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Judgments of physical stimuli show characteristic biases; relatively small stimuli are

overestimated whereas relatively large stimuli are underestimated (regression effect).

Such biases likely result from a strategy that seeks to minimize errors given noisy

estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of

the environment. While being conceptually well described, it is unclear how such a

strategy could be implemented neurally. The present paper aims toward answering this

question. A theoretical approach is introduced that describes magnitude estimation

as two successive stages of noisy (neural) integration. Both stages are linked by a

reference memory that is updated with every new stimulus. The model reproduces the

behavioral characteristics of magnitude estimation and makes several experimentally

testable predictions. Moreover, the model identifies the regression effect as a means

of minimizing estimation errors and explains how this optimality strategy depends on

the subject’s discrimination abilities and on the stimulus statistics. The latter influence

predicts another property of magnitude estimation, the so-called range effect. Beyond

being successful in describing decision-making, the present work suggests that noisy

integration may also be important in processing magnitudes.

Keywords:magnitude estimation, interval timing, drift-diffusionmodel, uncertainty, regression effect, range effect,

optimality

1. INTRODUCTION

In daily life we continuously need to process the physical conditions of our environment; we
make judgements about the magnitude of sensory stimuli, represent them neurally and base
decisions upon them. Judgements about magnitudes are inherently unreliable due to noise from
different sources such as the statistics of the physical world, the judgement process itself, the
neural representation of the stimulus and finally the computations that drive behavior. A large
body of experimental work highlights that magnitude estimation is subject to characteristic
psychophysical effects. These effects are strikingly similar across different sensory modalities,
suggesting common processing mechanisms that are shared by different sensory systems (for
a recent review see Petzschner et al., 2015). Amongst the behavioral characteristics the most
astonishing yet unresolved is the regression effect also known as regression to the mean, central
tendency, or Vierordt’s law (von Vierordt, 1868; Hollingworth, 1910; Shi et al., 2013). It states that
over a range of stimuli, small stimuli are overestimated whereas large stimuli are underestimated
(Figure 1A). Regression becomes more pronounced for ranges that comprise larger stimulus

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/211703641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnint.2016.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fnint.2016.00006&domain=pdf&date_stamp=2016-02-16
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:thurley@bio.lmu.de
http://dx.doi.org/10.3389/fnint.2016.00006
http://journal.frontiersin.org/article/10.3389/fnint.2016.00006/abstract
http://loop.frontiersin.org/people/54287/overview


Thurley Magnitude Estimation by Noisy Integration

FIGURE 1 | Psychophysical characteristics of magnitude estimation.

The typical properties of magnitude estimation are illustrated as they are

reproduced by the model presented in this paper. The description is based on

subsecond interval timing (cf., Jazayeri and Shadlen, 2010). (A) Individual

reproduced values for each trial and stimulus (small dots, 100 per stimulus

value), and their averages (large circles connected by lines) are shown for a

simulation with three stimulus ranges. The regression effect is the deviation of

the averages from the line of equality (diagonal gray dashed line) toward the

mean of the respective stimulus range. It becomes stronger with larger means

of the stimulus range, i.e., range effect. The analytical approximation of the

model is in line with the simulated data (black solid lines). The memory

parameter a was chosen to minimize MSEr for each range (derived in

Section “3.1”). Stimulus ranges and memory weights a are given in the top-left

corner of the plot. Other parameters are Am = Ar = 0.25, σm = 1, and

σr = 0.5. Inset: Average deviations (BIAS) from the line of equality for each

stimulus and test range. Solid lines are again analytical predictions. (B)

Standard deviation and coefficient of variation (standard deviation divided by

the mean) corresponding to (A). Black solid lines are again analytical

predictions. (C) Sequential effects. Plotting the response bias for a certain

stimulus as a function of the stimulus in the previous trial, reveals effects of

stimulus order in the simulations (thick lines). The simulation results can be

analytically approximated (thin lines). Results for the range 494− 847 ms are

displayed. For each stimulus value 10,000 trials were simulated.

values (range effect; Teghtsoonian and Teghtsoonian, 1978).
As a consequence the same stimuli lead to different responses
on average when embedded in different but overlapping
stimulus distributions (Figure 1A) — the responses depend on
the stimulus context (Jazayeri and Shadlen, 2010). Another
omnipresent effect in magnitude estimation experiments is scalar

variability, i.e., errors monotonically increase with the size of the
stimulus, attributed to the famousWeber-Fechner law Figure 1B;
(Weber, 1851; Fechner, 1860). Finally, magnitude estimation is
influenced by the sequence in which stimuli are presented (Cross,
1973; Hellström, 2003; Dyjas et al., 2012). According to such
sequential effects the estimate of the stimulus in a particular
trial is affected by the previous trial. This results in under-
or overestimation of the current stimulus depending on the
previous stimulus (Figure 1C).

The above behavioral characteristics likely result from
an optimal strategy when noisy estimates are made about
stimuli that itself depend on the statistics of the environment.
Recently such optimality strategies were successfully explained
in Bayesian frameworks (Jazayeri and Shadlen, 2010; Petzschner
and Glasauer, 2011; Cicchini et al., 2012). Bayesian models
incorporate a-priori knowledge about the stimuli into the
estimation process, which seems to be crucial in explaining
the aforementioned behavioral phenomena. However, the
cited Bayesian approaches represent conceptual descriptions;
inference about brain implementation is challenging.

The present paper introduces a theoretical approach that
formulates magnitude estimation with noisy integrators (drift-
diffusion processes). The model comprises two successive
stages, measurement and reproduction. Duringmeasurement the
current stimulus is estimated via noisy integration. The estimate
is then combined with information from previous trials and
used as threshold in the reproduction stage. The first passage of
the threshold during reproduction determines the magnitude of
the reproduced stimulus. Since the threshold depends on both
the current and previous trials, it acts as an internal reference
memory that is updated with every new stimulus. As we will
see below, the model reproduces the behavioral characteristics
of magnitude estimation (Figure 1 anticipates these results) and
interprets them as a consequence of an optimization strategy to
minimize reproduction errors given noisy estimates and stimulus
statistics.

2. MATERIALS AND METHODS

The analytical methods employed in this paper rely on
standardmathematical and statistical techniques. Simulation and
numerical analysis was performed with Python 2.7 using the
packages: Numpy 1.9, Scipy 0.15, Statsmodels 0.6 (Seabold and
Perktold, 2010), and Matplotlib 1.4 (Hunter, 2007). The model’s
stochastic differential equations, Equations (1, 4), were simulated
via the approximation

xi+1 = xi + A1t + σ
√

1t ·N (0, 1) .

A time step 1t = 5 ms was used, to appropriately sample
the Gaussian process N (0, 1), and capture noise sources on fast
time scales like sensory noise and irregular spiking dynamics, at
reasonable computing times.

2.1. Definition of the Model
Estimating the magnitude of a stimulus comprises two stages:
First the stimulus is measured and afterwards the measurement
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is reported, e.g., reproduced by matching the strength of
the stimulus. In the present paper, both measurement and
reproduction are modeled as drift-diffusion processes (e.g.,
Bogacz et al., 2006). During measurement drift-diffusion is left
running as long as the stimulus is presented. Whereas, in the
reproduction stage the drift-diffusion process is not stopped
from outside but lasts until it hits a threshold from below.
This threshold depends on the stimulus as estimated in the
measurement stage and also includes the history of thresholds
from previous trials, serving as an internal reference. Figure 2
gives an overview of the model. For simplicity, the description
below focuses on the estimation of temporal intervals (interval
timing; Merchant et al., 2013). Numbers refer to interval timing
in the subsecond range after Jazayeri and Shadlen (2010).
However, application to the estimation of, e.g., sound intensity
or spatial distances, is straightforward by reinterpreting the
variables accordingly.

2.1.1. Measurement

The measurement stage comprises a drift process with rate Am

that is corrupted by noise (diffusion) realized as a Wiener
process W with an amplitude σm. The dynamics are described
by a stochastic differential equation

dm = Am dt + σm dW, m(0) = 0 . (1)

The process is assumed to finish with the end of the stimulus and
its final state yields the measurement. We can calculate the latter
by integrating the above formula between stimulus start at t = 0
and end at t = T (Broderick et al., 2009) and obtain

mT := m(T) = Am T + σm
√
T ·N (0, 1) . (2)

For convenience let us write mT when we are considering a
trial in which the interval T was presented, i.e., m(T). The final

valuemT of the measurement process is Gauss-distributedmT ∼
N (Am T, σ 2

m T) with mean m̄T = E (m | T) = Am T and
variance Var (mT) = Var (m | T) = σ 2

m T. This value is
incorporated into the threshold of the reproduction phase as
detailed below.

For later use, let us also derive the overall variance of the
measurement Var (m) here. To calculate Var (m), we apply the
law of total variance and get

Var (m) = E (Var (m | T)) + Var (E (m | T))

= E
(

σ 2
m T

)

+ Var (Am T)

= σ 2
m E (T) + A2

m Var (T) . (3)

2.1.2. Reproduction

Similarly to the measurement stage, reproduction is modeled
as drift-diffusion with corresponding drift Ar and noise
amplitude σr . However, here, the process is not stopped after a
certain time but limited by an upper bound, i.e., a threshold θ

(Broderick et al., 2009),

dr = Ar dt + σr dW, r(0) = 0 and r(t) < θ . (4)

The time of threshold crossing from below, i.e., the first-passage
time of the drift-diffusion process, represents the response or the
reproduced stimulus interval, respectively. Since we have a drift-
diffusion process with a single threshold θ > 0, the distribution
of its first-passage times has an inverse Gaussian density IG(µ, λ):

f (x;µ, λ) =
[

λ
2πx3

]1/2
exp

(

− λ(x−µ)2

2µ2x

)

and is characterized by

X ∼ IG(µ, λ) : E (X) = µ, Var (X) = µ3/λ (Tuckwell, 1988). In

FIGURE 2 | Architecture of the model. The model comprises the measurement of the stimulus followed by its reproduction. Both stages are connected via the

threshold θ for the reproduction stage (dashed lines), which combines the measurement of the current stimulus mn with the threshold θn−1 from the previous trial, i.e.,

the reference. Example traces are displayed for intervals of 494 ms (blue) and 847 ms (red). Kernel density estimates are provided for the distributions of the model’s

stochastic variables (derived from 100 simulation runs for each stimulus in the range 494− 847 ms from Figure 1). Thick shaded lines in the measurement stage are

theoretical distributions. Dotted vertical lines and shaded areas in the reproduction stage give predicted mean± std.
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the present case, we have (cf. Simen et al., 2011):

rT ∼ IG

(

θT

Ar
,

θ2T

σ 2
r

)

: r̄T := E (r | T) = θT
Ar

,

Var (rT) := Var (r | T) = θT σ 2
r

A3
r

. (5)

The reproduced stimulus interval that corresponds to the
presentation of a stimulus T is denoted by rT and θT is the
threshold in this trial.

2.1.3. Threshold for Reproduction

As already mentioned above, in a trial n the threshold θn in the
reproduction stage depends on the stimulus’ measurement mn

and the threshold θn−1 of the previous trial

θn = amn + (1− a) θn−1, θ0 = m0 . (6)

The weight a is limited to the interval 0 < a ≤ 1. A value
of a = 0 has to be excluded since for a = 0 only the first
stimulus would be taken into account and has an everlasting
memory. The formulation in Equation (6) effectively introduces
a weighted average preventing unbounded growth. A reference
memory is formed and updated on a single trial basis. As we will
see later, the memory weight a has an immediate impact on the
relation between stimulus and response. The recursive definition
in Equation (6) can also be given as an iterative formula

θn = amn + a

n−1
∑

i=1

(1− a)n−imi + (1− a)nm0 . (7)

2.1.4. Further Conditions for the Model

It is assumed that drifts Am and Ar are positive numbers. In
addition, the drift-diffusion processes are supposed to act in drift-
dominated regimes with Am/r T > σm/r

√
T ·N (0, 1). Otherwise,

the measurement stage may yield negative values, resulting in
negative thresholds θ , which can not be hit from below. For the
sake of simplicity and without loss of generality, the model is
not formulated with a lower bound that only allows for positive
values. An account of the influence of a lower bound on the first
passage time distribution of a drift-diffusion process can be found
in Simen et al. (2011).

2.2. Analytical Approximations
Reproduced stimuli in the model are random variables drawn
from the distribution of first passage times in the reproduction
stage (Equation 5). Determining the distribution of these first
passage times p(rT) is complicated since the threshold θT itself is a
random variable. Obtaining p(rT) would thus require calculating
p(rT) =

∫

dθT p(rT | θT) p(θT) for which a general solution
can not be provided. For a Gaussian threshold distribution the
calculations are exemplified by Simen et al. (2011), resulting
in smeared-out inverse Gaussian distributions. Qualitatively
this results also holds true for other “reasonable” threshold
distributions (cf. Figure 2). To provide generic analytical
solutions for the present model, the section below focuses on
expected values and variances.

2.2.1. Expected Value of the Threshold

With randomized stimulus presentations and sufficiently large
numbers of preceding trials, we obtain the expected value of the
threshold in the current trial from Equation (7)

E (θn) = amn + a〈m〉
n−1
∑

i=1

(1− a)n−i + (1− a)nm0 , (8)

with 〈·〉 denoting the trial average. The sum in Equation (8) is a
geometric series and can be rewritten to

E (θn) = amn + a〈m〉
[

1− (1− a)n

1− (1− a)
− 1

]

+ (1− a)nm0

= amn + 〈m〉
[

1− a− (1− a)n
]

+ (1− a)nm0 .

We further simplify by taking the limit n → ∞ and get ϑ̄n : =
limn→∞ E (θn) = amn + (1 − a)〈m〉. From the last expression
we derive the expected value of the threshold in a trial in which
the interval T was presented, i.e., ϑ̄T = E (ϑ | m̄T) = E (ϑ | T).
Using 〈m〉 = Am 〈T〉 andmn = m̄T = Am T, we end up with

ϑ̄T = aAm T + (1− a)Am 〈T〉 . (9)

Note, that the average threshold ϑ̄T depends on both the current
stimulus T and the trial average 〈T〉. The latter is equal to the
mean of the stimulus distribution 〈T〉 = E (T). The description
below therefore uses E (T) instead of 〈T〉.

2.2.2. Variance of the Threshold

The above calculations only gave the mean threshold for a
particular trial. In a next step let us derive from Equation (7) the
corresponding variance. Calculating the variance of Equation (7)
we obtain a slightly more elaborate geometric series

Var (θn) = a2 Var (mn) + a2 Var (m)

n−1
∑

j=1

(1− a)2j

Var (θn) = a2 Var (mn) + a2 Var (m)
(1− a)2 − (1− a)2n

1− (1− a)2
.

Taking the limit n → ∞, yields

Var (ϑn) := lim
n→∞

Var (θn) = a2 Var (mn) +
a(1− a)2

2− a
Var (m) .

From the last expression we determine the variance of the
threshold in a trial with stimulus interval T, i.e., Var (ϑT).
The variance Var (mn) is given by the variance of the current
measurement Var (mT) = σ 2

mT, see Equation (2), and Var (m)

is given by Equation (3), i.e., Var (m) = A2
m Var (T) + σ 2

m E (T).
Insertion into the above formula yields

Var (ϑT) = a2σ 2
mT +

[

A2
m Var (T) + σ 2

m E (T)
] a(1− a)2

2− a
.

(10)
Thus, similarly to the average threshold (9) its variance also
depends on both the current stimulus T and the mean of the
stimulus distribution E (T). A third influence comes from the
variance of the stimuli Var (T).
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2.2.3. Expected Value and Variance for the

Reproduction

We can use the solutions for expected value and variance of
the threshold ϑT from Equations (9, 10) to extend the formulas
for the expected value and variance during reproduction in
Equation (5). To determine the average reproduced value r̄T :=
E (r | T) for a stimulus T, we apply the law of total expectation
and obtain

r̄T := E (E (rT | ϑT)) =
ϑ̄T

Ar
= a

Am

Ar
T + (1− a)

Am

Ar
E (T) .

(11)
From Equation (11) we also find an expression for the bias
corresponding to a stimulus T

BIASrT := r̄T − T = −
(

1− a
Am

Ar

)

T + (1− a)
Am

Ar
E (T) .

(12)
Equations (11, 12) directly relate the stimulus T to its reproduced
value. Expected value and bias of the reproduced stimuli not
only depend on the current stimulus T but also on the expected
value of the stimulus distribution E (T). The latter adds an
offset to the linear relations. The memory weight a contributes
to the slope of the relations and thus determines the strength
of the regression effect. Values of a closer to zero result in
stronger regression to mean; for values of a closer to one,
regression vanishes and reproduction is veridical. As we will
see in Section 3, the weight a can be constrained by other
model parameters to minimize reproduction errors. Regression
and range effects are consequences of such optimization
efforts.

Expected value and bias of the reproduction according to
Equations (11, 12) also depend on the ratio of drifts from
both production and reproduction, Am and Ar , respectively.
Calculating the expectations

E (r̄T) =
Am

Ar
E (T) and E

(

BIASrT
)

=
(

Am

Ar
− 1

)

E (T) (13)

shows that for mismatches between the drifts Am and Ar we get
overall deviations between stimuli T and reproductions rT . These
non-zero average biases may explain overall over-estimation (for
Am/Ar > 1) and overall under-estimation (Am/Ar < 1),
respectively.

To determine the variance Var (rT) : = Var (r | T) in a trial
in which the stimulus T was presented, we apply the law of total
variance and obtain

Var (rT) = E (Var (rT | ϑT)) + Var (E (rT | ϑT))

= E

(

ϑT σ 2
r

A3
r

)

+ Var

(

ϑT

Ar

)

=
(

aAmσ 2
r

A3
r

+
a2σ 2

m

A2
r

)

T

+ (1− a) E (T)
Am σ 2

r

A3
r

+
[

A2
m Var (T) + σ 2

m E (T)
] a(1− a)2

A2
r (2− a)

. (14)

Like the variance of the threshold, also the variance Var (rT)

depends on the current stimulus T and the statistics of
the stimulus distribution given by E (T) and Var (T). Note
that the monotonic relation (14) between stimulus T and
variance Var (rT) of its reproduction is equivalent to scalar
variability.

With formulas (11–14), we have a full characterization of
the model linking the stimuli T to their reproduced values rT .
The description also details the dependence on the different
model parameters, i.e., the internal processing. Figure 1 gives
examples how formulas (11–14) fit to simulations of the
model.

3. RESULTS

As displayed in Figure 1, the model described in Section 2
can reproduce the typical psychophysical findings for
magnitude estimation: regression effect, range effect, scalar
variability, and sequential effects. However, it remains open
how we can motivate the choice of parameters that fit the
psychophysical findings. The upcoming paragraphs focus on this
question.

3.1. How to Minimize Reproduction Errors?
Different factors of uncertainty challenge precise magnitude
estimation as it is formulated by themodel— such as the statistics
of the stimuli and internal sources of noise σm and σr . How could
a subject cope with these noise sources to minimize estimation
errors?

For optimal magnitude reproduction one needs to minimize
the mean squared error between a stimulus T and its reproduced
value rT , i.e., MSEr = E

[

(rT − T)2
]

. The mean squared error can
be partitioned into a variance and a bias term

MSEr = Var (r) + BIAS2r . (15)

The description of the variance Var (r) in Equation (15)
depends on the purpose of optimization. In fact, it is
not the total variance for the reproduction that should be
minimized here. Rather subjects would want to minimize
the variability of individual measurements of a particular
stimulus E (Var (rT)) = E (Var (r | T)); cf. Jazayeri and Shadlen
(2010). From Equation (14) the variance E (Var (rT)) is given by

E (Var (rT)) =
(

Amσ 2
r

A3
r

+
a2σ 2

m

A2
r

)

E (T)

+
[

A2
m Var (T) + σ 2

m E (T)
] a(1− a)2

A2
r (2− a)

. (16)

The term BIAS2r in Equation (15) refers to the mean squared or
quadratic mean of all biases in a test range, i.e., E

(

BIAS2rT
)

. Using
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Equation (12) it is given by

BIAS2r = E
(

BIAS2rT
)

= E

{

[

−
(

1− a
Am

Ar

)

T + (1− a)
Am

Ar
E (T)

]2
}

=
(

1− a
Am

Ar

)2

E
(

T2
)

+
(

A2
m

A2
r

(1+ a)− 2
Am

Ar

)

(1− a)E (T)2 . (17)

With Equations (16, 17) the MSEr reads as follows

MSEr = E (Var (r | T)) + BIAS2r

=
(

Amσ 2
r

A3
r

+
a2σ 2

m

A2
r

)

E (T) +
[

A2
m Var (T) + σ 2

m E (T)
]

a(1− a)2

A2
r (2− a)

+
(

1− a
Am

Ar

)2

E
(

T2
)

+
(

A2
m

A2
r

(1+ a)− 2
Am

Ar

)

(1− a)E (T)2 . (18)

Let us explore the possibility that the memory a of the
system can be adapted to minimize the mean squared error,
i.e., amin : = mina (MSEr). Recall that a is connected to
the slope of the relation between stimulus T and its average
reproduction r̄T and thus determines the strength of the
regression effect; cf. Equation (11). To find amin we take the
first derivative with respect to a of Equation (18) and set
it to zero

0
!=

d

da
MSEr =

d

da
E (Var (r | T)) +

d

da
BIAS2r

0 =
(

Am

Ar

)2

Var (T)

[

2

(2− a)2
− 2a

]

+
σ 2
m

A2
r

E (T)
2

(2− a)2
+ 2

(

Am

Ar

)2 [

a−
Ar

Am

]

Var (T)

0 =

[

Var (T) +
(

σm

Am

)2

E (T)

]

1

(2− a)2
−

Ar

Am
Var (T) .

Solving for a = amin, we obtain

amin = 2−

√

√

√

√

Am

Ar

[

(

σm

Am

)2 E (T)

Var (T)
+ 1

]

. (19)

Simulation results confirm the derivation that led to
Equation (19); cf. Figure 3A.

According to Equation (19) a subject may reduce its overall
reproduction error by adjusting the strength of regression,
depending on the values of three different relations: (i) the
drift ratio Am/Ar , which may account for overall biases, cf.
Equation (13); (ii) the inverse signal-to-noise ratio (SNR) of the
measurement σm/Am, quantifying internal noise; and (iii) the
inverse of the index of dispersion (variance-to-mean ratio, Fano

FIGURE 3 | Reproduction error and model parameters.

Root-mean-squared error (left panels) and its representation on a quarter circle√
Var (r) vs. BIASr (right panels) are displayed for the optimal memory

weight amin conditioned on E (T) /Var (T) (A), the inverse SNR of

measurement σm/Am (B), the drift ratio Am/Ar (C), and the noise level σr
during reproduction (D). Solid lines show the predictions of amin for different

values of the respective ratio or parameter. Small numbers mark the range of

values. Large dots mark the theoretical predictions from Equation (19) and

correspond to the memory weights a taken in Figure 1. Colors as in Figure 1.

In (A) also simulation results are displayed for the three stimulus ranges from

Figure 1 and different values of a (small dots, fainter colors correspond to

smaller values of a). The simulations confirm the theoretical predictions for the

optimal values amin.

factor) of the stimulus distribution E (T) /Var (T), characterizing
the stimulus distribution, and constituting an external source of
uncertainty — in contrast to the other two ratios that are due to
internal processing. Note that noise in the reproduction, i.e., σr ,
does not influence amin, which intuitively makes sense since the
update-step of the memory weight a precedes the reproduction
stage.
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3.2. Optimality Predicts Range and
Regression Effects
To evaluate how the optimal memory weight amin depends on
the above ratios, let us consider their individual influences on
the reproduction error (Figure 3) and determine their interaction
(Figure 4). Figure 3 displays the reproduction error as a function
of amin for different choices of the model parameters. Instead
of the mean squared error its square root RMSEr =

√
MSEr

is plotted, which allows for the intuitive visualization of the
Pythagorean sum (15) on quarter circles of similar MSEr-levels
(Figure 3, right panels).

The MSEr increases with larger ratio E (T) /Var (T);
Figure 3A. The dependence serves as an explanation of range
effects in magnitude estimation, i.e., dependencies on the
stimulus statistics, — an experimentally testable prediction
(cf. 4). A larger ratio E (T) /Var (T) corresponds to a narrower
stimulus distribution and thus smaller differences between
particular stimuli, which in turn are harder to distinguish.
This increases uncertainty about the stimuli, which a subject
could balance by increasing regression and hence treat different
stimuli as more similar (closer to their mean) as they in fact
are. Stronger regression is obtained by letting the memory
weight amin tend to zero. Note that stronger regression,
i.e., smaller amin, results in a stronger change in the BIASr-
component compared to the variance component

√
Var (r)

(Figure 3A, right panel). Figures 4A,B examines the relation
between E (T) /Var (T) and the other model parameters
with regard to the optimal weight amin. Only regions with
amin ∈ (0, 1] are displayed to obtain parameter combinations
where optimization is possible. The parameter regions where

MSEr could be optimized shrink with larger E (T) /Var (T) and
are further diminished when conditioned on the drift ratio and
SNR−1 (Figures 4A,B).

Larger measurement noise, i.e., SNR−1 = σm/Am, increases
MSEr (Figure 3B); to balance this the optimal memory
weight amin decreases accordingly (Figures 3B, 4C,D). For
larger measurement noise, reproduction errors are minimized
by increasing regression. The regression effect can thus be
interpreted as a strategy to reduce reproduction errors given
noisy estimates. In contrast, very precise estimation would
lead to veridical judgements about the stimuli. Note, the
connection between the inverse SNR and the Weber fraction
from psychophysics. Larger SNR−1 corresponds to reduced
sensory resolution, i.e., lower discriminability, which results in
a larger Weber fraction.

The optimal weight amin also depends on the drift

ratio Am/Ar , which if not equal to one, leads to systematic biases,

i.e., overall under- or overestimation; cf. Equation (13), and
thus larger MSEr (Figure 3C). To compensate for the introduced

overall bias (Figure 3C, right panel), drift ratios greater than one

require smaller amin and drift ratios smaller than one require

larger amin (Figures 4C,D). Note that the impact of the drift

ratio Am/Ar on amin might point in the opposite direction as
that of the external and internal uncertainties, E (T) /Var (T) and
σm/Am, respectively.

In summary, the dependence of amin on the noise level
during measurement σm/Am predicts the regression effect and
the dependence on the stimulus statistics E (T) /Var (T) explains
the range effect. The dependence on the ratio of drifts Am/Ar

explains systematic effects like overall over- and underestimation.

FIGURE 4 | Optimality characteristics. (A,B) Optimal weight amin in dependence on the stimulus distribution. (A) Optimal weight amin with SNR−1 fixed to 4

(upper panel) and drift ratio of 1 (lower panel), respectively. Same color bar as in (C, left). (B) Regions of amin ∈ (0, 1] for three different SNR−1 and drift ratios,

respectively; thick colored lines amin = 0, thin colored lines amin = 1. (C) Optimal memory weight amin as a function of drift ratio and inverse signal-to-noise ratio. Left:

Optimal weight amin for the stimulus range 494− 847 ms. Right: Regions of amin ∈ (0,1] for each stimulus range from Figure 1. Colors as in Figure 1. (D) Optimal

weight amin as a function of the drift ratio and inverse SNR, respectively, for all three stimulus ranges from Figure 1. Again an inverse SNR of 4 and a drift ratio of 1,

respectively, have been used. Gray dashed lines mark those values. Simulation data (1000 runs per stimulus) confirm the theoretical prediction (shaded areas of same

color, 10% percentile for minimal MSEs).
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As already mentioned above noise in the reproduction σr does
not affect amin; cf. Equation (19). Nevertheless, MSEr gets
increased with larger reproduction noise (Figure 3D). Noise in
measurement and reproduction therefore differently affects the
bias and the variance of stimulus reproduction.

3.3. Explaining Sequential Effects
A fourth class of psychophysical characteristics that was
mentioned in the introduction was not considered so far, i.e.,
effects related to stimulus order (Cross, 1973; Petzschner et al.,
2015). Due to the trial-by-trial update rule incorporated in the
model, previous trials unavoidably affect the reproduction of
the current stimulus. Figure 1C exemplifies this via the biases
for a particular stimulus conditioned on the stimulus in the
previous trial. In general the bias for the current stimulus is
proportional to the immediately preceding stimulus. To evaluate
this effect analytically, let us reconsider Equation (7). We take
out trial n − 1 from the sum and proceed in similar steps to
the derivation in Section “2.2,” which lead to Equation (9) and
finally to Equation (11). The average response to stimulus T given
that stimulusTn−1was presented in the preceding trial is obtained
from

r̄T,Tn−1 = a
Am

Ar
T + a(1− a)

Am

Ar
1Tn−1 + (1− a)

Am

Ar
E (T)

= r̄T + a(1− a)
Am

Ar
1Tn−1 . (20)

We express the previous stimulus relative to the mean E (T) here,
i.e., 1Tn−1 = Tn−1 − E (T). The effect of the previous onto the
current trial, we evaluate by the corresponding BIAS

BIASTn,Tn−1 = r̄Tn,Tn−1 − T = BIASrT + a(1− a)
Am

Ar
1Tn−1 .

(21)
Thus, when a stimulus value Tn−1 larger than E (T) was
presented in the previous trial a positive term is added to BIASrT .
For a stimulus Tn−1 < E (T) the term is negative and the bias will
become smaller (Figure 1C).

4. DISCUSSION

The model introduced in the present paper describes
magnitude estimation as a two-stage process, measurement
and reproduction, consisting of noisy integrators linked by an
internal reference (implicit standard or prior) that is updated on
a trial-by-trial basis.

Trial-by-trial update rules have been used by others to explain
aspects of magnitude estimation (Hellström, 2003; Dyjas et al.,
2012; Bausenhart et al., 2014) and are also at the core of the
Bayesian model by Petzschner and Glasauer (2011), where such
updating is used to adjust prior knowledge about the stimulus
distribution. Iterative updating in the present model estimates
the moments of the stimulus distribution to form an internal
reference. At least humans are known to be able to maintain
(Morgan et al., 2000) and to quickly adapt such an internal
reference (Berniker et al., 2010).

Noisy integrative processes well describe decision-making at
the behavioral level (Brunton et al., 2013). Moreover, several
brain regions show noisy integration during decision-making
(Shadlen and Newsome, 2001; Liu and Pleskac, 2011; Shadlen
and Kiani, 2013; Hanks et al., 2015) at least at the population
level. Whether noisy integration is generated by ramp-like noisy
integration in single neurons has been questioned recently
(Latimer et al., 2015). In any case, the present model suggests that
noisy integration is also crucial to non-binary cognitive demands
such as the representation and processing of magnitudes.

4.1. Connection to Psychophysical Effects
of Magnitude Estimation
The presented model reproduces the main behavioral
characteristics of magnitude estimation Figure 1; (Petzschner
et al., 2015): Estimates tend toward the mean (regression effect)
and this effect scales with the range of stimuli chosen (range
effect). Errors monotonically increase with the size of the
stimulus (scalar variability). In addition, the sequence in which
stimuli are presented influences magnitude judgments. Such
sequential effects are by design captured by the model due to the
trial-by-trial update of the internal reference. The major insight
from this paper therefore is that iterative updating can explain
regression and range effects (see also Bausenhart et al., 2014).
As such both effects are consequences of strategies to minimize
reproduction errors. With larger uncertainty about the stimuli,
stronger regression helps to minimize reproduction errors and
hence optimizes judgements. Uncertainty may stem from both
internal and external sources, whose influence can be evaluated
separately by the presented approach.

Internal noise is quantified by the signal-to-noise ratio (SNR)
during measurement, i.e., inverse SNR in Equation (19), which
corresponds to the Weber fraction in psychophysics and thus the
discrimination abilities of a subject. Weber fractions depend on
the stimulus modality and are subject-specific. “Modality effects”
and individual differences are well known in interval timing
literature (Shi et al., 2013). Cicchini et al. (2012) showed that
percussionists precisely reproduce temporal intervals and display
very weak regression effects in contrast to normal subjects. In
addition, the results depended on stimulus modality. For all
subject groups, performance was better when intervals were
given by auditory rather then visual stimulation. The results
of Cicchini et al. (2012) are in line with the present model
due to the connection between regression effect and Weber
fraction. To explain their experimental data, Cicchini et al. (2012)
proposed a Bayesian model that included information about
the discrimination abilities (Weber fractions) and obtained very
similar results to the present work. Increasing SNR (decreasing
Weber fraction) during measurement would require adjusting
the drift rate Am such that it is as large as possible compared
to the noise σm. However, the drift rate Am will be limited
from above by neuronal and network processes, and related
time constants (Murray et al., 2014). Analogous constraints were
derived by Cicchini et al. (2012) on the width of the prior
distribution. Parkinson patients tested off of their medication
display strong regression effects (Malapani et al., 1998, 2002).
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In addition, the precision of the responses is reduced. This
is in line with the present model, since stronger regression is
predicted with reduced precision (i.e., increased variance or
reduced SNR).

External uncertainty is due to stimulus context, i.e., the
statistics of the stimuli, which is quantified by the ratio between
mean and variance of the stimulus distribution in the present
model. Larger ratios (narrower stimulus distributions) should
lead to stronger regression. Intuitively this means that the
width of the stimulus distribution becomes small compared
to its mean and individual stimuli can not be discriminated
anymore, hence uncertainty increases. The regression effect
counteracts this by treating different stimuli similar to their
mean. Note the similarity to the Weber-Fechner law, which
predicts decreased discriminability with larger stimuli. In line
with this view, more difficult magnitude estimation tasks
should display stronger regression effects (Teghtsoonian and
Teghtsoonian, 1978; Petzschner et al., 2015).

Systematic over- or underestimation are often found in
magnitude estimation experiments (for examples see Jazayeri
and Shadlen, 2010; Petzschner and Glasauer, 2011; Cicchini
et al., 2012). Such differences may, e.g., occur due to attentional
and subject-related factors. In the model this would be
attributed to differences in the drift rates from measurement and
reproduction. Note that only differences are important, absolute
scales of (neural) processing (Kiebel et al., 2008; Murray et al.,
2014) are not crucial as long as they are similar across processing
stages.

The standard deviation is a monotonically increasing function
of the stimulus strength in the model presented here; cf.
Equation (14) and Figure 1B. As such the model is in line
with the Weber-Fechner law (scalar variability). However, the
Weber-Fechner law predicts a linear increase of variability
(standard deviation) as a function of magnitude. According
to Equation (14) the increase of the standard deviation is
sub-linear (square root) in the present model. This sub-
linearity may be rather weak (cf. simulation data and theoretical
predictions in Figure 1B) and thus may still be in line with
experimental data, i.e., differentiating between linearity and weak
sub-linearity may be hard from real data. Certain extensions
of the model may help to obtain a linear relation. One
possibility is introducing a drift ratio Am/Ar that scales with
the stimulus T. Whether scalar variability applies to magnitude
estimation without restrictions and across all ranges is not
clear. This question is, for example, still a matter of debate
in interval timing literature, where non-scalar variability has
been reported for specific tasks or situations (like timing while
counting or singing; Hinton and Rao, 2004; Grondin and Killeen,
2009).

4.2. Predictions
The formulation of the optimal memory weight amin according
to Equation (19) allows for a number of experimentally testable
predictions: (i) Reproduced magnitudes should depend on the
stimulus distribution. The experimental studies by Jazayeri and
Shadlen (2010), Petzschner and Glasauer (2011), Cicchini et al.
(2012) only increased the mean of the stimulus distribution

between ranges, which would increase the mean-to-variance
ratio and predict stronger regression, i.e., a decrease in a (cf.
Figure 1A). Stimulus distributions with the same mean but
larger variances should result in less regression. Indeed, for their
experiments on range effects in loudness and distance estimation,
Teghtsoonian and Teghtsoonian (1978) varied the width of
the stimulus distribution instead of the mean. They found
increasing power exponents with wider stimulus distributions.
(ii) Regression to the mean should depend on the discrimination
abilities of the individual. Subjects with precise perception of
the stimulus magnitude under investigation should show less
regression than subjects with reduced abilities; (e.g., Cicchini
et al., 2012). This should depend on stimulus modality (Cicchini
et al., 2012; Shi et al., 2013) and change with training for
a specific task. (iii) Seldom stimuli with a low probability of
occurrence and with a magnitude way below or way above the
stimulus distribution, should not influence the internal reference.
(iv) For strong regression the convergence dynamics of the
reference should be much slower then for subjects showing weak
regression. The influence of previous stimuli should correlate
with the level of regression as well as updating of the references
after changing the stimulus distribution within an experimental
session.

4.3. Connection to Bayesian Models of
Magnitude Estimation
Magnitude estimation has been successfully explained by
Bayesian models (Jazayeri and Shadlen, 2010; Petzschner and
Glasauer, 2011; Cicchini et al., 2012; Petzschner et al., 2015). The
relation between the present work and the Bayesian approaches
is not investigated in detail. Nevertheless, some connections shall
be discussed. An equivalence between drift-diffusion models and
Bayesian frameworks has been described for modeling perceptual
decision making (Bitzer et al., 2014) and may also be possible to
be established for the model presented here. The measurement
phase results in an internal estimate m of a stimulus T drawn
from a likelihood distribution p(m |T). The reproduction process
gives a posterior estimate, the reproduced stimulus r, drawn
from the distribution p(r |m). It has to be explored, however,
(i) whether the update rule Equation (6) implements a way of
connecting both the likelihood p(m |T) and the posterior p(r |m)
in a Bayes-optimal way; (ii) in how far the update-rules used
here and in Petzschner and Glasauer (2011) correspond to
each other; and (iii) if the remarkable agreement between
the present results and that of the Bayesian description by
Cicchini et al. (2012) indicates more than conceptual conformity,
i.e., the connection between minimization of reproduction
errors and strength of regression, and their modulation by
the precision of sensory representations and by the stimulus
distribution.

In general, interpreting the regression effect as a means of
error minimization shares similarities with concepts like the free-
energy principle (Friston, 2010) and information maximization
(Linsker, 1990). Error minimization corresponds to the idea of
minimizing surprise (free energy) or prediction error and hence
maximizing reward.
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4.4. Neural Implementation?
Noisy integrative activation patterns are found in several brain
regions during decision-making tasks (for a recent review see,
e.g., Shadlen and Kiani, 2013). It remains open, however, if
such patterns are also present during magnitude estimation
as proposed by the model presented here. Neurons sensitive
to elapsed time have been shown, for instance, in parietal
cortex (Leon and Shadlen, 2003), hippocampus (MacDonald
et al., 2011; Sakon et al., 2014), and basal ganglia (Jin et al.,
2009; Mello et al., 2015). Neurons in rat hippocampus code
for distance covered (Kraus et al., 2013). Single neurons in
rat prefrontal cortex show temporally modulated activation
patterns during interval timing (Kim et al., 2013; Xu et al.,
2014). Such single cell activation patterns may form a set of
basis functions to drive noisy integrative processes (c.f. Ludvig
et al., 2008; Goldman, 2009; Mello et al., 2015) and may arise
in neural networks with balanced excitation and inhibition
(Simen et al., 2011), from firing rate adaptation (Reutimann
et al., 2004), or from single neuron dynamics (Durstewitz,
2003) — although it has been questioned recently if ramp-
like activity is present in single cells (Latimer et al., 2015).
It is, furthermore, conceivable to obtain processes akin to
noisy integration from state dependent networks (Karmarkar
and Buonomano, 2007; Buonomano and Laje, 2010; Laje and
Buonomano, 2013). Another question that arises when thinking
about a neural implementation of the model introduced in this
paper concerns the implementation of the adaptive threshold.
It has been suggested from network models of perceptual
decision making that adaptive thresholds for noisy integrative

processesmay be implemented with the help of synaptic plasticity
in cortico-striatal circuits (Lo and Wang, 2006; Wei et al.,
2015).

5. CONCLUSIONS

The model presented in this paper describes magnitude
estimation as two-stages of noisy integration linked by an
iteratively updated internal reference memory. Behavioral
characteristics well known from magnitude estimation
experiments are not only reproduced but also explained as
a means of minimizing errors given estimates corrupted by
internal and external sources of noise. This paper thus shows that
noisy integrative processes may be crucial for cognitive demands
beyond perceptual decision making, such as the processing of
magnitudes — suggesting an overall computational principle
and likely common neural mechanisms that we use to perceive
and interpret our environment.
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