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Local electron-electron interaction 
strength in ferromagnetic nickel 
determined by spin-polarized 
positron annihilation
Hubert Ceeh1, Josef Andreas Weber1, Peter Böni1, Michael Leitner2, Diana Benea3,4, 
Liviu Chioncel5,6, Hubert Ebert3, Jan Minár3,7, Dieter Vollhardt5 & Christoph Hugenschmidt1,2

We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation 
of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. 
The experimental data are compared with the theoretical results obtained within a combination of the 
local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We 
find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions 
to the momentum distribution. By direct comparison of the theoretical and experimental results we 
determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

The physical properties of ferromagnetic Ni are strongly influenced by correlation effects originating from the 
Coulomb interaction between electrons in the partially filled, relatively narrow 3d band1. Due to these correla-
tions density functional theory (DFT)2–4 alone cannot explain various experimentally observed features of the 
electronic structure of Ni. To obtain a realistic description of the electronically correlated materials, parameters 
such as the local Coulomb repulsion U need to be employed. The “Hubbard” parameter U was originally intro-
duced for single-band models5,6 and is defined as the Coulomb energy required to place two electrons on the same 
site: = ( ) + ( ) − ( )+ −U E d E d E d2n n n1 1 . Here ( )E dn  represents the total energy of a system for which n electrons 
fill a given d-shell on a given atom. In multi-band systems U takes the form of an interaction matrix.

The Hubbard model and related lattice models are able to explain important general features of correlated 
electrons, but they cannot describe the physics of real materials in detail. Namely, for an approach to be realistic 
it has to take into account the lattice and the explicit electronic structure of the systems. Here significant progress 
was made through the combination of DFT in the local density approximation (LDA) with dynamical mean field 
theory (DMFT)7–10 which is generally referred to as the LDA +  DMFT method10,11. In the case of magnetic states 
the local spin density approximation (LSDA) rather than the LDA needs to be employed. In the L(S)DA +  DMFT 
scheme the L(S)DA provides the ab initio material dependent input (orbitals and hoping parameters), while the 
DMFT solves the many-body problem for the local interactions. Therefore the LSDA +  DMFT approach is able 
to compute, and even predict, properties of correlated materials. Considerable effort has been undertaken to con-
struct systematic extensions beyond LSDA +  DMFT in which ab-initio and interaction parameters are computed 
on the same footing in a self-consistent way. However, there remain many open questions due to the considerable 
algorithmical and numerical difficulties of the probelm (see ref. 10. and references therein).

Theoretical results obtained with LSDA +  DMFT can be compared with experimental data obtained, for 
example, by photoemission spectroscopy (PES). In particular, this technique measures spectral functions, i.e., the 
imaginary part of the one-particle Green function, and thus determines correlation induced shifts of the spectral 
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weight. This allows one to estimate the local Hubbard interaction U of a material, say, Ni. Indeed, most experi-
mental investigations on the electronic structure of Ni rely on PES12,13. Braun et al.14 demonstrated the importance 
of local correlations in Ni by exploiting the magnetic circular dichroism in bulk sensitive soft X-ray PES meas-
urements. One of the dominant correlation effects observed in the PES data for Ni is the satellite peak situated at 
6 eV below the Fermi level15,16. This feature is not captured by LSDA, but is well explained by LSDA +  DMFT17. 
LSDA +  DMFT also reproduces the correct width of the occupied 3d bands and the exchange splitting17.

In this paper we discuss an alternative experimental technique to determine the local Coulomb parameter U, 
involving positrons. In contrast to photoelectron spectroscopy the theoretical analysis of positron spectroscopy 
does not suffer from complications due to external effects such as surfaces. We show that by combining experi-
mental results of the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR) 
with LSDA +  DMFT computations including a careful and realistic treatment of the positron probe effects, it is 
possible to determine the strength of the electronic interactions in Ni quite unambiguously.

Results
In angular correlation measurements the quantity of interest is the probability per unit time and per unit volume 
in momentum space for the annihilating positron to produce two gamma quanta with a total momentum p, the 
so-called 2D-ACAR. If we assume for simplicity that the thermalized positron (with zero momentum at zero 
temeprature) has no correlations with the electrons then the 2D-ACAR gives directly the electron momentum 
probabilities. It is well known that both the shape and the structure of the 2D-ACAR probability distribution, 

( , )−N p pD ACAR x y2 , are determined by the nature of wave functions of the electron and positron as well as by the 
topology of the Fermi surface. To obtain the latter we applied the Lock-Crisp-West (LCW) back-folding proce-
dure both on the measured and the computed data. Since Ni is a ferromagnetic metal, spin-polarized 2D-ACAR 
measurements have been carried out. The spin-polarized 2D-ACAR measures the difference of the two spectra 
∆ ( , ) = ( , ) − ( , )−

↑↑
−

↑↓N p p N p p N p px y D ACAR x y D ACAR x y2 2  and is related to the spin-dependent momentum den-
sity of the material18. ( , )−

↑↑ (↑↓)N p pD ACAR x y2  represents the experimental 2D-ACAR spectrum for the magnetization 
aligned parallel (↑↑) or anti-parallel (↑↓) to the positron polarisation. The results are seen in Fig. 1. In each spec-
trum ( ↑↑N  and )↑↓N  more than . ⋅2 5 108 counts were collected, and the data were corrected for the momentum 
sampling function. Before subtraction, the spectra ↑↑N  and ↑↓N  were normalized to an equal amount of counts. A 
renormalization due to 3γ decay was omitted since the corresponding correction in the case of Ni is negligible 
compared to the statistical noise18. The expected 4-fold symmetry is clearly observed and the anisotropy is found 
to be in good agreement with the study of Genould et al.19. The inset in Fig. 1 shows that the anisotropy of the 
magnetic signal, ∆ ( , )N p px y , is more pronounced along the Γ – X – Γ direction than along the Γ – L – Γ direction. 
This is also in accordance with the calculations of Nagoa et al.20. The comparison between the experimental and 
theoretical spin-polarized 2D-ACAR data is presented in Fig. 2. Both spectra have been back-folded using the 
LCW-procedure. The central plot represents the measured spectra, and is surrounded by theoretical results 
obtained from LSDA +  DMFT performed for several values of U. Our results show significant electronic 

Figure 1. 2D-ACAR difference spectra ΔN(Px, py) obtained upon reversal of the magnetic field, with the 
integration along the [001] direction, px = [100] and py = [010]. The inset illustrates the anisotropy of the 
difference spectra between two directions in momentum space.
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correlations effects. It is clearly seen that with increasing U a gap opens at the L-points of the Brillouin zone. This 
gap is associated with the necks in the Fermi surface of Ni. This implies that LSDA underestimates the density at 
the X-point, while the density near the L-point is overestimated. In the LSDA +  DMFT calculation the highest 
density is found at the X-point, similar to the experiment. However, the structure connecting the X and L-points 
is less pronounced in the experimental data than in the LSDA +  DMFT results. Apparently the local interaction 
(see e.g.14) pushes the d-bands below the Fermi energy, whereby the X2 hole pocket obtained in LSDA disappears. 
This is a general feature of electronic correlations in Ni21 and also greatly changes the calculated anomalous Hall 
effect of Ni22,23. Therefore, our experiment is able to identify the electronic correlations as the origin of anomalous 
Hall resistivity in bulk Ni.

In order to derive the value of the local Coulomb interaction parameter U from our experiment we performed 
a least square fit χ( )2  analysis of the measured data with the LSDA +  DMFT calculations (Fig. 2). To assess the 
importance of the electron-positron correlation, two sets of LSDA +  DMFT computations have been performed, 
one without and one with the electron-positron interaction. The results for χ2 without the electron-positron 
interaction (“independent particle model” (IPM)) are shown in Fig. 3 by a dashed yellow line. However, the 
electron-positron attraction should not be neglected since it leads to an increase of electron density at the posi-
tron, which is refered to as “enhancement” since the total annihilation rate strongly increases. Indeed, the inclu-
sion of the electron-positron interaction by the so-called enhancement factor (a multiplicative factor in the 
product of the electron and positron wave functions) changes χ2 substantially: now a clear minimum in χ2 is 
found (dashed blue line). A more detailed discussion of the enhancement factor is presented in the following 
section. The minimum in χ2 is found at = .U 2 0 eV. The 2D-ACAR spectra can be projected along different direc-
tions in mometum space as shown in the inset of Fig. 3. The χ2 curves of the 1D data exhibit minima for the value 
of = .U 2 0 eV for the Hubbard interaction similar to the 2D-ACAR spectra. The loss of information in the doubly 
integrated 1D data is indicated by a larger χ2 value. We also note that the effects of electron-electron correlations 
within the LSDA +  DMFT on the electron density are anisotropic and therefore go beyond an isotropic 
Lam-Platzman24 correction of the LSDA data. Interpolating the data in Fig. 3 with higher order polynomials 
allows us to estimate the systematic error in the position of the absolute minimum as ± 0.1 eV.

Discussion
There exist a number of experimental studies on the numerical value of the local Hubbard interaction U in Ni. 
Specifically, J. Braun et al. (ref. 14) as well as J. Sánchez-Barriga et al. (ref. 15) present results on photoelectron 

Figure 2. Experimental magnetic LCW spectrum (center) compared to theoretical spectra computed for 
different values of the local Coulomb parameter (LSDA corresponds to U = 0 eV in the range from 1.4 to 
2.6 eV; see text. 
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emission studies. While ref. 14 reports on soft x-ray ARPES on bulk Ni, ref. 15 discusses spin resolved ultra-violet 
ARPES obtained on Ni films grown epitaxially on a tungsten substrate. In an approach that is conceptually similar 
to ours, they model the experimental energy distribution curves in a LSDA +  DMFT framework using a one step 
model and conclude that U in the range of 2.5 to 2.8 eV gives an optimal fit. A somewhat smaller value for U is 
reported in the study of the anomalous Hall effect in Ni by Ködderitzsch et al., yielding a value for the Hubbard 
interaction parameter of = .U 2 5 eV23. Modelling experimental Compton scattering profiles25 by 
LSDA +  DMFT26,27 gives yet smaller values of = .U 2 0 to 2.3 eV, similar to the value of = .U 2 0 eV as reported 
here.

At first sight, the variation in the values of U determined by the various experimental methods seems dis-
pleasing. However, we want to point out the aspect of the electronic states sampled by the methods, specifi-
cally with respect to the electron binding energies: In spin-polarized 2D-ACAR electrons close to the Fermi 
energy contribute most to the measured two-photon-momentum-distributions due to the sampling by the pos-
itron (wave-function and correlation effects). In magnetic Compton scattering all electrons contribute equally 
to the measured Compton profiles as the scattering cross section is virtually independent of the binding energy. 
Furthermore, in the anomalous Hall effect the electrons in the region with a high density-of-states contribute the 
most, whereas in photoemission spectroscopy electrons with even higher binding energies (up to −10 eV) are 
considered.

Therefore, we conclude that while the theoretical modelling of the various methods assumes a single value 
of U, in reality different electronic states would correspond to different values, which are sampled by the diverse 
experimental methods. In addition, one has to bear in mind that while anomalous Hall effect measurements 
similarly to Compton or positron-annihilation experiments are bulk sensitive techniques, photo-electron spec-
troscopy is fairly surface sensitive. In a first approximation it is therefore expected to find a larger value of U due 
to a reduced number of nearest neighbours that screen the value of U at the surface.

Furthermore, we also take the opportunity to discuss the electron-positron correlation effects in Ni. A funda-
mental question in positron annihilation in solids is how the electron-positron interaction modifies the electronic 
structure of the medium which is being probed. The electron-positron attraction leads to an increase of electron 
density at the positron, which manifests itself in the annihilation characteristics. This effect is called “enhance-
ment” and is qualitatively well understood: the total annihilation rate is strongly increased. However, apart from 
the short-range screening, the electronic states and the mean density remain almost unchanged. Therefore, the 
2D-ACAR shows only relatively weak differences compared to the independent particle model (IPM). In the 
case of alkali metals the enhancement effect is included by multiplying the 2D-ACAR spectra computed in the 
independent particle model with an isotropic enhancement factor28,29, the so-called Kahana factor. This approach 
was generalized to an energy dependent form30, and was later extended to an orbital dependence31. It was formu-
lated within DFT32–42 and therefore maintains its static mean-field character. Different parametrizations of the 
enhancement functional have been proposed in the literature32,39,40,43–46 and applied in the case of Ni31,47.

Biasini et al.48,49. proposed that probe effects associated with electron-positron interaction, such as positron 
wave function effects, can be partially avoided by applying magnetic 2D-ACAR. We have tested this conjecture, 
by computing the 2D-ACAR spectra in the presence and absence, respectively, of the positron, with and without 
electronic and electron-positron correlations. The electron-positron interaction was included in the form of an 
effective one-particle potential as formulated in DFT by Boronski and Nieminen32.

We analyzed our results by taking several cuts along the symmetry directions in the Brillouin zone. Since the 
positron affects the individual spin channels differently we plot in Fig. 4 the spin-contrast, ( ) − ( )↑ ↓n nk k , which 
was computed within LSDA and LSDA +  DMFT, respectively. Within LSDA the spin difference is found to be 
essentially independent of the presence of the positron. In particular, it remains essentially the same along the 
symmetry lines in the Brillouin zone. Once electronic correlations are included by DMFT a clear difference in the 

Figure 3. Least square fit analysis (χ2) between LSDA + DMFT calculations and experimental data as a 
function of the Hubbard U for the 2D data. Higher U values correspond to stronger electron-electron 
correlations. A pronounced minimum of χ2 is found for = .U 2 0 eV. The inset shows the results for the 1D data. 
(The dotted lines act as a guide to the eye).
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results for the spin-contrast in the presence and absence, respectively, of the positron is found. The results show 
that the conjecture of Biasini et al.48,49 regarding the cancelation of probe effects in spin-polarized 2D-ACAR is 
not valid beyond LSDA, i.e., when many-body effects are included. The cancelation appears to be a consequence 
of the form of the electron-electron and electron-positron correlation functionals in the LSDA, which have a very 
similar mean-field structure.

Methods
Spin-polarized 2D-ACAR. For a detailed description of the basic 2D-ACAR technique we refer to  
refs 50–52.

The spin-polarized variant of 2D-ACAR relies on two aspects: the non-zero net polarisation of positrons from 
a radioactive source, which was determined as 31(4)% in a separate experiment, and the fact that positron annihi-
lation occurs mainly when the spins of positron and electron are aligned anti-parallel. Spin-polarized 2D-ACAR 
is one of the few experimental methods that can probe the momentum distribution of the electrons in the bulk 
with respect to the spin direction and even at elevated temperatures. It was successfully applied to elemental 
Ni19,53,54 and other materials55–58.

We measured spin-resolved 2D-ACAR in magnetic fields up to 1.1 T at room temperature. The field was 
applied parallel and anti-parallel, respectively, relative to the crystallographic [110] orientation of the sample 
which coincides with the emission direction of the positrons (i.e. the polarisation direction of the positron beam) 
as well as the magnetic easy-axis of Ni. When an external magnetic field is applied parallel or anti-parallel to the 
emission direction the positrons will annihilate predominantly with electrons from the majority or the minority 
spin directions, respectively (see Fig. 5).

Figure 4. Cuts through the LCW-calculated spin-contrast along major symmetry points. The effect of 
the positron wave function and the combined effects of the positron wave function and the electron-positron 
correlations are compared with the pure electron density for calculations performed within the LSDA (a) and 
LSDA +  DMFT (b) framework.

Figure 5. Schematic picture of spin-polarized 2D-ACAR. In electron-positron annihilation the singlet 
configuration is preferred for majority or minority spin electrons if the magnetization of the sample is parallel or 
anti-parallel to the emission direction of the positrons.
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LSDA+DMFT. The theoretical analysis of the 2D-ACAR spectra requires the knowledge of the two-particle 
electron-positron Green function, describing the probability amplitude for an electron and a positron propagating 
between two different space-time points. This two particle many-body problem is factorized into the many-body 
electronic and the one-body positronic part. The DFT can be generalized to electron-positron systems by includ-
ing the positron density, in the form of the 2-component DFT32,59. The electron-positron correlations are taken 
into account by a multiplicative factor, the so-called enhancement factor, briefly discussed above. Within DFT the 
enhancement factor is treated as a functional of the electron density in the local density approximation59.

Electronic structure calculations were performed with the spin-polarized relativistic Korringa-Kohn-Rostoker 
(SPR-KKR) method60. For LSDA computations the exchange-correlation potentials parametrized by Vosko, Wilk 
and Nusair61 were used with a lattice parameter of 3.52 Å. To include the electronic correlations, a charge and 
self-energy self-consistent LSDA +  DMFT scheme was employed, which is based on the KKR approach62 and 
where the impurity problem is solved with a spin-polarized T-matrix fluctuation exchange method63,64. This 
impurity solver is fully rotationally invariant even in the multi-orbital version and is reliable when the interaction 
U is smaller than the bandwidth, a condition which is fulfilled in the case of Ni. In this LSDA +  DMFT framework 
the electron-positron momentum density ρ ( )σ p  is computed directly from the two-particle Green function in the 
momentum representation. The neglect of electron-positron correlations corresponds to the factorization of the 
two-particle Green function in real space. In the numerical implementation the position-space integrals for the 
“auxiliary” Green function ( )σσ′G p pe p  obtained within LSDA or LSDA +  DMFT, respectively, are performed as 
integrals over unit cells:

∫ ∫ φ φ

φ φ

′ ′ ′

′ ′

( , , , ) =
Ω

( ) ( , , ) ( )

( ) ( , , ) ( ), ( )

σσ σ σ σ

σ σ σ
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†

†

G E E
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d d ImG E
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where X =  LSDA or LSDA +  DMFT, and σ( , )pe , and σ( , ′)p p  are the momenta and spin of electron and positron, 
respectively. Here σσ′GX  is computed for each energy point on the complex energy contour, providing the 
electron-positron momentum density:

∫ρ
π

( ) = − ( , , , ). ( )σ σσ′dE G E Ep p p1
2

X
e

X
e p e p

Integration over positron energies E p is not required, since only the ground state is considered, and σ σ′ = −  
at the annihilation. The momentum carried off by the photons is equal to that of the two particles up to a recipro-
cal lattice vector, reflecting the fact that the annihilation takes place in a crystal. Hence an electron with wave 
vector k contributes to ρ ( )σ pX  not only at =p k (normal process) but also at = +p k K, with K a vector of the 
reciprocal lattice (Umklapp process). The experimental spin-difference spectra ∆ ( , )N p px y  can be compared 
with the computed difference in the integrated momentum densities of Eq. 2:

∫ ρ ρ∆ ( , ) = 


( ) − ( )

. ( )↑ ↓N p p d p p p 3

X
x y z

X X

In a perfect bulk material the 2D-ACAR distributions are rather anisotropic, reflecting the fact that certain 
valence bands in certain directions in the Brillouin zone do not contribute to the momentum density of annihi-
lating electron-positron pairs. One can define the spin-difference spectra: ∆ ( , ) = ( , )−↑N p p N p pX

x y
X

x y
( , )↓N p pX

x y  which was compared with the corresponding experimentally measured spectra ∆ ( , )N p px y  taken in 
the presence of the magnetic field. Here the annihilation probability for the triplet electron-positron pair is 
neglected since it is of order 10−3 smaller than that of the singlet annihilation.

In order to assess the impact of the presence of the positron, the electronic momentum density was computed 
from the Green function in the momentum representation, as used in the calculations of the Compton profiles:

∫ ∫ φ φ′ ′ ′( , ) =
Ω

( ) ( , , ) ( ), ( )σ σ σ σ
†G E

N
d d ImG Ep r r r r r r1

4
X

e e
e

e
X

e
e

p p
3 3

e e

which formally corresponds to Eq. 1 if the positronic Green function is removed. The spin projected momentum 
density is obtained according to the formula:

∫ρ
π

( ) = − ( , ). ( )σ σ
dE G Ep p1

5
X

e
X

e e

LCW backfolding. Our analysis concerns the two-dimensional projections of the electronic momentum 
densities with the integration direction chosen along [100]. The LCW folding procedure65 is used for the momen-
tum densities:

∑ρ( ) = ( )|
( )σ σ ≡ +n k p
6K

p k K

with K the reciprocal lattice vector. In the presence of the positron ρ ( )σ p  is replaced by ρ ( )σ pX  (Eq. 2), while in the 
absence of the positron ρ ( )σ pX  (Eq. 5) takes the place of ρ ( )σ p  in Eq. 6.
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The LCW procedure is exact when applied to the electronic momentum density. In the presence of the posi-
tron the back-folding procedure is only exact if the positron wave function is a plane wave. If the positron wave 
function varies in k, completely filled bands also give rise to variations in ( )n k . However, the amplitude of the 
positron wave function varies slowly within the Brillouin zone and therefore the variations in ( )n k  are also 
expected to be smooth66,67.

Sample preparation and characterisation. The Ni crystal (purity 99.99%), with dimensions of  
∅ = 10 mm ×  1 mm, was obtained from MaTecK GmbH. The top surface of the sample is orientated along [110] 
with an accuracy of ± 0.1° and was polished to a surface roughness < 50 nm. Positron lifetime measurements 
prior to the 2D-ACAR measurements revealed only a single lifetime of 113 ps in agreement with the bulk value of 
Nickel. Hence, it can be safely assumed that the sample is defect-free. Prior to mounting the sample in the spec-
trometer the orientation of the [100] integration direction was determined by Laue diffraction to ± 1°.
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