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Mixture Models for Ordinal Responses with a
Flexible Uncertainty Component

Gerhard Tutz , Micha Schneider
1 Ludwig-Maximilians-Universität München, Akademiestraße 1, 80799 München

Abstract

In classical mixture models for ordinal data with an uncertainty compo-
nent the uniform distribution is used to model indecision. In the approach
proposed here the discrete uniform distribution is replaced by a more flexi-
ble distribution, which is centered in the middle of the response categories.
The resulting model allows to distinguish between a tendency to middle
categories and a tendency to extreme categories. By linking these pref-
erences to explanatory variables one can investigate which persons show
a tendency to these response styles. It is demonstrated that severe bias
might occur if inadvertently the uniform distribution is used to model un-
certainty. An application to attitudes on the performance of health services
illustrates the advantages of the more flexible model.

Keywords: Ordinal responses, response styles, rating scales, mixture models,
CUP model, CUB model

1 Introduction

In recent years a class of mixture models for ordinal data has been introduced
that considers the choice of a response category as resulting from a mixture of
a deliberate choice and uncertainty. In the original CUB model (for Combina-
tion of discrete Uniform and shifted Binomial random variables), see D’Elia and
Piccolo (2005), the deliberate choice is modelled by a binomial distribution and
the uncertainty by a discrete uniform distribution. Various models with differ-
ent specifications of the distributions of the deliberate choice and the uncertainty
part have been proposed since then, see, for example, Iannario and Piccolo (2010),
Iannario et al. (2012), Iannario and Piccolo (2012b), Iannario (2012a), Iannario
(2012b), Manisera and Zuccolotto (2014), and Tutz et al. (2016). An introduc-
tion and overview on the modelling approaches was given by Iannario and Piccolo
(2012a).

The basic assumption of most of these extensions is that uncertainty follows
a discrete uniform distribution. Although the uniform distribution is the most
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simple conceivable model, the assumption that all categories, including middle
and extreme categories, share the same degree of uncertainty is rather strong.
In particular it excludes the preference of middle or extreme categories, which
is a response style that is often found in applications. In the present paper we
propose a more flexible uncertainty component which is able to capture response
styles.

The presence of response styles has been found in many studies, see, for exam-
ple, (Clarke, 2000; Van Herk et al., 2004), (Marin et al., 1992) and (Meisenberg
and Williams, 2008). Several modelling approaches have been proposed for re-
peated measurements within the framework of item response models, see Bolt
and Johnson (2009), Bolt and Newton (2011), Johnson (2003), Eid and Rauber
(2000). More recently tree type approaches have been considered. They typically
assume a nested structure where first a decision about the direction of the re-
sponse and then about the strength is obtained, see, for example, De Boeck and
Partchev (2012), Jeon and De Boeck (2015), and Böckenholt (2012). Mixture
modelling of response styles by use of latent class models has been investigated
by Moors (2004), Kankaraš and Moors (2009), Moors (2010), and Van Rosmalen
et al. (2010).

The mixture considered here does not assume that responses on several items
are available as is usually assumed in item response theory. We aim at separat-
ing the deliberate choice from the tendency to middle or extreme categories by
using a mixture model in the tradition of CUB models. However, in contrast
to these models we consider an uncertainty component that can account for re-
sponse styles. By linking the uncertainty component to covariates, the model is
able to uncover which person characteristics determine the response style. An
alternative model for single items, which uses an explicit parametrization instead
of a mixture, was proposed more recently by Tutz and Berger (2016).

The paper is organized as follows: in Section 2 we consider uncertainty as
a relevant component quite often present in human choices. Thus CUB models
and models with alternative parameterizations are briefly reviewed. Then the
new class of models with more flexible uncertainty components is introduced.
In Section 3 we investigate the consequences of fitting misspecified models in
a simulation study. Section 4 gives the details of the fitting algorithm and in
Section 5 the model is used to investigate the satisfaction with the Health Service
in European Countries.

2 Mixture Models for Ordinal Responses

In the following we briefly consider an extended form of the CUB model. Then
we consider alternative specifications of the uncertainty component.
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2.1 Mixture Models for the Combination of Uncertainty and
Preference

Let in a regression model the response of an individual Ri given explanatory
variables take values from ordered categories {1, . . . , k}. The general mixture
model we consider has the form

P (Ri = r|xi) = πiPM(Yi = r|xi) + (1− πi)PU(Ui = r), (1)

where Ri is the observed response, Yi denotes the unobserved random variable
that represents the deliberate choice, that is, the preference on the ordinal scale
and Ui is the unobserved uncertainty component. Thus the observed response
results from a discrete mixture of the preference and the uncertainty component,
therefore the name CUP for Combination of Uncertainty and Preference. Both
variables Yi and Ui take values from {1, . . . , k}.

In model (1) the distribution of Yi is determined by PM(Yi = r|xi), which can
be any ordinal model M. In CUB models and the extension considered by Tutz
et al. (2016) the uncertainty component is specified by the uniform distribution,
PU(Ui = r) = 1/k. It has been argued that the uniform distribution is the most
simple model that represent a totally random decision, for more motivation see
also Iannario and Piccolo (2012a). The assumption of a more flexible distribution
than the uniform distribution is the central issue here but postponed to the next
section. Instead we consider briefly the ordinal models that can be used in the
preference part.

In traditional CUB models the distribution of Yi is specified as a shifted
binomial distribution, that is,

PM(Yi = r|xi) =

(
k − 1

r − 1

)
ξk−ri (1− ξi)r−1, r ∈ {1, . . . , k}.

In extended versions (Tutz et al. (2016)) more general models as the cumulative
or the adjacent categories models are used. Cumulative models have the form

P (Yi ≤ r|xi) = F (γ0r + xTi γ), r = 1, . . . , k − 1,

where F (.) is a cumulative distribution function and −∞ = γ00 < γ01 < · · · <
γ0k =∞. The most widely used model from this class of models is the cumulative
logit model, which uses the logistic distribution F (.) It is also called proportional
odds model and has the form

log

(
P (Yi ≤ r|xi)
P (Yi > r|xi)

)
= γ0r + xTi γ, r = 1, . . . , k − 1.

An alternative choice is the adjacent categories model given by

P (Yi = r + 1|Yi ∈ {r, r + 1},xi) = F (γ0r + xTi γ), r = 1, . . . , k − 1.
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If the probability P (Yi = r|Yi ≥ r,xi) represents the probability of failure in
(time) category r given category r is reached it can be seen as a discrete hazard.
The specific model that uses the logistic distribution is the adjacent categories
logit model

log

(
P (Yi = r + 1|xi)
P (Yi = r|xi)

)
= γ0r + xTi γ, r = 1, . . . , k − 1.

A general discussion of ordinal models is found in McCullagh (1980), Agresti
(2010), Agresti (2013) and Tutz (2012).

2.2 Models with a Flexible Uncertainty Component

The uniform distribution as uncertainty component has the advantage of sim-
plicity. However, it implies that uncertainty is uniformly distributed over the
response categories. A more flexible concept allows that uncertainty may express
itself in a stronger tendency toward middle or extreme categories. In particular
persons who are undecided or have no strong opinion may have a tendency to
choose middle categories and not choose at random from the whole spectrum of
categories. Therefore, instead of the uniform distribution we use a specific version
of the beta binomial distribution.

A random variable U with support {1, . . . , k} follows a beta-binomial distri-
bution, U ∼ BetaBin(k, α, β), if the mass function is given by

f(u) =

{ (
k−1
u−1

)B(α+u−1,β+k−u+1)
B(α,β)

u ∈ {1, . . . , k}
0 otherwise,

where α, β > 0 and B(α, β) is the beta function defined as

B(α, β) = Γ(α)Γ(β)/Γ(α + β) =

∫ 1

0

tα−1(1− t)β−1dt.

With µ = α/(α + β) and δ = 1/(α + β + 1) one obtains

E(U) = (k − 1)µ+ 1, var(U) = (k − 1)µ(1− µ)[1 + (k − 2)δ].

As δ → 0, the beta-binomial distribution converges to the binomial distribution
B(k, µ).

Since we aim at modelling a tendency to middle categories we choose a fixed
value µ = 0.5 and therefore α = β, δ = 1/(2α + 1) to obtain

E(U) = (k + 1)/2.

For the variance one obtains

var(U) = ((k − 1)/4)
2α + k − 1

2α + 1
.
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The restricted beta-binomial is determined by the parameters α and k. An in-
teresting extreme cases is α = 0, which yields

var(U) = ((k − 1)2/4),

and corresponds to a two point distribution on 1 and k. If α tends to infinity one
obtains

var(U) = ((k − 1)/4).

Therefore, the parameter α determines the concentration of the distribution in the
middle, for small values the probability mass is concentrated in the end points, for
α = 1 one obtains the discrete uniform distribution and for α →∞ one obtains
a (shifted) binomial distribution, which is symmetric around its mean (k− 1)/2.

Figure 1 shows the beta-binomial distribution for selected values of α. In the
case of an odd number of categories the modus is at the middle category.
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Figure 1: Probability mass on categories for various values of α for 8 categories

(left panel) and 7 categories (right panel).

While mixture models in the tradition of CUB models use the uniform distri-
bution, the beta-binomial distribution provides a wider concept of uncertainty in
mixture models. An exception among CUB-type models is the model proposed
by Gottard et al. (2016). It allows that the uncertainty is given by a parabolic or
a triangular distribution. However, one has to choose the mode of the triangular
distribution, therefore a priori information is needed. Moreover, the uncertainty
distribution is not linked to explanatory variables as is done in the approach
proposed here (see next section).
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2.3 Parametrization

In the general mixture model (1) the preference for categories is determined by
the covariates xi within the ordinal model that is used in the preference part.
However, also the strength of the tendency to middle or extreme categories may
depend on covariates. Therefore, we let the parameter α depend on covariates
wT
i = (1, wi1, . . . , wim), which can be different or identical to the covariates xi.

A simple link is given by

α = exp(wT
i α) = exp(α0) exp(α1)

wi1 ..... exp(αm)wim ,

where αT = (α0, . . . , αm). The parameter αj contains the effect of the j-th
covariate. The parameter α changes by the factor exp(αj) if wij increases by one
unit. The parameters determine how a variable influences the tendency to middle
or extreme categories. It should be noted that in the case without covariates one
has the simple reparameterization α = exp(α0).

The model (1) with a beta-binomial mixture component is called the BetaMix
model. Although it is a generalization of CUP models the intention of the mod-
elling approach is quite different. In CUP models the uncertainty is specified by
a discrete uniform distribution. The underlying assumption is that a person is
torn between his/her preference and uncertainty. The uncertainty is such that
each category has the same probability. The BetaMix model is composed of a
preference model and a model that represents a tendency to middle or extreme
categories. It allows to model not only the preference as a function of covariates
but also the tendency to middle or extreme categories as a function of covariates.
One may see, for example, differences in the preference of middle or extreme cat-
egories induced by covariates like gender. Therefore, response patterns induced
by explanatory variables can be identified.

The family of models considered here can be specified by Mix(structured part,
uncertainty part). The structured part indicates which model is used to model
the deliberate choice, and the uncertainty part indicates which distribution is
used to model the uncertainty. Examples are

Mix(Binomial,Uniform) (or CUB), which means that the structured re-
sponse follows binomial distribution and uncertainty is determined by the
uniform distribution

Mix(Cumulative,Uniform) (or CUP), which means that the structured re-
sponse is determined by a cumulative model, the uncertainty is the same
as in the previous example

Mix(Cumulative, BetaBin), which means that the uncertainty is determined
by the beta-binomial distribution
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Mix(Binomial,BetaBin), which means that the structured response follows
binomial distribution and uncertainty is determined by the beta-binomial
distribution

The model Mix(Cumulative, BetaBin(α = 1)) is equivalent to the CUP cumula-
tive model and Mix(Binomial, BetaBin(α = 1)) is equivalent to the CUB model.

3 Simulations

In the following we investigate the consequences of fitting misspecified models in
a simulation study. In particular we compare the performance of the proposed
model with the models that use a uniform distribution in the uncertainty part.
First we compare the Mix(Cumulative,Uniform) (or cumulative CUP) and the
Mix(Cumulative, BetaBin), and then CUB and Mix(Binomial,BetaBin).

We use a response with k = 7 categories and n = 2000 observations. The
data were simulated from a mixture model with different values for π, α and
γ. For the mixture weights π the values we used 0.5, 0.7 and 0.8. The effect
of the structure component γ was fixed at −1 and −2. The intercepts of the
cumulative model were set to −4,−3,−2,−1, 0, 1, in the shifted binomial model
we used 1. The range of the α-values was {0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10, 100} so
that both the tendency to the middle categories with α > 1 and the tendency to
extreme categories with α < 1 are covered. Also the special case α = 1, in which
the uncertainty components of CUP and BetaMix are identical, is included. For
each parameter combination 500 data sets were simulated from the model with
the beta-binomial-distribution. The beta-binomial model as well as the model
with uniform distribution were fitted. Then the performance of the new proposed
model is compared to the performance of the misspecified model with a uniform
distribution.

Before given detailed tables for all used combinations of π, α and γ we show
some exemplary box plots. Figure 2 displays the estimated parameters for dif-
ferent α-values for both models with π set to 0.7 and γ set to −1. Each boxplot
consists of 500 samples. The results of the beta-binomial model are displayed
on the left hand side and the results of the CUP-Model on the right hand side.
The top row shows the π-values and the middle row the γ-estimates. For the
beta-binomial model all the estimates are close to the true parameters regardless
which response style is true. The model is able to capture both a strong tendency
to the middle category as well as a strong tendency to extreme categories. On
the right hand side the different response styles are neglected and it is always
assumed that the uncertainty component follows a uniform distribution. It is
seen that estimates are strongly biased if the model is unable to account for the
response style. If the true α-value is far away form α = 1, which is assumed by
the CUP model, there is a large discrepancy between the true parameter values
and the estimated parameters. For example, if α = 0.01, which indicates a strong
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Figure 2: Estimated parameters π̂, γ̂ for the Betamix model on the left and

the CUP model on the right (true values are π = 0.7 and γ = −1). The true

α-values are {0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10, 100}. For the Betamix model also

the MSEs are given.
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tendency to the extreme categories, the CUP-model estimates a π-value which
is close to one. Thus, one would falsely infer that no uncertainty component is
needed. At the same time the strength of the effect of the variable is underes-
timated. If there is a strong tendency to the middle categories the results are
similar. So by using the uniform distribution as a possible response style not
only the π-values but also the γ-values are strongly biased if the data generating
model contains a specific response style.

To investigate the accuracy of estimates we consider the mean squared error.
For the comparison we use the log proportions

lp =
1

S

S∑

i=1

log
MSE(uniform)i

MSE(beta-binomial)i
,

where MSE(beta-binomial)i denotes the mean squared error in the ith sample if
the beta-binomial model is fitted and MSE(uniform) the mean squared error if
the uniform model is fitted. Positive values of lp indicate that the uniform model
yields estimates that are worse than the estimates obtained by the beta-binomial
model.

Table 1 and 2 show the log proportions for γ and π for several parameter
combinations. In the case of α = 1 the log proportions are close to zero so
that both models fit equally. But there is a strong monotone increase when
the true α-values are more and more away from α = 1. For example, one
obtains for (π, γ, α) = (0.5,−1, 4) lp = 0.6509, which means that the MSE
of the uniform model is 1.92 times the MSE of the beta-binomial model, for
(π, γ, α) = (0.5,−2, 4) one has lp = 1.4235 denoting that the MSE of the uni-
form model is 4.15 times the MSE of the beta-binomial model. It is also seen
that for small values of π the proportions of γ-values are larger than for large
values of π (close to 1), therefore for small values of π a wrong response style has
stronger impact on the γ-parameters. For larger value of γ one obtains larger log
proportions.

For the accuracy of the estimated response style we do not use the mean
squared errors of the α-values. The reason is the scaling of the parameter. For
very large α-values the beta-binomial-distribution is close to the binomial distri-
bution, which is obtained if α-values is infinitely large. Consequently very large
α-values may be different in their absolute value but lead to nearly the same dis-
tribution function. Therefore, we use the mean squared errors of the estimated
distributions

MSEα =
1

S

S∑

i=1

(
1

k

K∑

k=1

(Pri(U = k|α̂)− Pri(U = k|α))2

)
.

As seen from Table 3 in all settings the MSEα is less than 0.0004 and there is no
structure visible. The last panel in Figure 2 shows the corresponding box plots,
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which are all close to zero. It is seen that the Betamix model is able to fit the
true response style very well.

π γ α
0.01 0.1 0.25 0.5 1 2 4 10 100

0.5 -1 1.1120 1.0887 1.0061 0.2167 0.0007 0.2717 0.6509 0.8644 0.9398
0.7 -1 0.8909 0.5479 0.1319 -0.0138 0.0006 0.1043 0.2375 0.3690 0.4783
0.8 -1 0.2506 0.0925 -0.0080 -0.0334 -0.0008 0.0660 0.1343 0.2060 0.2711

0.5 -2 6.1968 5.6751 5.3883 1.0003 -0.0014 0.3862 1.4235 3.5169 4.8718
0.7 -2 6.3268 4.1285 1.2782 -0.0426 -0.0231 0.1646 0.2528 1.0761 1.8724
0.8 -2 2.4443 0.8960 0.2808 -0.0005 -0.0036 0.1269 0.3452 0.5010 0.7295

Table 1: Log proportions of γ-values. Positive values indicate that γ estimates

of the CUP model are farer away from the true γ-values than the estimates of

the Betamix model.

π γ α
0.01 0.1 0.25 0.5 1 2 4 10 100

0.5 -1 7.5542 7.0457 6.1898 0.9142 -0.0923 2.2108 4.9798 6.2124 6.7589
0.7 -1 6.6484 4.3927 0.7165 -0.1107 0.0312 1.0513 2.9954 4.1365 4.9370
0.8 -1 2.0368 0.8023 0.4547 -0.0873 -0.0320 0.5957 1.7226 2.6127 3.5027

0.5 -2 7.7898 7.6342 6.9940 2.2677 0.0124 0.4676 1.0724 3.3313 5.8254
0.7 -2 7.0814 5.0817 2.5478 0.4908 -0.0218 0.2590 0.4474 0.4942 0.8461
0.8 -2 3.6844 2.3575 0.9614 0.1400 -0.0077 0.1195 0.2181 0.5144 0.4748

Table 2: Log proportions of π-values. Positive values indicate that π estimates

of the CUP model are farer away from the true π-values than the estimates of

the Betamix model.

Similar results are obtained if the shifted binomial distribution and there-
fore the CUB model is used in the preference part. Now we compare
Mix(Binomial,Uniform) (or CUB) with Mix(Binomial,Betabin). Figure 3 and
4 show the same setting as before, they compare the beta-binomial distribution
with the uniform distribution in the uncertainty part, but now the shifted bi-
nomial distribution determines the preference component of both models. The
figures show the results for γ = −1 as well as γ = −2. The well specified model
can deal with different α and γ-values. But there are clear discrepancies in the
misspecified models. For extreme α-values the estimates of γ and π in the mis-
specified models are poor. In the case of γ = −1 the π-values are underestimated
for α-values smaller than one and overestimated for α-values greater than one.
But for γ = −2 the opposite behaviour is observed. In both cases the γ esti-
mates show the same trend. In Table 4 and 5 the results for all combinations
are displayed. In general, there is clear discrepancy in the misspecified models
but the direction (i.e. over or underestimation of the parameter) can vary. If the
uniform distribution is the true uncertainty component the CUB-model seems
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π γ α
0.01 0.1 0.25 0.5 1 2 4 10 100

0.5 -1 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000
0.7 -1 0.0001 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000
0.8 -1 0.0001 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001

0.5 -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7 -2 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
0.8 -2 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000

Table 3: Mean squares errors that measure the discrepancy between the esti-

mated and the true beta-binomial distribution.

to be a bit closer to the true π-values than the model with the betabinomial-
distribution. But the log proportions are close to zero so that the differences of
the π-estimates in both models are very small. Moreover, in the Betabin model
the uncertainty component has to be estimated which is more difficult than as-
suming that α is exactly fixed at 1 as in the CUB model. In all other cases the
Betabin model clearly outperforms the CUB-model in terms of accuracy of the
parameter estimates.

π γ α
0.01 0.1 0.25 0.5 1 2 4 10 100

0.5 -1 7.9908 6.9918 5.6090 3.8647 -0.2223 3.1404 4.3818 4.9940 5.4806
0.7 -1 6.3887 5.6636 4.4604 2.7079 -0.2538 2.0550 3.3342 4.0105 4.2475
0.8 -1 5.3687 4.7483 3.7107 2.0522 -0.0751 1.4637 2.4287 3.1594 3.3904

0.5 -2 6.7311 6.9559 6.2788 3.5601 -0.1111 1.8015 3.2645 3.2836 3.4449
0.7 -2 5.6132 4.9745 3.6663 1.7816 -0.0643 0.7877 1.5349 2.0155 2.2496
0.8 -2 4.9915 4.1609 3.0496 1.0264 -0.0259 0.6279 0.9362 1.3346 1.4698

Table 4: Log proportions of γ-values. Positive values indicate that γ estimates

of the CUB model are farer away from the true γ-values than the estimates of

the Betabin model.

π γ α
0.01 0.1 0.25 0.5 1 2 4 10 100

0.5 -1 2.0685 1.7739 0.9497 -0.0189 -0.0027 0.6860 1.8735 3.2835 4.0075
0.7 -1 1.2640 0.7599 0.7672 0.3249 0.0407 0.3471 0.8965 1.4374 1.9017
0.8 -1 1.6844 1.2142 0.7175 0.4247 -0.0611 0.0645 0.2233 0.8416 1.1060

0.5 -2 4.4434 5.5704 5.9981 3.1680 0.0910 1.0716 2.1484 2.7990 3.2827
0.7 -2 3.8922 3.2800 2.2376 0.6130 -0.1299 0.6281 1.4431 2.1902 2.7078
0.8 -2 3.3097 2.3723 1.4503 0.3256 0.1253 0.5703 1.1688 1.6480 1.9694

Table 5: Log proportions of π-values. Positive values indicate that π estimates

of the CUB model are farer away from the true π-values than the estimates of

the Betabin model.
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Figure 3: Comparison of the estimated parameters π̂, γ̂ between the Betabin

model on the left and the CUB model on the right for π = 0.7 and γ = −1. The

true α-values are {0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10, 100}. The MSE of α is only

reasonable for the Betabin model.

4 Estimation

The likelihood contribution of observation i when category yi is observed is de-
termined by

P (Ri = yi|wi,xi) = πi PM(Yi = yi|xi) + (1− πi)PU(Ui = yi|wi) (2)

yielding the log-likelihood contribution

li(γ,α) = log(πi PM(Yi = yi|xi) + (1− πi)PU(Ui = yi|wi))

A way to obtain stable estimates is to consider it as a problem with incomplete
data and use the EM algorithm Dempster et al. (1977). Therefore, let z∗i denote
the unknown mixture components that indicate whether yi belongs to the first
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Figure 4: Comparison of the estimated parameters π̂, γ̂ between the Betabin

model on the left and the CUB model on the right for π = 0.7 and γ = −2. The

true α-values are {0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10, 100}. The MSE of α is only

reasonable for the Betabin model.

or second component of the mixture

z∗i =

{
1, observation yi is from the first mixture component
0, otherwise.

The corresponding complete log-likelihood is given by

lc(γ,α) =
n∑

i=1

z∗i {log(πi) + log(PM(Yi = yi|xi))}+ (1− z∗i ) {log(1− πi) + log(PU(Ui = yi|wi))} .

The EM algorithm treats z∗i as missing data and maximizes the log-likelihood
iteratively by using an expectation and a maximization step. During the E-step
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the conditional expectation of the complete log-likelihood given the observed data
yT = (y1, . . . , yn) and the current estimate θ(s) = (γ(s),α(s)),

M(θ|θ(s)) = E(lc(θ)|y,θ(s))

has to be computed. Because lc(θ) is linear in the unobservable data z∗i , it
is only necessary to estimate the current conditional expectation of z∗i . From
Bayes’s theorem follows

E(z∗i |y,θ) = P (z∗i = 1|yi,xi,wi,θ) = P (R = yi|z∗i = 1,xi,wi,θ)/P (R = yi|xi,wi,θ)

= πi PM(Yi = yi|xi,θ)/(πi PM(Yi = yi|xi) + (1− πi)PU(Ui = yi|wi))

= ẑ∗i = ẑ∗.

This is the posterior probability that the observation yi belongs to the first com-
ponent of the mixture. Because there are no individual covariates determining
the propensity to the structure component ẑ∗i the expectation E(z∗i |y,θ) is the
same for all observations. For the s-th iteration one obtains

M(θ|θ(s)) =
n∑

i=1

ẑ∗ {log(π) + log(PM(Yi = yi|xi))}

+ (1− ẑ∗) {log(1− π) + log(PU(Ui = yi|wi))}

=
n∑

i=1

ẑ∗ log(π) + (1− ẑ∗) log(1− π)

︸ ︷︷ ︸
M1

+
n∑

i=1

(1− ẑ∗) log(PU(Ui = yi|wi))

︸ ︷︷ ︸
M2

+
n∑

i=1

ẑ∗ log(PM(Yi = yi|xi))
︸ ︷︷ ︸

M3

.

The maximization in the M-Step uses the decomposition into M1, M2 and M3. M2

corresponds to the uncertainty component and M3 to the structure component.
M1, M2 and M3 can be maximized separately with traditional software. For
M1 and the shifted binomial distribution (M3 in CUB-models) we use the R-
package MRSP by Poessnecker (2015). For the beta-binomial distribution (M2)
and the cumulative model(M3 in CUP-models) we use the R-package VGAM by
Yee (2016). In the s-th EM iteration M1, M2 and M3 are not maximised until
convergence is reached but only a few iterations in the sense of the generalized
EM-Algorithm. So for given θ(s) one computes in the E-step the weights ẑ∗(s)

and in the M-step maximizes M(θ|θ(s)), which yields the new estimates.
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5 Application: Satisfaction with the Health Service in Euro-

pean Countries

To illustrate the new model we use the European Social Survey which measures
the behaviour, attitudes and beliefs of populations in various European countries.
We use the data of the 7th round in 2014, which is available at http://www.

europeansocialsurvey.org. We focus on the attitude concerning the state of
the health services measured on a Likert Scale from 0 ”extremely bad” to 10
”extremely good”. The covariates are gender (1: female), the age in decades
(centered at 50), citizenship, the area of living (1: ”big city” as reference, 2:
”suburbs or outskirts of a big city”, 3: ”town or small city”, 4: ”country village”,
5: ”farm or home in the countryside”), the smoke behaviour (1: ”I smoke daily”,
2: ”I smoke but not every day”, 3: ”I don’t smoke now but I used to”, 4: ”I
have only smoked a few times”, 5: ”I have never smoked” as reference) and if
the person is handicapped in its daily activities in any way by any longstanding
illness, disability, infirmity or mental health problem (1: ”yes a lot”, 2: ”yes to
some extent”, 3: ”no” as reference).

An identical model with the same covariates is fitted separately for several
countries. We give detailed results for Germany and compare the estimated
uncertainty propensity and gender effects across countries.

estimate BS.sd BS.2.5 BS.97.5

female 0.2778 0.0751 0.1486 0.4385

γ

age 0.0677 0.0239 0.0237 0.1181
age2 -0.1009 0.0122 -0.1283 -0.0798
German citizen: No -1.3709 0.2270 -1.8828 -0.9374
domicil: suburb 0.1442 0.1405 -0.1212 0.4177
domicil: town 0.2566 0.1082 0.0574 0.4792
domicil: village 0.2402 0.1106 0.0366 0.4747
domicil: countryside 0.0925 0.2153 -0.3162 0.5384
handicapped: a lot 0.4302 0.1752 0.1254 0.7786
handicapped: to some extent 0.4212 0.0999 0.2319 0.6397
smoke: daily 0.3879 0.1175 0.1900 0.6403
smoke: not every day 0.3936 0.2157 -0.0041 0.8214
smoke: no, but used to 0.1042 0.0994 -0.0715 0.3067
smoke: only a few times -0.2471 0.1279 -0.4953 0.0035
(Intercept) 3.8184 1.5363 1.8803 8.1662

α

female -2.3892 1.1699 -5.1968 -0.7173
age -0.6522 0.4172 -1.9058 -0.1083
age2 0.2528 0.1510 -0.0707 0.5546
handicapped: a lot -3.5315 1.5560 -6.6147 -1.0599
handicapped: to some extent -1.8433 1.2455 -3.7856 0.2417

1− π 0.1177 0.0349 0.0995 0.2123

Table 6: State of health services in Germany

Table 6 shows the estimates of the BetaMix model for Germany with a cumu-
lative model in the structure part. In the upper panel the effects on the preference
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part are displayed. Positive values indicate less satisfaction with the health ser-
vices. It is seen that females are less satisfied with the health services in Germany
than men. Persons who are not German citizen are happier with the health ser-
vices than German citizens. It is often discussed if there is a difference between
urban and rural health service supply. According to the model responders liv-
ing in a town or in a village are significantly less happy with the health services
than people living in a big city. For people living in the countryside or suburbs
the difference to people living in a big city is non-significant. Also handicapped
persons are less satisfied with the health services than non-handicapped persons.
In the lower part the response style effects are displayed. Positive values indicate
a tendency to the middle, negative values indicate a tendency to extreme cate-
gories. This follows from the parametrization of the α-values of the beta-binomial
distribution, because for positive estimates one obtains exp(estimate) > 1 and
therefore α increases. It is seen that females tend to choose more extreme cate-
gories than men. Handicapped persons also prefer more extreme categories than
non-handicapped persons.
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Figure 5: State of health services in Germany: Gender and Handicap Effects

In addition to giving estimates we use visualization tools to make the found
effects easily accessible. In particular we use two-dimensional plots of the effects
found in the preference part and the uncertainty part of the model. In the latter
we use the response style parameters. More concrete, we plot the α and γ values
together with the confidence intervals obtained by bootstrap to obtain a star for
each binary variable and several stars for multi-categorical variables. Figure 5
shows the estimated effects (γ, α) of gender and being handicapped. Positive
values in the γ-dimension indicate a tendency to negative statements concerning
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Figure 6: State of health services in Germany: Age Effects

the state of the health services, positive values in the α-dimension indicate a
tendency to middle categories. It is seen that females tend to see the health
services more sceptically and tend to choose more extreme categories. The effect
of being handicapped is stronger than the gender effect in terms of a preference
to categories indicating scepticism. The effects of being handicapped are almost
the same in the preference part but differ in the uncertainty part. If a person is
more handicapped it tends to choose more extreme categories. The effects are all
significant except of ”handicapped: to some extent” in the uncertainty component
α. We used the 2.5% and 97.5% quantiles of the bootstrap samples instead of
the bootstrap standard errors, because the distribution of the bootstrap standard
errors may be skewed.

The effect of age is displayed in Figure 6. The dotted lines correspond to
point-wise 95% bootstrap confidence intervals. They are constructed in such a
way that in every bootstrap sample the age curve is calculated. Then the point-
wise 2.5% and 97.5% quantiles are used to draw the dotted lines. On the left
hand side the effect of age on the satisfaction of the health services is shown. It
is seen that younger and older persons are more satisfied with the health services
than persons in their 50s. The response style shows a different picture. Young
persons below 50 years of age show a significant tendency to middle categories
whereas for persons older than 50 years of age no significant tendency to middle
or extreme categories can be detected.

For the comparison of countries we consider the performance of the BetaMix
model, the estimates 1−π̂ and the effect of gender across countries. The countries
considered are Austria (AT), Germany (DE), Denmark (DK), Spain (ES), Finland
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Figure 8: State of health services: Influence of gender in different countries

(FI), France (FR), Great Britain (GB), Ireland (IE), Netherlands (NL), Norway
(NO) and Sweden (SE).

There are some differences in the estimates of 1 − π̂, which is a measure of
the importance of the uncertainty component. Large values indicate the presence
of response styles in the survey. Figure 7 shows the proportions of the response
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styles. The dotted lines correspond to the 2.5% and 97.5% bootstrap quantiles.
In Germany (DE) the tendency to response styles is in the middle range. In
Spain (ES) and Sweden (SE) the model estimates show higher proportions of the
response style. The lowest estimated proportions are found for Austria (AT) and
Finland (FI), with values 0.0876 and 0.0793, respectively.

Figure 8 displays the effect of gender across the different countries. As in
Figure 5 the x-axis corresponds to the effect on the preference structure and the
y-axsis to the effect of the response style. The confidence intervals are again
obtained by bootstrap samples. For all countries the γ-parameters are positive
which indicates that women are less satisfied with the health services of their
country than men. The strongest effect can be found for the Netherlands and
Denmark and the smallest for Austria. The effects are significant for all countries
with the exception of Austria, for which the 95% bootstrap confidence interval
contains zero.

In contrast, the gender effect in the response style is not homogeneous across
countries. Positive α-parameters for Great Britain (GB), Finland (FI), France
(FR), Netherlands (NL) and Sweden (SE) indicate that women show a weak ten-
dency to the middle category. In the other countries the estimated α-parameters
are negative. However, except for Austria and Germany the effects are not sig-
nificant.

Table 7 compares the performances of the proposed BetaMix model and the
simple CUP model when fitting the models with all covariates included for each
country. It is seen that for all countries the deviance for the BetaMix model is
smaller than for the CUP model. Also, for all countries except for Denmark the
AIC values are smaller when fitting the BetaMix model. The largest reduction
can be found for Germany (reduction by 42 in the deviance and 30 in the AIC).

Countries Deviance Uniform Deviance BetaMix AIC Uniform AIC BetaMix

AT 7358 7342 7408 7404
DE 12864 12822 12914 12884
DK 6078 6070 6128 6132
ES 8553 8532 8603 8594
FI 8126 8112 8176 8174
FR 7797 7778 7847 7840
GB 9684 9665 9734 9727
IE 10354 10336 10404 10398
NL 7611 7594 7661 7656
NO 5677 5657 5727 5719
SE 7421 7393 7471 7455

Table 7: Comparison of CUP and BetaMix models
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6 Concluding Remarks

It has been shown that the modelling of the uncertainty component by a betabi-
nomial distribution yields a more flexible model than traditional mixture models.
The shape of the response style is allowed to depend on personal attributes and
leads to a better understanding of the concept of uncertainty. The inclusion of co-
variate effects on the uncertainty also increases the interpretability of the model
parameters. It has been demonstrated that ignoring the response style yields
biased estimates. The applications demonstrate that the more flexible model
outperforms the traditional model in most cases in terms of goodness-of-fit and
AIC.
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