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Intravital imaging is becoming more popular and is being used to visualize cellular motility and
functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be
used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging
studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical
background. During their in vivo journey, autoreactive T cells interact with many different cells. At first,
autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where
they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact
with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the
blood—brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens
presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using
protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an
early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-
cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital
imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging
deepens our knowledge of cellular functions in living organs and also provides a platform for devel-
oping therapeutic treatments.
Copyright © 2016, Japanese Society of Allergology. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

conditions, cells are cultured and/or stored. However, an in vitro
system lacks blood flow and often lacks three-dimensional struc-

During inflammation, many different types of immune cells
migrate to and accumulate in the lesion. Those cells interact with
each other and work together. The functions of each cell population
have often been studied in vitro after isolation from animals, which
has provided valuable information. Under these experimental
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ture, which resembles environment in the organ. In addition, pu-
rified cytokines and growth factors are often added to the culture,
which might create different conditions from in vivo, where cells
are exposed to a mixture of those factors. Therefore, to understand
cellular functions, in vivo analysis should be considered.

In vivo experiments have certain disadvantages, as it is much
more complicated and difficult to perform than in vitro experi-
ments. The experimental animals must be kept under physiological
conditions in order for proper experiments to be performed. If this
is not the case, the results obtained are not accurate. In addition,
researchers need to consider how to identify and analyze cells in
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living animals. In contrast to in vitro experiments in which anti-
body staining and cell labeling can be easily done, it is more chal-
lenging to mark target cells in vivo. Furthermore, the number of
cells that can be analyzed in vivo, especially by intravital imaging, is
usually much fewer than that in vitro. This means that there is al-
ways a risk that intravital imaging detect only special event at
special location. Therefore, the best approach is to combine intra-
vital imaging and conventional methods. Intravital imaging pro-
vides information regarding cellular functions under physiological
conditions, whereas conventional methods provide larger quanti-
ties of data regarding cellular status.

Our group is focusing on the infiltration of encephalitogenic T
cells into the central nervous system (CNS). We use experimental
autoimmune encephalomyelitis (EAE), a widely used animal model
for multiple sclerosis,' which is considered an autoimmune disease
in humans. EAE can be induced by active immunization of CNS-
specific antigens emulsified in complete Freund's adjuvant (active
EAE). Immunized antigen is taken up by dendritic cells and mac-
rophages and presented to CD4+ helper T cells. Thereafter, CD4+ T
cells migrate through the body. Alternatively, EAE can be induced
by adoptive transfer of myelin antigen-specific T cells (transfer
EAE)’ or by using transgenic mice that harbor myelin antigen-
specific T cells in high numbers (spontaneous EAE).> In any case,
CNS-infiltrating CD4+ T cells recognize specific antigens presented
by local antigen-presenting cells (APCs), and they become acti-
vated, produce inflammatory cytokines, and initiate the inflam-
matory reaction. During inflammation, both innate immune cells
(such as macrophages) and adoptive immune cells (such as Tand B
cells) infiltrate into the CNS and contribute to CNS inflammation.
Macrophages have both pro- and anti-inflammatory roles during
inflammation.*” Infiltrated B cells produce antibodies in the cere-
brospinal fluid,® which may either enhance or control inflamma-
tion. It was shown that regulatory T cells (Treg) infiltrate into the
CNS, although their function there is still largely unknown. Our
ultimate goal is to illustrate the functions of and interactions among
infiltrating immune cells during CNS inflammation. In this review,
we will focus on cellular interactions in EAE, especially by using
intravital imaging.

Intravital imaging: microscopy

Many different methods of intravital imaging are available. For
example, magnetic resonance imaging (MRI) is used for diagnosis
of MS patients to detect inflammation. MRI is non-invasive and
provides valuable information. However, a conventional MRI ma-
chine with a 3T magnetic field does not provide sufficient resolu-
tion for single cell imaging.” Recently, a higher-powered MRI with a
7T magnetic field was introduced that can visualize CNS inflam-
mation with surprisingly high resolution.” Still, it is not sufficient to
see single cells in the CNS. The same holds true for computed to-
mography. The above methods are very useful for diagnostic use,
but not for single-cell imaging.

To achieve single-cell imaging, microscopic techniques are
commonly used. In the earliest phase of intravital imaging, leuko-
cytes were imaged in the blood vessels of frogs by using bright-field
microscopy (reviewed in®). This opened up new methodologies for
allowing the observation of cellular motility directly in vivo.
However, the target tissue must be thin and relatively transparent
because bright-field techniques are used. Furthermore, cell types
are hard to distinguish. The use of fluorescent microscopy allows
one to focus on specific cell types after proper labeling (for dis-
cussion of labeling, please refer to the next section.). Now
researchers can analyze the cells of interest in the living animal.
However, fluorescent microscopy can only achieve a relatively

small penetration depth. Imaging is thus possible only close to
the surface.

It is possible to increase the penetration depth of fluorescent
imaging, either by using stronger labeling, objectives with higher
numerical aperture (N.A.), or stronger excitation power. The
development of confocal microscopy equipped with stronger lasers
increased the penetration depth dramatically. Confocal microscopy
has better spatial resolution and provides clearer images than does
fluorescent microscopy. One disadvantage of confocal microscopy
is slow image acquisition because of the need to do line scanning.
This can be improved by using spinning disk confocal® or light sheet
microscopy,’® which can perform faster acquisition. Another
disadvantage of confocal microscopy is phototoxicity, which is
difficult to prevent because fluorochromes are excited by strong
laser light. Excitation laser power can be reduced, but the emitted
signal becomes weaker.

To increase the penetration depth and reduce phototoxicity,
two-photon microscopy was developed.'! Two-photon microscopy
can share most equipment parts with confocal microscopy, except
the excitation laser. The difference between one-photon micro-
scopy (confocal microscopy) and two-photon microscopy is the
mechanism of excitation. One photon excites one fluorescent
molecule in confocal microscopy, whereas two photons excite one
fluorescent molecule in two-photon microscopy. To achieve this
two-photon excitation, high photon density is absolutely neces-
sary.'? Therefore, instead of a continuous confocal laser that emits
photons spontaneously, a pulsed two-photon laser can accumulate
generated photons and emit them in time intervals.”> As a result,
without changing the average laser power, a two-photon laser in-
creases the peak power dramatically. Commonly used commercial
two-photon lasers pulse at the frequency of 80 MHz (80 million
pulses per second), which can provide a sufficient pulse even
during very fast scanning. Two-photon excitation occurs only at the
focal point due to the requirement of high photon density. To some
extent, excitation of fluorochromes produces oxygen radicals,
which induce cellular toxicity. Since fluorochromes are excited only
at the focal point in two-photon excitation, two-photon microscopy
minimizes phototoxicity. Another advantage of two-photon mi-
croscopy is penetration depth. Because two photons excite one
fluorescent molecule, each photon contributes only half the
amount of energy compared with conventional one-photon exci-
tation. This indicates that two-photon microscopy is equipped with
a laser of twice the wavelength than that of confocal microscopy.
Because longer-wavelength light has less of a scattering effect in
tissues, two-photon microscopy shows higher penetration depth.
All of these factors result in two-photon microscopy being an
indispensable method for intravital imaging.

Intravital imaging set-up

It is necessary to use anesthesia to stabilize animal movement.
At the same time, animal conditions must be kept as close to
physiological as possible during intravital imaging. We use a fen-
tanyl mixture for induction and isoflurane during intravital imag-
ing. Animals are intubated via tracheostomy and connected to a
small animal ventilation machine. Then, isoflurane is continuously
delivered during intravital imaging. As an alternative, anesthesia
injection of a ketamine/xylazine mixture can be used. Injection
anesthesia is relatively easy to perform because no additional
equipment is necessary. However, additional injections to keep
animals anesthetized are absolutely required for longer imaging
times, which might be not be feasible without stopping image
acquisition.

We use additional equipment as follows to monitor and control
animal conditions. An anesthesia monitor is used to monitor O, and
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CO, concentration in the inspiratory and expiratory gas. The ma-
chine can also monitor airway pressure and isoflurane concentra-
tion. Because an animal's body temperature decreases during
anesthesia, we install a heat pad under the animal. The heat pad is
connected to a temperature sensor, and it keeps the body tem-
perature stable during intravital imaging. An electrocardiogram is
monitored continuously. For intravenous injection during imaging,
an intravenous cannula is inserted into the tail vein and saline so-
lution is injected slowly to prevent blood clotting. These machines
are monitored and controlled by custom-made software with
adjustable alarms. All of this equipment is not strictly necessary,
but it helps for stable imaging.

To acquire stable images, it is very important to stabilize the
animal mechanically. To accomplish this, we used custom-made
devices. For spinal cord imaging, we used a forceps-like device
and clamp the spinal cord from both sides of the imaging area
(similar to'®). For spleen imaging, the spleen is isolated from the
body without damaging the blood vessels and placed onto a heated
stage.'” Other researchers have published schemes for stabilization
of lymph nodes,'® ear skin,'” and liver.'®

How to label target cells

To identify target cells in vivo, it is necessary to stably label
them. Commonly used labeling methods are listed in Table 1. Early
studies used synthesized dyes, such as 5-(and-6)-carboxy-
fluorescein diacetate succinimidyl ester (CFSE) and 5-(and-6)-(((4-

Table 1
Commonly used labeling dyes for intravital imaging.
Category Name EX2P EX1P EM Ref
Synthesized dyes CFSE 780 492 517 57,58
—890
CMAC 800 353 466 59
CMFDA 800 492 517 59,60
CMTMR 800 541 565 5961
—960
Hoechst33342 890 350 461 61,62
—960
SNARF 780  488-530 580/640 36364
—900
Texas-Red 890 595 615 2765
—930
Fluorescent protein  CFP 870 433 475 66,67
—910
DsRed 935- 558 583 27
GFP 880 488 509 6168
—960
Kaede before 1014 508 518 56
conversion
Kaede after 1014 572 582
conversion
TdTomato 980 554 581 69
YFP 870 513 527 .
—910
Calcium sensing Cameleon 850 440 475/530 70
Fluo4 840 494 506 71
FuraRed 860  457/488 660 72
—920
GCaMP3 860 496 513 72
—920
Indo-PE3/AM 740 346 405/475 73
R-CaMP2 1020 565 583 74
TNXXL 850 433 475/527 7°
Twitch 1 835 433 475/527 41
Twitch 2b 835 433 475527 ¢
Functional sensor ~ ERK FRET sensor 840 433 475(527 77
NFAT-GFP 880 488 509 4344

PKA FRET sensor 840 433 475527 77

chloromethyl)benzoyl)amino)tetramethylrhodamine (CMTMR).""
In addition to these simple dyes, functional dyes that can monitor
cellular function, such as intracellular calcium levels, are widely
used. Although these dyes stain cells very strongly, cells lose fluo-
rescence and become undetectable if they are proliferating.

Genetic modification induces expression of fluorescent proteins.
In addition to global expression of green fluorescent protein
(GFP),? a variety of transgenic mice has become available as listed
in Table 2. By using knock-in technology, a fluorescent protein can
be inserted under the control of a specific promoter. For example,
yellow fluorescent protein (YFP) was inserted under control of the
CD11c promoter to cause YFP expression only in dendritic cells.?!
Alternatively, a fluorescent protein can be fused with another
protein that is expressed only in special cell lineage. For example,
transgenic mice expressing the FoxP3-GFP fusion protein can be
useful for the study of regulatory T cells.?” These gene-modified
animals continuously produce fluorescent protein within the
cells, even in proliferating cells. The gene that encodes the fluo-
rescent protein can be delivered by a viral vector, such as a retro-,
lenti- or adeno-virus. Usually viral transduction can be quickly
done to compare the generation of gene-modified animals. In
general, protein labeling is weaker than chemical labeling, which
influences penetration depth.

We primarily used retroviral gene transfer to label our derived
encephalitogenic T cells.?> To achieve retroviral transduction, the
target cells must be proliferating. Therefore, we stimulate T cells
in vitro with a specific antigen; in our case, CNS-specific
autoantigen together with APCs. After inducing proliferation of
autoreactive T cells, they are co-cultured with retroviral vector-
producing cells.”> Transduced T cells can be selected by using
antibiotics because the retroviral vector contains an antibiotic
resistance gene.

Encephalitogenic T cells in peripheral organs

When EAE is induced by adoptive transfer of encephalitogenic T
cells, these T cells do not infiltrate into the CNS directly, but spend
some days in peripheral organs. Odoardi et al. showed that T cells
accumulate in the lung immediately after transfer.”* Intravital im-
aging showed that encephalitogenic T cells actively migrate within
the airways. Interestingly, encephalitogenic T cells acquired a
migratory phenotype in the lung and penetrated into the CNS more

Table 2
List of transgenic mice which are often used for intravital imaging.
Mouse line Express in Ref
CCR2-RFP Macrophages 78
c-CSF1R-GFP Neutrophils 79
Monocytes
Macrophages
CD11c-YFP DC 80
CD2-RFP T cells 9
CFP global 66
CX3CR1-GFP Microglia 81
CXCR6-GFP NK T cells 82
DsRed global 83
FoxP3-GFP Treg 84
GFP Global 85
IFNY-YFP IFNg producing cells 86
IL17f-RFP Th17 cells 87
Langerin-GFP Langerhans cells 88
LysM-GFP Neutrophils 89
Lyz2-GFP Neutrophils 30
NG2-RFP Pericytes 31
Thy1-TNXXL Neuron 75
Thy1-YFP Neuron 14
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efficiently than did in vitro activated T cells. This result indicates
that encephalitogenic T cells become mature in the lung. It is not yet
clear whether this maturation reflects intrinsic T cell changes or
influences from external factors. Because lung airways are exposed
to the external environment and stimulation can be delivered from
numerous sources, it may well be possible that some endogenous
factors induce T cell maturation. Indeed, it has been shown that gut
microbiota, which are similarly a mixture of many antigens, activate
encephalitogenic T cells in the spontaneous EAE model.>

The lungs are not the only organ where T cells maturate. Fliigel
et al. showed that encephalitogenic T cells accumulated in the
spleen and acquired a migratory phenotype there.?*?® Gene
profiling demonstrated that migratory T cells showed phenotypic
changes, especially up-regulated cell adhesion molecules and
chemokines that are important for migration.’* The up-regulation
of chemokine receptors is confirmed by cell surface staining of T
cells prepared from the spleen.’® More directly, retransfer of
encephalitogenic T cells prepared from the spleen showed faster
infiltration into the CNS.

Intravital imaging of encephalitogenic T cells in the spleen
showed that T cells are continuously moving within the organ.'” In
our set-up, penetration depth was limited to approximately 100 pm
from the surface, which is less than in lymph nodes or spinal cord.
According to our analysis, encephalitogenic T cells did not show any
directed movement. We sought to arrest T cells in an antigen-
dependent manner by applying soluble antigen intravenously.
Our analysis showed that T cells became slower immediately after
soluble antigen injection and were arrested 20 min after antigen
injection. This was surprisingly fast, yet the following results sug-
gested that this is within reason and that the entire process hap-
pens in 20 min. First, injection of peptide, which does not need to
be processed to be presented to T cells, arrested the T cells more
rapidly than did whole protein. Second, MHC class II blocking
diminished the soluble antigen effect dramatically. More directly,
DQ-0OVA, which is non-fluorescent but becomes fluorescent after
protein digestion, caused fluorescent signals within 15 min after
intravenous injection. Importantly, this quick effect was further
supported by conventional analysis. Both mRNA and protein level
data show that inflammatory cytokines are produced as early as
30 min after soluble antigen treatment. Because soluble antigen
trapped encephalitogenic T cells in the spleen and prevented CNS
infiltration, clinical EAE was ameliorated. This experiment elegantly
showed the benefit of intravital imaging. Intravital imaging clearly
showed the behavioral changes of T cells before and after injection
of soluble antigen in the same animal, which was difficult to
analyze using conventional methods.

T cell infiltration into the CNS: perivascular phagocytes,
fibrinogen, and pericytes

After encephalitogenic T cells acquire a migratory phenotype,
they leave the peripheral organs and arrive at the CNS. We asked
the question, how do T cells enter the CNS? Because conventional
histological studies suggested that “early bird” T cells are detected
in the spinal cord leptomeninges, we performed intravital imaging
there. We used myelin basic protein (MBP)-specific GFP-labeled T
cells (Tugp-gep cells) to induce clinical EAE. Animals showed the first
clinical sign of disease on day 3 post transfer (p.t.). Therefore, we
performed imaging at the spinal cord leptomeninges between day
1 and day 3 p.t.”’

Intravital imaging showed that a few Typ-gpp cells arrived at the
leptomeninges on day 1 p.t., which is long before disease onset.
Those pioneer cells adhered to the intraluminal surface and moved
along the vessels. Similar intraluminal crawling was reported for
other cell types, such as monocytes®® and neutrophils.?® Within the

next 24 h, the number of intraluminal cells increased. Because two-
photon microscopy detects signals by scanning, it is hard to detect
flowing cells and rolling cells, indicating that the cells that we
detected were crawling. According to our analysis, intraluminally
crawling T cells prefer to migrate against the direction of flow in
blood vessels. However, velocities are similar regardless of the di-
rection of movement. The infusion of anti-integrin o4 antibody
diminished intraluminal crawling, indicating that intraluminal
crawling is VLA-4-dependent. Although the precise significance of
intraluminal crawling is still unknown, we can speculate that those
cells are looking for extravasation sites. Interestingly, Tyvpp-grp cell
crawling was observed only in the leptomeningeal vessels, but not
in other blood vessels, such as those in ear connective tissues and
near peripheral nerves.

Intraluminal crawling was followed by extravasation. Intravital
imaging recorded that crawling Typ.cep cells arrested and then
extravasated.”’ During extravasation, we often observed leakage of
fluorescent dextran, which was injected intravenously to fill the
blood plasma. This leakage indicates that the blood—brain barrier
(BBB) had opened. However, the leakage was observed for only a
short time, indicating that the BBB closed again after T cells crossed
it. According to our observations, multiple Typp-grp cells extrava-
sated, one after the other, at the same place. This suggests that
there are special locations where lymphocytes prefer to extrava-
sate. In accordance with our observations, Abtin et al. showed that
neutrophils extravasated adjacent to perivascular macrophages in
inflamed skin.>° In addition, they showed that this localization is
due to chemokines produced by perivascular macrophages.
Another group suggested that there was influence from pericytes.>!
They showed that pericytes attracted myeloid leukocytes by pro-
ducing macrophage migration inhibitory factor (MIF). Although
these studies focused on innate immune cells in peripheral organs,
similar mechanisms may exist in the spinal cord leptomeninges.

Why do T cells infiltrate into the immune-privileged CNS? The
CNS is protected by the BBB, and the infiltration of immune cells is
tightly controlled but not prohibited.>? After ovalbumin (OVA)-
specific GFP-labeled T cells (Tova-gep cells) were transferred into
naive animals, a very small number of cells were found in the
CNS,%” supporting the idea of immune surveillance in the CNS.
However, Davalos et al. used intravital imaging to suggest that
fibrinogen leakage from blood vessels induced clustering of
microglia, which further induced neuronal damage.>® This small
amount of damage may change the permeability of the BBB and
recruit immune cells to the CNS.

The spinal cord leptomeninges is not the only location where
encephalitogenic T cells begin infiltration. It was shown that small
numbers of T cells enter the CNS and are distributed in the pa-
renchyma within 3 h after adoptive transfer, suggesting direct
infiltration into the CNS parenchyma.>* In addition, it was shown
that T cells enter the CNS via dorsal blood vessels at the 5th lumbar
spinal cord.>® This is due to CCL20 production caused by activation
of sensory neurons by the soleus muscles. T cells also seem to
infiltrate via the cerebrospinal fluid (CSF). Reboldi et al. showed that
CCR6-deficient mice are resistant to EAE and, interestingly, T cells
were stacked at the choroid plexus, where CCL20 is constitutively
expressed.

T cell activation in the CNS

Once encephalitogenic T cells enter the CNS, it was shown that T
cells recognized antigen presented by bone marrow-derived peri-
vascular macrophages.®® To visualize the interaction between
encephalitogenic Tvgp-grp cells and APCs, we performed intravital
imaging at the spinal cord leptomeninges. We visualized APCs by
intrathecal injection of fluorescent dextran (size: 70 kDa) into the
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cisterna magna. Intravital imaging found that Tygp_cgp cells interact
with APCs for a relatively long time, whereas Tova-grp cells showed
only a short period of contact. This result suggests that Typp-crp
cells recognize endogenous antigen presented by local APCs.
Indeed, Tvpp-crp cells in the spinal cord meninges and parenchyma,
but not in the spleen, produced inflammatory cytokines, indicating
activation. In addition, Tova-gep cells in the spinal cord lep-
tomeninges became arrested after administering OVA-pulsed APCs
intrathecally, which again suggests antigen-dependent interaction
and subsequent activation. However, due to lack of proper
methods, it was not possible to visualize T cell activation in vivo.
There were several remarkable attempts to detect cellular acti-
vation in vivo. One of them involved detecting an immunological
synapse, which is the special structure formed when TCR recog-
nizes its specific antigen in the context of MHC.>’ For this purpose,
Ick or CD3( is fused to GFP and expressed in cell lines using
retroviral gene transfer.’® After TCR-mediated stimulation, the
fusion protein was recruited into an immunological synapse, and it
was imaged in vitro. However, it is not easy to apply these fusion
proteins to in vivo experiments. In in vitro experiments, one can
predict where immunological synapses will appear by using a
monolayer of APCs. In contrast, an immunological synapse can
appear at any place on the cell surface in vivo, which indicates that
one must scan entire cells with precise z-stacks to detect it. Such
precise scanning requires more time and loses temporal resolution.
Another attempt to detect cellular activation in vivo involved using
GFP knock-in mice under the control of the immediate early gene
Nrdal (Nur77) was performed.>® By quantifying GFP expression,
activation status and signal strength can be analyzed. However, this
was not suitable for intravital imaging because there is an un-
avoidable time gap between T cell stimulation and GFP expression.
A simpler approach is to use calcium sensing dyes to analyze
neuronal activities.*” Unfortunately, this approach cannot be used
for T cells because T cells lose their staining within a short time due

to proliferation and actively pumping out the dyes.*' To overcome
these problems, we decided to use protein-based sensors that
detect T cell activation immediately after TCR stimulation. More
specifically, we attempted to detect increasing intracellular calcium
and translocation of nuclear factor of activated T cells (NFAT) from
cytosol to nucleus (Fig. 1). These sensors are functionally distin-
guishable. Calcium signaling can be induced by relatively weak
stimulation, whereas NFAT translocation can occur only after ab-
solute T cell activation. It makes sense to use two sensors to obtain a
more precise picture of the status of T cell activation.

We used the calcium sensor Twitch, which consists of cyan- and
yellow-fluorescent protein (CFP and YFP, respectively) connected
with a troponin C domain. In a low calcium environment, excitation
of CFP induces emission from CFP. In contrast, in a higher calcium
environment, calcium binding to the troponin C domain changes
the protein conformation.*> Subsequently, excitation of CFP results
in emission from YFP due to a fluorescence resonance energy
transfer (FRET) effect. To improve expression levels in mouse T cells,
we developed a codon-diversified Twitch and used it for intravital
imaging in the mouse EAE model.*! Twitch was expressed in MOG-
specific T cells (Tmog-Twitch cells) by using retroviral gene transfer
and imaged in peripheral lymph nodes and spinal cord lep-
tomeninges. In peripheral lymph nodes, Tyog-twitch cells showed
occasional short-duration calcium spikes, often coincident with
lower motility. Because it is not likely that MOG antigen is
presented in the peripheral lymph node, we considered those
short-duration calcium spikes to be antigen-independent. The
application of antigen stimulation arrested T cells within a short
time, as we observed in the spleen.'> At the same time, TvoG-Twitch
cells showed saturated long-duration calcium elevation, indicating
that the Twitch sensor detected T cell activation. Tyog-Twitch cells
were also imaged in the spinal cord leptomeninges at the time of
EAE onset. Substantial numbers of Tymoc-twitch cells showed
elevated intracellular calcium, and the duration of calcium spikes

extracellular

cytosol

nucleus

ANFAT-GFP
[ [regulatory[ T GFP_]

Fig. 1. Scheme of activation sensors. (A) TCR stimulation induces calcium release from endoplasmic reticulum (ER). Emptying calcium in the ER opens Calcium Release-Activated
Channels (CRAC) on cell surface, which induce influx of extracellular calcium. Increased intracellular calcium induced DE phosphorylation of NFAT, followed by relocation of NFAT
from cytosol to nucleus. (B) Structure of Twitch calcium sensing protein. CFP and YFP are connected with troponin C calcium sensing protein. Twitch changes its confirmation
according to calcium concentration. Excitation of CFP results emission of blue and yellow at low and high calcium environment, respectively. Right pictures show representative
cells of both activated (line) and not activated (dotted lines). (C) Protein structure of NFAT-based activation sensor Picture shows representative cells of both activated (line) and not

activated (dotted lines).
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was approximately 6 min, which is considerably longer than those
observed in lymph nodes. Importantly, those activations were often
observed in perivascular areas or near APCs. Because Twitch-
labeled OVA-specific T cells rarely showed long-duration calcium
spikes, we concluded that Tmoc-Twitch cells are activated by
endogenous autoantigens.

To detect the subcellular location of NFAT, truncated NFAT was
fused to GFP and expressed in MBP-specific T cells (Typp-NFAT-GEP
cells).”® Tvgp-nrat-crp cells were first imaged when T cells were
within the leptomeningeal vessels. Intravital imaging showed that
both rolling and crawling cells had cytosolic NFAT, indicating that
they were not activated. In contrast, substantial numbers of
extravasated Typp.nraT-Grp Cells showed NFAT-GFP in their nuclei.
Intravital imaging clearly showed that a non-activated T cell, which
has cytosolic NFAT, interacted with local APC and the interaction
quickly induced translocation of NFAT to the nucleus. Interestingly,
some, but not all, APCs stimulated T cells efficiently. Similar
observations were also reported by another group.**

In summary, by using protein-based activation sensors, we
could visualize T cell activation in the CNS after contact with local
APCs. Of course, these activation sensors can be applied in other
cells, as shown.*’

Other types of immune cells in the CNS: macrophages, Treg, B
cells, and microglia

Although CD4-+ T cells are considered the key player in initiating
CNS inflammation, other types of cells, which can be either brain-
resident cells or infiltrating cells, also contribute. One of them is
Treg, which can suppress the function of encephalitogenic T cells.
Because depletion of Treg at the acute phase of EAE enhances
clinical severity dramatically, we aimed to image Treg in the spinal
cord leptomeninges to analyze interaction with encephalitogenic T
cells.*® We crossed T-Red mice, in which T cells express RFP,*” and
DEREG mice, in which Treg express GFP and diphtheria toxin re-
ceptor under FoxP3 promoter.*® Intravital imaging at the spinal
cord leptomeninges was performed at the peak of EAE with or
without Treg depletion. We found that the encephalitogenic T cells
moved slower and stopped more often in the absence of Treg. This
suggests that Treg can influence inflammation in the CNS. During
intravital imaging, we observed that Treg interacted with both
effector T cells and APCs, indicating that suppression of disease can
be via direct effect on effector T cells or indirect effect via APCs.

There are other players in CNS inflammation. B cells are known
to produce antibodies in the CSF® and contribute significantly to
CNS inflammation. The depletion of B cells is beneficial for both
EAE*? and MS.>° Mononuclear phagocytes, such as microglia®® and
macrophages®! induce neuronal damage. In addition, oligoden-
drocytes have a critical role in myelination and neurons are tar-
geted to be destroyed. However, in vivo imaging to study these
cells, with the exception of neurons, has rarely been performed, and
their roles are largely unknown.

Platform to develop therapeutic treatment

The results obtained from intravital imaging can be used for
developing therapeutic treatment. For example, we showed that
the infusion of anti-integrin ¢4 antibody diminished intraluminal
crawling within minutes. As a consequence, infiltration of
encephalitogenic T cells into the CNS is also blocked, resulting in
prevention of clinical EAE.>’ Indeed, anti-integrin o4 antibody is
approved as an MS treatment and shows beneficial effects. Our
intravital imaging clearly showed the mechanism of this antibody
treatment. In addition, we have shown that the calcium inhibitor,
BZ194, ameliorated clinical EAE in both preventive and therapeutic

treatments.’” Intravital imaging showed that BZ194 treatment
increased T cell motility in the CNS. We speculate that BZ194 pre-
vented T cell arrest by blocking intracellular calcium signaling;
therefore, T cells do not get sufficient stimulation to induce
inflammation. Furthermore, we have shown the effect of soluble
antigen treatment in EAE. When soluble antigen was given before
the onset of EAE, the treatment ameliorated clinical severity
dramatically."” In contrast, soluble antigen worsened EAE when it
was applied after the onset of disease.’> In both cases, soluble an-
tigen activates encephalitogenic T cells. The difference lies in where
the T cell activation occurs. Before the onset of EAE, the majority of
encephalitogenic T cells are in the periphery, and activation of them
does not result in deleterious effects. However, after the onset of
EAE, many encephalitogenic T cells are in the CNS, and their acti-
vation results in a lethal level of inflammation. One always needs to
keep in mind that results from rodent models cannot be applied
directly to humans. However, intravital imaging holds great po-
tential for understanding the cellular mechanisms of disease
pathogenesis and for developing and evaluating therapeutic
treatments.

Future directions

Intravital imaging in the immunology field started in the early
2000s to study cellular motility in the explanted organ.>* Currently,
multicolor imaging and functional imaging have become popular.
There are interesting, and potentially very robust, new methods
that have been introduced recently. One of them involves gradient
index (GRIN) lenses.”® This method uses an endoscope that can
perform imaging within the tissue. Because the penetration depth
of two-photon microscopy is superior, but still limited, such an
endoscope is the method of choice. Recently, an interesting study
using photoconvertible dyes was published.’® This study explored
the functional difference between migratory and resident dendritic
cells in the lymph nodes. This kind of study has very high potential
because cells are migrating in the body, and the consequences of a
particular event may not happen in the same place. For example, a
cell receives stimulation in one organ and shows effector function
in another organ. Lastly, it is extremely important to analyze data
and obtain fruitful results. Two-photon microscopy has become
user-friendly and it is now easier to acquire excellent images.
However, this is only one component of intravital imaging and
researchers must translate imaging data to fruitful messages.
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