analysis of eight prospective studies found 
an association of PAI-1 with T2D risk in multivariate analyses adjusting for various measures of the 
metabolic syndrome including central adiposity, insulin resistance, and hyperglycemia, in addition to 
other established risk factors for diabetes. Consequently, this independent association could conceivably 
support a pathophysiological mechanism distinct from the metabolic syndrome.

Thus, these findings, by furthering the understanding of the causal pathways involved in diabetes 
pathophysiology, could potentially help shape future prevention strategies including pharmacological 
interventions. Further, investigation of the addition of PAI-1 to diabetes risk prediction models could 
provide insight into the clinical utility of inclusion of PAI-1 into diabetes screening tools. Findings from 

Study

Study  
design/Follow-

up, y Country
Mean age (SD); % 
Women; Ethnicity

No. of  
cases/controls Case ascertainment Assay method Adjustment

Festa et al.  
(2002)9

Prospective 
cohort/5.2 U.S.A.

56.0 (7.8) for cases, 54.6 
(8.5) for controls; 43.5%; 
White, black, Hispanic

144/903

A standard 75-g OGTT was 
performed, and glucose toler-
ance status was based on the 
World Health Organization 
criteria

Citrated plasma 
using a two-site 
immunoassay

Age, sex, clinical center, smoking, 
ethnicity, SI, BMI, family history of 
diabetes, physical activity

Eliasson 
et al.  
(2003)10

Prospective 
cohort/9 Sweden

51.9 (8.7) for cases, 
44.9 (10.9) for controls; 
40.3%; European

15/ 536
Fasting glucose ≥ 7.0 mmol/L 
and/or post load glucose 
≥ 11.1 mmol/L or self-report 
of diabetes diagnosis 

Chromogenic assay Age, sex, waist, DBP, fasting insulin, 
triglycerides

Kanaya 
et al.  
(2006)12

Prospective 
cohort/5 U.S.A.

73.0 (3.0) for cases, 74.0 
(3.0) for controls; 53.4%; 
38.4% black, 61.6% white

143/ 2213
Self-report of a new diabetes 
diagnosis, use of a diabetes 
medication, or fasting glucose 
≥  126 mg/dL

Citrated plasma 
samples using a 
2-site ELISA

Age, sex, race, BMI, visceral fat, 
fasting glucose, fasting insulin, 
HDL cholesterol, triglycerides, 
hypertension, leptin, adiponectin

Davidson 
et al.  
(2006)24

Prospective 
cohort/4 U.S.A. N/A; N/A; American 

Indian 137/ 1079
Treatment with insulin or oral 
glucose-lowering agents, or 
fasting glucose ≥ 7.0 mmol/L 

Immunoassay Age, sex, study center, waist, CRP, 
fibrinogen, triglyceride, SBP, insulin

Meigs 
et al.  
(2006)23 

Prospective 
cohort/7 U.S.A. 54 (10.9); 54.4%; Primar-

ily white 153/ 2771
Fasting plasma glucose level 
≥ 7.0 mmol/l or use of hypo-
glycemic drug therapy

ELISA- 
method

aSex, physical activity, HDL 
cholesterol, triglycerides, smoking, 
parental history of diabetes, BP, IFG/
IGT, use of exogenous estrogen, 
alcohol, aspirin or NSAIDs, BP 
therapy, WC, HOMA-IR, CRP

Stranges 
et al.  
(2008)27

Nested 
case-control/5.9 U.S.A.

58.13 (10.59) for 
cases, 59.83 (10.48) for 
controls; 47.5%; Mainly 
white

54/ 151
Diagnosed by their physician 
and taking antidiabetic 
medications, or fasting 
glucose >  125 mg/dl

Two-site ELISA
Age, gender, race/ ethnicity, year of 
baseline visit, baseline fasting glucose 
(< 110 or 110–125 mg/dL)

Alessi 
et al.  
(2011)21

Nested 
Case-control/9 France

50.6 (9.0) for cases, 50.6 
(8.9) for controls; N/A; 
European 

182/ 363
Fasting glucose ≥ 7.0 mmol/L 
or self-reported taking drugs 
for diabetes

EDTA plasma, 
using an 
immune-reactivity 
assay.

Age, sex, insulin, CRP, BMI, 
vitronectin

Hernestal-
Boman  
et al. 
(2012)22

Nested 
case-control/5.5 Sweden

50.5 (8.1) for cases, 50.2 
(8.3) for controls; 43.3% 
European

152/ 260

Diabetic patients were defined 
by FPG and OGTT according 
to World Health Organisation 
criteria 1999 or self-report of 
diagnosis 

ELISA-assay

Age, sex, year of health exam, 
BMI, smoking, family history of 
T2D, physical activity, CRP, SBP, 
triglycerides, fasting glucose, 2 hour 
capillary glucose

Table 2.  Baseline characteristics of prospective studies of plasminogen activator inhibitor-1 and 
incident type 2 diabetes. SBP, systolic blood pressure. DBP, diastolic blood pressure. NSAID, nonsteroidal 
anti-inflammatory drug. SI, insulin sensitivity index. vWF, von Willebrand factor. FPG, fasting plasma 
glucose. aFor sub-group analyses by baseline glucose tolerance status (Fig. 3), Meigs et al. adjusted for 
the following covariates only: age, sex, physical activity, HDL cholesterol and triglyceride level, smoking, 
parental history of diabetes, blood pressure level, IFG/IGT, and use of exogenous estrogen, alcohol, aspirin 
or nonsteroidal anti-inflammatory drugs, and blood pressure therapy
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this review additionally extend evidence of a role of elevated PAI-1 in diabetic retinopathy73, diabetic 
nephropathy74, and coronary heart disease in individuals with type 2 diabetes74, to the risk of incident dia-
betes, thus identifying a role of PAI-1 in contributing to morbidity across the blood glucose continuum. 
In light of the relative homogeneity of the sample populations included in the eight prospective studies 
in our review and the identification of significant heterogeneity between ethnic groups in circulating 
PAI-1 levels, further prospective examination of the association of PAI-1 with diabetes in non-Caucasian 
samples is warranted. Additionally, findings from our review suggest the need for investigation of the 
role of PAI-1 on diabetes risk within cohorts that can permit greater exploration of the potential role 
of differences in baseline glycaemia, on this association. Our findings also identify a potential role for 
randomised controlled trials to determine the effectiveness of pharmacological interventions targeting 
impaired fibrinolysis in order to prevent new cases of T2D. Lastly, with the recent identification of a 
number of functionally relevant SNPs for circulating PAI-1 concentrations40,75, Mendelian randomisation 
analyses could provide an additional tool for exploration of a causal effect of PAI-1 on diabetes risk.
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