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Abstract
It has been suggested that mitochondrial dysfunction has an influence on lipid metabolism.

The fact that mitochondrial defects can be accumulated over time as a normal part of aging

may explain why cholesterol levels often are altered with age. To test the hypothesis wheth-

er mitochondrial variants are associated with lipid profile (total cholesterol, LDL, HDL, and

triglycerides) we analyzed a total number of 978 mitochondrial single nucleotide polymor-

phisms (mtSNPs) in a sample of 2,815 individuals participating in the population-based

KORA F4 study. To assess mtSNP association while taking the presence of heteroplasmy

into account we used the raw signal intensity values measured on the microarray and ap-

plied linear regression. Ten mtSNPs (mt3285, mt3336, mt5285, mt6591, mt6671, mt9163,

mt13855, mt13958, mt14000, and mt14580) were significantly associated with HDL choles-

terol and one mtSNP (mt15074) with triglycerides levels. These results highlight the impor-

tance of the mitochondrial genome among the factors that contribute to the regulation of

lipid levels. Focusing on mitochondrial variants may lead to further insights regarding the

underlying physiological mechanisms, or even to the development of innovative treatments.

Since this is the first mitochondrial genome-wide association analysis (mtGWAS) for lipid

profile, further analyses are needed to follow up on the present findings.

Introduction
Cholesterol is a lipid which is vital for the normal functioning of the body [1]. Having an exces-
sively high level of total cholesterol (TC) itself does not cause any symptoms, but it increases
the risk of serious health conditions [2]. Cholesterol is carried around the body in the blood by
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lipoproteins, in particular Low-density lipoprotein (LDL), High-density lipoprotein (HDL),
and very low density lipoprotein (VLDL). LDL carries cholesterol from the liver to the cells. If
there is too much cholesterol for the cells to use, it can build up in the artery walls, leading to
atherosclerosis [3, 4]. HDL carries cholesterol away from the cells and back to the liver, where
it is either broken down or prepared to be excreted from the body as a waste product. High
concentrations of HDL particles have protective value against cardiovascular diseases [5].
VLDL contains the highest amount of triglycerides (TG), which have been linked to atheroscle-
rosis and the subsequent risk of heart diseases and stroke [6]. A high TG level combined with
a low HDL or high LDL concentration can speed up the process of plaque formation in the ar-
teries resulting in atherosclerosis. The balance of cholesterol levels is important not just for
cardiovascular health [7–10] but also for mental health [11, 12]. Control of cholesterol might
reduce the brain plaques linked to Alzheimer's disease [13]. It has been also suggested that an
excess of cholesterol in mitochondria can result in mitochondrial dysfunction and impairment
of specific carriers (e.g. mitochondrial transport of cellular glutathione) through alterations in
the mitochondrial membrane order [14–16]. Moreover, previous findings have associated an
excessive accumulation of cholesterol in mitochondria with neurodegeneration and myocardial
ischemia injury [17, 18] as well as with an increased mitochondrial damage in cardiovascular
tissues [19]. An excess production of reactive oxygen species (ROS) in mitochondria, accumu-
lation of mitochondrial DNA (mtDNA) damage, and progressive respiratory chain dysfunction
have been related to atherosclerosis [20–23].

The primary function of mitochondria is to generate large quantities of energy in the form
of adenosine triphosphate (ATP). mtDNA is of approximately 16.6 kb and codes for 13 genes
of the mitochondrial respiratory chain complexes, 2 ribosomal RNA (rRNA) genes, and 22
transfer RNA (tRNA) genes that are required for mitochondrial protein synthesis. Mitochon-
dria consume oxygen and substrates to generate the vast majority of ATP while producing
ROS, also called free radicals, in the process. An excess of ROS may damage DNA, proteins,
and lipids if not rapidly quenched. This damage, termed oxidative stress, has been suggested to
influence cholesterol flux [24, 25].

The 13 structural genes are essential for energy production through the process of oxidative
phosphorylation (OXPHOS) that consists of five enzyme complexes (I–V). In addition to sup-
plying cellular energy and involvement in oxidative stress, mitochondria also participate in a
wide range of other cellular processes, including signal transduction, cell cycle regulation, ther-
mogenesis, and apoptosis. Mitochondrial mutations can be both somatic and inherited through
the maternal line [26]. One peculiarity of mtDNA is the heteroplasmy effect which was originally
believed to be a rare phenomenon. Since many mtDNA copies are present in a cell and due to
their high mutation rate, new mutations may arise among many of other mtDNA, consequently
mutant and wild-type mtDNA can co-exist [27]. For this reason there is heterogeneity of
mtDNAwithin an individual, and even within the same cell. The clinical expression of some phe-
notypes is determined by the relative proportion of wild-type and mutant mitochondrial genetic
variants in different tissues [27]. Variants of mtDNA are under a growing scientific spotlight and
there is increasing evidence that these mutations play a central role in many human diseases.

Despite the physiological role of cholesterol in mitochondria, the mechanisms involved in
the trafficking to this compartment are poorly understood [28]. Genome-wide association
studies and human genetic studies have identified a number of genes and genetic regions affect-
ing cholesterol profile (including TC, HDL, LDL) and TG [7, 8, 10, 29–36]. Nevertheless, none
of them have investigated the mitochondrial genome. The purpose of the current study was to
conduct a mitochondrial GWAS to identify genetic variants influencing cholesterol pheno-
types, including TC, HDL, LDL, and TG. In particular, we tested 978 mtSNPs in a population-
based sample of 2,815 adults, aged 31–85 years.
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Methods

Study design and population
The Cooperative Health Research in the Region of Augsburg (KORA) study is a series of in-
dependent population-based epidemiological surveys and follow-up studies of participants
living in the region of Augsburg, in southern Germany, an area with demographic and socio-
economic characteristics roughly reflecting those of an average central European population.
The study was approved by the local ethics committee (Bayerische Landesärztekammer).
All participants are residents of German nationality identified through the registration office
and written informed consent was obtained from each participant [37]. The study was
approved by the local ethics committee. All participants filled in a self-administrated ques-
tionnaire and underwent a standardized personal interview and an extensive medical exami-
nation. All procedures were subjected to quality assessment. The study design, sampling
method, and data collection have been described in detail elsewhere [38]. The present study
includes data of the study KORA F4 (2006–2008) including a total number of 2,815 unrelat-
ed individuals. No evidence of population stratification has been found in multiple published
analyses using the KORA cohort. Ascertainments of anthropometric measurements and per-
sonal interviews, as well as laboratory measurements of persons, from the KORA F4 have
been described elsewhere [39]. In order to avoid confounding with insulin-dependent diabe-
tes mellitus, 213 individuals diagnosed with type 2 diabetes were not included in the study,
i.e., the 2,815 individuals considered in our analysis do not include persons affected by type
2 diabetes.

Genotyping and genotype calling
DNA was extracted from full blood after the blood draw and then stored at -80°C. Only single-
nucleotide polymorphisms located in the mitochondrial genome (mtSNPs) were considered in
this study. Genotyping was performed using the following platforms: Affymetrix 6.0 GeneChip
array (465 mtSNPs), Affymetrix Axiom chip array (252 mtSNPs), Illumina Human Exome
Beadchip array (226 mtSNPs), and Illumina MetaboChip 200K (135 mtSNPs). The Affymetrix
6.0 chip was genotyped only for a subgroup of 1,814 randomly selected participants of KORA
F4. All other chips were genotyped for the whole KORA F4 dataset. The number of individuals
used in this analysis corresponds to those that passed genotyping QC, have available phenotype
information, and are not affected with type 2 diabetes.

Most of the covered mtSNPs have distinct positions identified by different chips. Al-
though the Affymetrix 6.0 is the one containing the largest number of mtSNPs some regions
are not well covered. The Illumina Metabochip contains the smallest number of mtSNPs
and many regions are uncovered, especially the hypervariable regions of the mtDNA con-
trol region (HVR I and HVR II) as well as the CO1 and CO2 genes. However, when all chips
are considered together, good overall coverage of the mitochondrial genome is obtained
[40]. Standard genotype calling may be controversial when applied to mtSNPs due to the
possible occurrence of heteroplasmy. mtDNA tends to be heterogenous in the sense that
different mitochondria of an individual can have different genotypes, such that at an
mtSNP may not be restricted to 0, 1, or 2 minor alleles. This issue affects the possibility of
estimating genotypes and makes the calling algorithms useless. Therefore, whenever one in-
tends to identify susceptibility genes located in the mtDNA it is recommended to account
for heteroplasmy using individual-level allele frequencies obtained from intensity values
[40] or sequencing data rather than genotype calls obtained by algorithms that were de-
signed for nuclear SNPs.
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Cholesterol phenotypes (TC, HDL, LDL) and TG
All KORA F4 participants were subjected to several medical examinations including measures
of cholesterol phenotypes and fasting TG. TC levels are based on the HDL, LDL and TG levels
(TC = HDL + LDL + 0.2 × TG). There are several advantages to analyzing cholesterol pheno-
types as a quantitative phenotype in a representative population-based sample of subjects. The
quantitative nature of the phenotype increases the power of the study considerably. The use of
a general population sample as KORA F4 reduces the number of subjects taking antilipidemic
medication compared with patient groups. The distribution of characteristics of the study pop-
ulation is given in Table 1.

Quality control
Quality control for the signal intensity values was performed for each genotyping chip as de-
scribed in detail elsewhere [40]. An attempt to remove the chip-specific global background in-
tensity was made by computing, separately for each individual, the 5% quantile intensity and
subtracting it from all intensities. In a second step, the intensities were quantile normalized ap-
plying the method proposed by Bolstad et al. [41] and implemented in the limma R package
[42]. After quantile normalization log2 intensity ratios, log2(�A=�B), were computed for each
individual and an iterative outlier detection procedure was applied [40]. A summary of the
quality control results is given in Table 2. From the original number of mtSNPs, 63 (5.8%)

Table 1. Distribution of characteristics of the study population.

Chip Affy. 6.0 Affy. Axiom Illum. Exome Illum. Metabochip

Sample size 1640 2721 2710 2804

Males Females 786 854 1295 1426 1290 1420 1334 1470

Mean age 60.4±8.8 60.1±8.7 55.6±13.2 55±13 55.5±13.2 54.8±13 55.5±13.2 54.9±13

Mean TC 218.5±38.1 228.5±38.7 215±38.6 219.2±39.9 215.1±38.6 218.7±39.8 214.8±38.4 219.8±39.6

Mean HDL 51±12.8 62.4±14.4 50.7±12.4 61.8±14.3 50.6±12.5 61.8±14.3 50.6±12.5 61.6±14.3

Mean LDL 139±33.7 142.7±35.9 139±33.2 135±35.9 139.1±33.4 134.7±35.8 138.9±33.2 135.1±35.8

Mean TG 147.7±108.8 111.8±59.8 140.7±102.9 104.6±59.5 141.6±104.1 103.9±59.4 140.7±103.1 104.8±60.1

Sample size is based on the particular chip. Total sample size is 2,815 independent individuals. One person may be present on more than one chip.

Distributions are presented as means ± standard deviation.

doi:10.1371/journal.pone.0126294.t001

Table 2. Summary of the quality control.

Chip mtSNPs mtSNPs
excludedUB

no_B38

Sample size ISNP Itot Intensity RatioOutliers

Affy. 6.0 411 0 54 1,647 3 4,061,502 230 (<0.05%)

Affy. Axiom 215 37 0 2,731 4 4,697,320 42 (<0.05%)

Illum. Exome 226 0 0 2,721 1 1,229,892 128 (<0.05%)

Illum. Metabo 126 0 9 2,815 1 709,380 98 (<0.05%)

The number of mtSNPs refers to the SNPs that passed QC and were included in the analysis. Several mtSNPs were excluded due to the upper bound

cut-off (UB) [77] or because the basepair position was not available in Build 38 (no_B38). Sample size is based on the particular chip. Total sample size

is 2,803 independent individuals. One person may be present on more than one chip. ISNP stands for the number of intensity measures per allele. Itot
represents the total number of intensity measures in the sample (ISNP*2*sample-size*mtSNPs).

doi:10.1371/journal.pone.0126294.t002
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were removed because their position could not be placed in Build 38. For the Axiom chip, 37
mtSNPs (17%) were removed due to an upper bound cut-off that has been described in detail
in our previous paper [40]. A total number of 498 (<0.05%) intensity ratios were considered to
be outliers and removed from the analysis.

Statistical method
To approach the presence of heteroplasmy present in the mitochondria we used the raw signals
of luminous intensity, where every measurement is associated with a specific mtSNP and repre-
sents one of its alleles. The number of measures n per mtSNP depends on the vendor-specific
technology employed on the genotyping chip. To assess association of cholesterol phenotypes
with the mtSNPs intensities we applied linear regression analysis using cholesterol levels as out-
come. The mtSNP enters the model as a covariate via the log2-transformed intensity ratio,
log2(�A=�B), where�Aand�B denote the mean intensity over nmeasures, or single measure
in case of n = 1, for the A allele and B allele (minor allele), respectively. We center this variable
(z = log2(�A=�B)-μ) as well as the additional quantitative covariate age at examination, to im-
prove the convergence properties of the model estimates. Sex is also introduced in the model as
covariate with male as a baseline. Each type of genotyping chip needs to be analyzed separately
because different chips make use of different technologies, even between chips of the same man-
ufacturer. In each of the analyses p-values are obtained from aWald test and adjusted for multi-
ple comparisons applying the Bonferroni correction method with the correction factor being
equal to the number of mtSNPs used in the analysis. All the analyses were performed with the
statistical software R v3.1.0 [43]. For more details about the statistical method we refer to [40].

Results
After QC, a total number of 978 mtSNPs were included in the analysis. The resulting signifi-
cant p-values are plotted in Fig 1 for each phenotype. A more detailed figure for each genotyp-
ing chip and phenotype is provided in S1 Fig. No significant mtSNPs were obtained for TC.
However, when analysing cholesterol subtypes, ten mtSNPs for HDL cholesterol and one
mtSNP for TG reached significance after correcting for multiple testing. The association results
that remained significant after adjustment for multiple testing (Padjusted � 0.05) are presented
in Table 3. Some of the significant mtSNPs from the Affymetrix chip (mt3336, mt5285, and

Fig 1. Illustration by phenotype of the 11 significant mtSNPs after correcting for multiple testing.On the y axis, the p-values transformed into the
negative of the base 10 logarithm, −log10(p-value), are shown. The x-axis represents the mitochondrial genome for each phenotype.

doi:10.1371/journal.pone.0126294.g001
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mt14000) were also present in other chips. Although these variants also resulted to be nominal-
ly significant when analysing the other chips, they lost their significance after adjusting for
multiple testing (see Table 3).

A negative parameter estimate for the mtSNP (βSNP < 0) indicates that the minor allele is
associated with an increase of the level of cholesterol subtype while a βSNP > 0 indicates that
the major allele is associated with high levels of cholesterol subtype.

TG levels
For TG levels the only significant mtSNP was found in theMT-CYB gene (mt15074T!C). The
presence of mt15074T!C heteroplasmy with more C than T alleles results in a higher level of
TG than having only T alleles (βmt15074T!C = -14.9). In the regression model for this mtSNP
the estimates of sex and age were both significant with βsex < 0 and βage >0, indicating signifi-
cantly higher TG levels in males than in females and with older age.

HDL cholesterol
Six of the ten significant mtSNPs for HDL cholesterol (mt3336T!G, mt5285A!G,
mt13855C!T, mt13958G!C, mt14000T!A, and mt14580A!G) are located in the NADH

Table 3. Summary of significant mtSNPs.

Chip Bp rs_number Alleles
(maf)

Point
mutation

βSNP Pnominal

(Padj)
Overlap Chip: Pnominal Protein: Gene

HDL

Affy.6.0 3285
rs28537613

T!A (n.
a.)

- 3.49 2.2x10-07

(8.3x10-05)
- tRNALeu(UUR): MT-TL1

Affy.6.0 3336
rs28416101

T!G
(0.0033)

missense 0.91 1.2x10-06

(4.8x10-04)
Axiom: 0.022 ND1: MT-ND1; subunit of NADH

dehydrogenase, complex I

Affy.6.0 5285
rs28357986

A!G
(0.0030)

synonymous -4.63 8.9x10-05

(3.6x10-02)
Axiom: 0.013 ND2: MT-ND2; subunit of NADH

dehydrogenase, complex I

Affy.6.0 6591
rs28483589

C!A (n.
a.)

missense -3.09 4.5x10-05

(1.8x10-02)
- COI: gene MT-CO1; subunit of

cytochrome c oxidase, complex IV

Affy.6.0 6671
rs1978028

T!C
(0.0189)

synonymous -2.09 9.1x10-05

(3.7x10-2)
- COI: gene MT-CO1; subunit of

cytochrome c oxidase, complex IV

Affy.6.0 9163
rs2298010

G!A
(0.0004)

missense 4.47 1.5x10-05

(6.3x10-03)
- ATP6: MT-ATP6; subunit of ATP

synthase, complex V

Affy.6.0 13855
rs3925298

C!T
(0.0011)

synonymous -5.19 4.1x10-05

(1.7x10-2)
- ND5: MT-ND5; subunit of NADH

dehydrogenase, complex I

Illum. Exome 13958
rs202081448

G!C
(0.0037)

missense -2.32 1.90x10-04

(4.2x10-2)
- ND5: MT-ND5; subunit of NADH

dehydrogenase, complex I

Affy.6.0 14000
rs28359185

T!A
(0.0100)

missense 4.48 9.4x10-05

(3.9x10-2)
Axiom: 8.3x10-03 Exome:
2.1x10-03 Metabo: 1.0x10-
03

ND5: MT-ND5; subunit of NADH
dehydrogenase, complex I

Affy 6.0 14580
rs28496897

A!G
(0.0004)

synonymous 1.87 3.5x10-05

(1.4x10-02)
- ND6: MT-ND6; subunit of NADH

dehydrogenase, complex I

Triglycerides

Illum. Exome 15074
rs201169089

T!C (n.
a.)

missense -14.9 7.5x10-05

(1.6x10-02)
- CYTB: MT-CYB, cytochrome c

reductase, complex III

Genomic position in base pairs (bp), alleles, rs_number, and point mutation are based on the NCBI dbSNP GRCh38 human genome assembly (rCRS,

GeneBank ID J01415.2). Alleles are given in terms of major!minor allele. The population minor allele frequency “maf” is based on 2,704 individuals

provided by mitomap (http://www.mitomap.org). Note that these allele frequency estimates do not account for the presence of heteroplasmy. An estimated

effect size (βSNP) < 0 indicates that the risk allele is the minor allele. Nominal p-values and adjusted p-values are provided. mtSNPs mt3336, mt5285 and

mt14000 are also included in other chips.

doi:10.1371/journal.pone.0126294.t003
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subunit dehydrogenase genes of complex I (MT-ND1,MT-ND2,MT-ND5, andMT-ND6), the
others are located in the ATP synthase subunit 6 (MT-ATP6), cytochrome c oxidase subunit 1
(MT-CO1),and tRNA (MT-TL1).

Taking the most strongly associated variant mt3285T!A, in the tRNA,MT-TL1 gene,
based on our estimates (βmt3285T!A = 3.49) HDL cholesterol increases with a higher proportion
of T alleles at this locus, making the T allele favourable to HDL. Similar arguments can be ap-
plied to the other mtSNPs. The regression models for all significant mtSNPs regarding HDL
showed no significant effect for age; however, the estimate of βsex was significant with βsex>0
indicating significantly higher levels of HDL cholesterol in females than in males.

Discussion
We performed a mitochondrial GWA analysis for the lipid profile including TC, TG, HDL cho-
lesterol, and LDL cholesterol. Ten mtSNPs were significant for HDL and one mtSNP for TG.
No significant results were observed for TC and LDL cholesterol. The possible role of mitochon-
dria in the regulation of the lipid profile is mainly concerned with ROS production [24, 25].

Triglycerides
MT-CYBmt15074T!C:Mitochondrially encoded cytochrome b, complex III, catalyzes the trans-
fer of electrons from ubiquinol to cytochrome c and utilizes the energy to translocate protons
from inside the mitochondrial inner membrane to outside. Complex I and complex III are con-
sidered as the major ROS sources [44]. It has been shown that inhibition of complex III trigger
the accumulation of TG in 3T3-L1 cells [45, 46]. Mutations of the MT-CYB gene have also
been related to exercise intolerance [47–49]. Recently, association of MT-CYB15059G!A muta-
tion heteroplasmy with essential hypertension has been suggested [50].

Oxidative stress may also result from the metabolic impact of intracellular TG. Lipids and
glucose that are not needed for immediate use are stored in adipose tissues and liver in the
form of TG in lipid droplets. It has been demonstrated that hyperglycemia (excess of glucose)
induces production of ROS [51, 52], which further causes partial inhibition of the electron
transport in complex III [52].

The estimates of the regression model withMT-CYBmt15074T!C variant are in line with the
fact that males have higher TG levels than females [53, 54] and increase with older age since as
people age and gain weight, TG levels generally increase.

HDL cholesterol
Among the ten mtSNPs identified in this study for HDL cholesterol six are located in NADH
genes, the rest are located in theMT-TL1,MT-ATP6, and MT-CO1.

MT-ND1mt3336T!G,MT-ND2mt5285A!G,MT-ND5mt13855C!T, mt13958G!C, mt14000T!A,
andMT-ND6mt14580A!G:Mitochondrially encoded NADH dehydrogenase subunits, complex
I, extracts energy from NADH, produced by the oxidation of sugars and lipids, and traps the
energy in a potential difference or voltage across the mitochondrial inner membrane. The po-
tential difference is used to power the synthesis of ATP. Because complex I is central to energy
production in the cell, its malfunction may result in a wide range of disorders. Some of them
are due to mutations, while others, which result from a decrease in the activity of complex I, or
an increase in the production of ROS, are not yet well understood. Despite the fact that one
study demonstrated that the polymorphismMT-ND2mt5178A!C is associated with HDL-C lev-
els in Japanese subjects [55], very little has been reported about relationships between NADH
subunits and HDL.

mtSNPs Associated with HDL Cholesterol and Triglycerides Levels
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MT-TL1mt3285T!A:Mitochondrially encoded tRNA leucine 1 gene (MT-TL1) provides in-
structions for making a specific form of tRNA that is designated as tRNALeu(UUR). Mutations of
the MT-TL1 gene may play a pathogenic role in the formation of atherosclerotic lesions of
human arteries, causing various defects in the protein chains of some tRNA, synthesized direct-
ly in the mitochondria. This leads to a decrease in the concentration of these enzymes and their
tRNA or total dysfunction, which contributes to the development of oxidative stress and in-
creases the probability of occurrence and development of atherosclerosis [56]. Particularly the
variantMT-TL1mt3256C!T has been related to atherosclerosis predisposition [57]. There is un-
equivocal evidence of an inverse association between plasma HDL cholesterol concentrations
and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL pro-
tects from atherosclerosis [58].

MT-ATP6mt9163G!A:Mitochondrially encoded ATP synthase, complex V, is an important
enzyme that produces most of cellular ATP. Alteration of ATP synthase biogenesis may cause
two types of isolated defects: either the enzyme is structurally modified and does not function
properly, or it is present in abnormal amounts. In both cases the cellular energy provision is
impaired, which leads to a dysregulation of ROS production [59]. The presence of two princi-
pal proteins of the mitochondrial ATP synthase, β-chain and α-chain, on the surface of human
hepatocytes have been associated with HDL catabolism for the control of cholesterolemia [60,
61]. However, how the cell directs these proteins towards the cell surface and how their cell-
surface expression is regulated remain unknown and require further investigation.

MT-CO1mt6591C!A, mt6671T!C:Mitochondrially encoded cytochrome c oxidase subunits,
complex IV, is a key oxidative enzyme regarded as one of the major regulation sites for the
OXPHOS system, controlled by both nDNA and mtDNA. Its catalytic activity is primarily de-
termined by three of the 13 subunits which are encoded by the mtDNA (MT-CO1,MT-CO2,
andMT-CO3) [62]. The loss of function of this enzyme has been suggested to trigger ROS pro-
duction, although the increase in radical accumulation rests with non-mitochondrial sources
[63]. However, the function of each subunit and the molecular mechanism behind the regula-
tion of the activity of this important protein complex are largely unknown [64]. Although a di-
rect relationship between HDL and variants in theMT-CO1 genes has not been reported yet, a
significant inverse correlation between the hepaticMT-CO1methylated/unmethylated DNA
ratio and HDL has been observed [65].

The regression models for all significant mtSNPs identified for HDL cholesterol in this
study also corroborate the generally acknowledged fact that females have significantly higher
HDL cholesterol values than males [66–68]. Progesterone, anabolic steroids and male sex hor-
mones (testosterone) also lower HDL cholesterol levels while female sex hormones raise HDL
cholesterol levels. Age was not significant in our study, meaning that HDL cholesterol levels do
not vary with age, a finding also reported from other studies [69, 70]. However TC and LDL
cholesterol levels tend to vary with age [70, 71].

It has been suggested that HDL potentially inhibits apoptosis in endothelial cells [72–74].
This effect is paralleled by decreased intracellular generation of ROS and diminished levels of
apoptotic markers, suggesting that it can be related to the intracellular antioxidative actions of
HDL or HDL components. HDL is also able to inhibit generation of ROS in vitro under condi-
tions of cell culture [74, 75].

Some of the variants identified in this study are missense mutations which lead to an amino
acid change, thus being a non-synonymous variant. So, individuals with an excess of missense
mutations may carry an appreciable fraction of an altered protein that is responsible for alter-
ing the levels of the phenotype. Other variants are synonymous, i.e., they code for the same
amino acid. How an excess of synonymous mutations at this locus could impact the levels of
HDL cholesterol needs further investigation, since the single nucleotide change leads to an
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unchanged protein. However, different codons might lead to different protein expression lev-
els. Based on these findings we hypothesize that levels of HDL and TG are attributable at least
in part to mitochondrial polymorphisms. Animal and human data consistently show that mito-
chondria are altered in aging, leading to increased mutations in mtDNA, decreased expression
of some mitochondrial proteins, reduced enzyme activity, and altered respiration with reduced
maximal capacity in sedentary adults. The possible role of mitochondria in the regulation of
HDL cholesterol and TG is mainly concerned with ROS production. However, the complexity
of mitochondrial ROS metabolism suggests that interventions such as the administration of
one or a few antioxidants may be too simplistic. A more complete approach to antioxidant
therapy might be to decrease ROS generation (for example, by expressing uncoupling proteins)
and to upregulate the multilayered endogenous mitochondrial and intracellular antioxidant de-
fense network [76]. However, this will require a considerably better understanding of ROS biol-
ogy than we have at present

Conclusions
In summary, our study reports eleven mitochondrial genetic variants, ten of which are signifi-
cantly associated with HDL cholesterol and one with TG levels, indicating that the presence of
heteroplasmy in these variants may influence the balance of HDL cholesterol and TG levels. Al-
though further analyses are needed to follow up on the present results, these findings highlight
the important role of the mtDNA among the factors that contribute to the balance of the lipid
profile in adults and suggest that variants in the mitochondrial genome may be more important
than has previously been suspected.

Supporting Information
S1 Fig. Mitochondrial genome-wide P values by chip and phenotype. On the y axis, p-values
transformed into the negative of the base 10 logarithm, −log10(p-value), are shown. The x-axis
represents the mitochondrial genome, displaying the position and relative size of each of the 13
major mitochondrial genes, 12S and 16S rRNAs, hypervariable region 1 (HVR I), hypervariable
region 2 (HVR II) as well as the position of the 22 tRNAs (gray). The left side illustrates the re-
sults for TC and the right side illustrates the results for cholesterol subtypes (LDL, HDL, and
triglycerides). The dashed lines show the critical values of the pointwise significance level cor-
responding to α = 0.05.
(TIFF)
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