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Abstract

Aims

The aim of the current study was to develop a method to detect peptide-linked nanoparticles

in blood plasma.

Materials & Methods

A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detec-

tion of peptides functionalized with biotin and fluorescein groups. As a proof of principle, po-

lymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein

labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples

were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/

MS) technology.

Results

The ELISA based method for the detection of FITC labeled peptides had a detection limit of

1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-

acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS.

Conclusions

We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after

injection in vivo. This method can be extended to detect nanoparticles with different

chemical compositions.
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Introduction
The work presented here was developed by the FP6 EU biopharmaceutics platform, which
aimed at the development of innovative multidisciplinary approaches for the design, synthesis
and evaluation of molecular, nano- and micro-scale functionalities for targeted delivery of ther-
apeutic peptides and proteins.

The use of therapeutic peptides in neurodegenerative diseases is an active area of investiga-
tion. For example, the NAP peptide (NAPVSIPQ), derived from the activity-dependent neuro-
protective protein (ADNP) [1], has shown efficacy in in vitro as well as in vivomodels of
neurodegenerative diseases [2, 3]. However, therapeutic peptides are known to have several
limitations such as poor bioavailability, instability and short half-life [4]. A possible way to
overcome these limitations is the use of nanoparticles as delivery method. Nanoparticles in-
crease the bioavailability and efficacy of incorporated peptides by facilitating their transfer
across biological membranes and protecting bound peptides against enzymatic degradation [5,
6]. Therapeutic nanoparticles are currently being developed for a wide variety of diseases such
as cancer [7], cardiovascular disease [8–10] and neurodegenerative diseases [11, 12]. Although
significant progress has been made towards organ-specific delivery of nanoparticles, a draw-
back is that they often do not reach their intended target tissue in the desired quantities due to
filtering by the kidney, liver and spleen [7]. This can be improved by decorating the nanoparti-
cles with functionalized targeting peptides that bind to receptors on the target tissue (Fig 1)
[13]. Another challenge is the evaluation of the pharmacokinetics and biodistribution of the
nanoparticles in vivo. In this respect LC-MS techniques can be used to measure peptides at-
tached to nanoparticles. However, this approach requires specialized infrastructure. Therefore,
it is useful to have reliable methods based on commonly used laboratory techniques, to be able
to measure nanoparticles in biological fluids and tissues. In this manuscript we attached labeled
reporter peptides to nanoparticles [6]. Subsequently, we used an ELISA-based method to detect
the reporter peptide bound to the nanoparticles (Fig 1C), allowing quantification of these
nanoparticles in blood plasma after injection in vivo. This ELISA enabled us to measure peptide
bound to nanoparticles in blood plasma from 1 ng/mL. In parallel, LC/MS analysis of the same
samples was performed to measure the plasma concentration over time of acrylamide based
nanoparticles loaded with reporter peptides in rats.

Materials and Methods

Animals
All animal experiments were approved by the Maastricht University animal ethical committee
and complied with Dutch law. Two month old male Wistar rats (Harlan, Ter Horst, the Neth-
erlands) were used for the experiments. The animals were housed three per cage with ad libi-
tum food and water and a 12:12 hour light:dark cyclus. A total of three animals was used in
this study.

No anesthetics were used during blood sample collection. The animals were euthanized 24
hours after nanoparticle injection by intramuscular injection of ketamine (90 mg/kg) and xyla-
zine (10 mg/kg) followed by transcardial perfusion with Tyrode’s buffer.

Nanoparticles and peptides
N-isopropylacrylamide (NIPAAm, 97%), N,N-dimethylacrylamide (DMAAm, 99%), acrylic
acid (AAc, 99%), methylenebisacrylamide (MBAAm, 99%), sodium dodecyl sulphate (SDS,
ReagentPlus� 98.5%) and ammonium persulphate (98+%, A.C.S reagent) were all purchased
from Sigma-Aldrich (St. Louis, MO) and used without further purification unless otherwise
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stated. Pentafluorophenyl methacrylate (PFM) was purchased from Apollo scientific, UK, cys-
teamine hydrochloride (purum� 97.0%) and AlexaFluor 660 carboxylic acid succinimidyl
ester from Invitrogen, US.

Nanoparticles were synthesized by a free-radical polymerization method in a microemul-
sion system [14], where the monomers used are N-isopropylacrylamide, N,N-dimethylacryla-
mide and acrylic acid, the cross-linker is methylenebisacrylamide, the surfactant, sodium
dodecyl sulphate, and the initiator, ammonium persulphate.

For the synthesis of the nanoparticles a three-neck bottom-flask was charged with
N-isopropylacrylamide (0.35 g, 3.09 mmol), N,N’-dimethylacrylamide (0.04 g, 0.4 mmol),

Fig 1. Schematic representation of the nanoparticle and ELISA design. Peptide 5A contains biotin and carboxyfluorescein, lower case letters denote D-
amino acids. Nanoparticles were synthesized by a free-radical polymerization method in a microemulsion system. N-isopropylacrylamide, N,N-
dimethylacrylamide and acrylic acid were used as monomers with methylenebisacrylamide as cross-linker. Pentafluorophenyl methacrylate (PFM) was
added and the nanoparticles were adorned with peptide 5A (B). An ELISA was designed to detect nanoparticles in biological fluids using the biotin and
carboxyfluorescein groups present on peptide 5A (C). Streptavidin coated plates were used to capture the peptides by binding the biotin group and bound
peptides were detected with a HRP conjugated mAb anti-fluorescein.

doi:10.1371/journal.pone.0126136.g001
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acrylic acid (0.05 g, 0.69 mmol), methylenebisacrylamide (0.01 g, 0.06 mmol), sodium dodecyl
sulphate (0.02 g, 0.07 mmol) and 117 mL of mili-Q water. The reaction mixture was heated at
70°C in a hot plate under reflux conditions, nitrogen atmosphere and stirring for four hours.
After some minutes, when the reaction mixture was homogeneous and started to reflux, am-
monium persulphate (0.036 g, 0.16 mmol) was added.

After 1 hour of reaction, pentafluorophenyl methacrylate (0.04 mmol) was added and the
reaction mixture was further refluxed for 30 minutes. The obtained nanoparticles were further
modified by the addition of the desired coating molecule. For thiolating, cysteamine hydro-
chloride (0.015 g, 0.13 mmol) was added, for labelling, Alexafluor 660 carboxylic acid succini-
midyl ester (10 μg, 0.01 μmol). The peptide decoration was achieved via adding peptide 5A
(1.055 mg, 0.39 mmol). Nanoparticle solutions were dialysed with dialysis membranes (nomi-
nal MWCO 6000–8000).

Nanoparticles size and zeta potential were determined using dynamic light scattering in a
Nano ZS Nanosizer (Malvern Instruments Ltd., Malvern, UK) with a laser light wavelength of
632.8 nm and a scattering angle of 173 degrees. Temperature was set at 25°C. Nanoparticle so-
lutions were measured without previous dilution. The mean diameter of the NPs was 174 nm
and the zeta potential was -5.89 mV.

Peptide 5A (napvsipqKGGC, MW = 1754.0, monoisotopic mass = 1752.7; Fig 1A) was
produced by conventional solid phase synthesis (AplaGen, Baesweiler, Germany). Peptide
5A+B (MW = 4694.2, monoisotopic mass = 4691.0) was produced by oxidizing peptide 5A
with peptide 5B (Ac-CGGKTFFYGGCRGKRNNFKTEEY-COOH). Peptide 5D (isotopically
labeled peptide 5A used as an internal standard for LC/MS, MW = 1760.0, monoisotopic
mass = 1752.7) was prepared by labeling the two glycine amino acids with 13C2 and

15N1, re-
sulting in a mass difference of +6 Da compared to peptide 5A. A schematic representation of
peptide 5A, 5B and 5A+B is provided in Supporting Information S1 Fig

Peptide 5A detection in blood plasma after intravenous injection of
nanoparticles
The acrylamide based nanoparticles containing peptide 5A were injected in the lateral tail vein
of 3 Wistar rats at a concentration of 17.25 mg of nanoparticle per kg of bodyweight, corre-
sponding to 0.5 mg peptide 5A per kg of bodyweight. Blood samples were collected in lithium
heparin plasma microtainer tubes (BD, Franklin Lakes, NJ). A small incision was made in the
contralateral tail vein and the blood was collected directly into the tube. Immediately after col-
lecting the blood, the tubes were manually inverted 8 times to ensure mixing with the anti-co-
agulant. Blood samples were stored on ice for up to 30 minutes before separating the plasma by
centrifugation at 2000 g for 10 minutes. No hemolysis was observed.

Samples were collected from each animal immediately after injection (time point 0) and at
15, 30, 60, 120, 240, 480 minutes after injection. All plasma samples were stored at -80°C until
further analysis.

ELISA for the detection of peptide 5A
The plasma samples were diluted 1/500 in PBS, based on the range of the standard curve and
the expected initial plasma concentrations. Streptavidin coated ELISA 96-well microplates
(Steffens Biotechnische Analysen, Germany) were rinsed with 100 μl PBS per well and incubat-
ed with plasma samples in duplicate, for one hour at room temperature. After washing the
wells three times with PBS, the carboxyfluorescein group present on the reporter peptide was
detected by incubating with monoclonal (mAb) mouse-anti-fluorescein peroxidase-conjugated
IgG (Dianova, Hamburg, Germany) diluted 1:100,000 in PBS with 0.1% BSA for one hour.
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Subsequently, the wells were washed three times with PBS and incubated with soluble high sen-
sitivity TMB (SDT, Baesweiler, Germany) for 10 minutes in the dark. The enzymatic peroxi-
dase reaction was stopped with 1 M HCl and absorbance at 450 nm was measured on a
VICTOR X3 Multilabel Plate Reader (Perkin Elmer, Waltham, MA). All incubations were per-
formed at room temperature on a plate shaker at 650 rpm. The wells were washed with PBS
three times both after sample and antibody incubation. The TMB reaction was performed in
the dark for 10 minutes. Negative controls consisted of incubating the wells with PBS instead
of plasma samples and by using plasma without nanoparticles. The absorbance at 450 nm of
the negative controls was considered as background and subtracted from the absorbance of the
plasma samples.

Free peptide 5A was used as a positive control in the ELISA described above with a lower
limit of detection of 1 ng/mL (data not shown). Nanoparticles containing a known concentra-
tion of peptide 5A, were used to generate a standard curve for the quantification of blood plas-
ma samples. The standard curve data were fitted to a Hill curve using Graphpad Prism
(Graphpad Software, La Jolla, CA) and the Hill equation was used to calculate the concentra-
tion of peptide 5A in blood plasma samples from the absorbance at 450 nm (See S1 Table).

Liquid chromatography—mass spectrometry
Materials. Acetonitrile (>99.9%, for HPLC), water (for HPLC), formic acid (98–100%),

acetic acid (>99%), trifluoroacetic acid (>99.5%), tris(2-carboxyethyl)phosphine (TCEP,
C4706) and albumin from human serum (96–99%) were purchased from Sigma—Aldrich.
Peptide 5A+B (the combined peptide 5A+B was produced by oxidizing peptide 5A with pep-
tide 5B), peptide 5A and peptide 5D were synthesized by AplaGen, pooled rat EDTA plasma
was received from Harlan. Ultracentrifugation devices (Amicon Ultra 4, 10 kDa MWCO) were
obtained fromMillipore (Billerica, MA).

Standards preparation. Peptide 5A standards were prepared by spiking rat plasma with
peptide 5A+B and subsequently reducing the disulfide bond between peptide 5A and 5B, yield-
ing free peptide 5A as depicted in Fig 1. The concentration range of the standards was 4.1–
1674 ng/mL of peptide 5A. (Neither the peaks corresponding to the mass of peptide 5B nor the
unreduced peptide 5A+B were analyzed, see LC-MS analysis section). In addition, two quality
controls were prepared in rat plasma at concentrations of 83.7 and 837.1 ng/mL peptide 5A.

Sample preparation. Plasma samples for LC/MS were prepared by adding 300 μL of 10
mM TCEP in loading mobile phase mix to 30 μL of sample. 16 μL of internal standard (peptide
5D, isotopically labelled peptide 5A) was added and disulfide bonds were reduced by incubat-
ing at 60°C for 20 minutes. The samples were centrifuged at 8000 g for 5 minutes and subse-
quently filtered with 10 kDa MWCO filters at 500 g. The filtrate was transferred to
autosampler vials and analyzed or frozen at -80°C until analysis.

Samples with expected concentrations higher than the upper limit of quantification were di-
luted with rat plasma prior to sample preparation.

LC/MS analysis. All LC/MS experiments were carried out on an Ultimate 3000 System
(Dionex, LC Packings) coupled to a TSQ Quantum Ultra AMmass spectrometer (Thermo Fin-
nigan). The system was controlled by Xcalibur Software 1.4. The chromatographic setup con-
sisted of a capillary precolumn (Zorbax SBC3, 5 x 0.5 mm) in combination with a capillary
analytical column (ACE 4, 250 x 0.3 mm). Sample loading was performed at 100 μL/min, elu-
tion at 4 μL/min. Chromatographic separation was carried out at 50°C. Twenty microliters
were injected onto the precolumn using the μL-pickup mode. For sample loading onto the pre-
column, acetonitrile:water solutions containing 1% acetic acid and 0.05% TFA were used (A:
5:94:1:0.05 ACN:H2O:AA:TFA, B: 95:4:1:0.05 ACN:H2O:AA:TFA, gradient: 0–5 minutes 10%
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B, 5–12 minutes 10 to 70% B, 12–14 minutes 70–100% B, 14–19.9 minutes 100% B, 19.9–20
minutes 100 to 10% B, 20–30 minutes 10% B). Elution was performed using a water: acetoni-
trile gradient containing 0.1% formic acid (A: 5:95:0.1:ACN:H2O:FA, B: 95:5:0.1:ACN:H2O:FA,
gradient: 0–5 minutes 15% B, 5–10 minutes 15 to 30% B, 10–13 minutes 30% B, 13–14 minutes
30 to 100% B, 14–19 minutes 100% B, 19–19.1 minutes 100 to 15% B, 19.1–30 minutes 15% B).
Valve switching times were 5 minutes and 12 minutes.

MS detection was performed in positive electrospray ionization (ESI) with a nanoESI source
using the selected reaction monitoring (SRM) mode. The double-protonated molecule ion of
the whole intact peptide was chosen as the parent ion, the three most intensive fragment ions
were chosen as daughter ions. (Peptide 5A: m/z 877.4! (341 + 412 + 946), peptide 5D: m/z
880.5! (412.2 + 341.1 + 952.4). As mentioned in the standards preparation section, the peaks
corresponding to peptide 5B and the unreduced peptide 5A+B were not analyzed. Quantifica-
tion (see S2 Table for details) was carried out using the sum of all three SRM chromatograms
in order to obtain good sensitivity.

Results

ELISA for the detection of carboxyfluorescein-labeled peptide 5A
We developed an ELISA to detect carboxyfluorescein-labeled peptide 5A (see Fig 1C for sche-
matic representation). In addition to the carboxyfluorescein, peptide 5A contains a biotin mol-
ecule. The peptide was selectively bound to the streptavidin coated plate via the biotin residue;
subsequently a mAb against the carboxyfluorescein was used to detect the bound peptide. To
test the sensitivity of the ELISA a dilution range of acrylamide-based nanoparticles with an
equivalent of 0 to 20 ng/mL of carboxyfluorescein-labeled peptide 5A was added to the ELISA
plate. The particles were detected with high sensitivity and the data were fitted to a standard
curve using the Hill equation, with a Hill coefficient of 1.366 and a Kd of 27.59 ng/mL (Fig 2A).

Detection of peptide 5A nanoparticles in blood plasma by ELISA
After confirming the specificity and sensitivity of the ELISA in vitro, we intravenously injected
Wistar rats with the acrylamide based nanoparticle formulation containing the 5A reporter
peptide described above. Blood samples were collected immediately and up to 24 hours after
injection (data not shown). Plasma was prepared from venous blood and diluted 1/500 in PBS.
The same ELISA as described above was used to measure the concentration of peptide 5A in
the plasma samples. At time point 0 the mean ± S.E.M. of peptide 5A plasma concentration in
3 animals was 1661 ± 514 ng/mL, with the highest mean ± S.E.M. concentration of 2706 ± 466
ng/mL measured 15 minutes after injection (Fig 2B). We were able to detect the peptide up to 2
hours after injection (Fig 2B; absorbance data can be found in S3 Table). The results were re-
producible when repeated several times. We noted that dilution of samples in normal rat plas-
ma, rather than PBS, increased the maximum OD, while it had very little effect on the
background (data not shown).

Liquid chromatography—mass spectrometry quantification of peptide 5A
in blood plasma of nanoparticle injected rats
Peptide 5A used for generating the LC/MS standard curve was obtained by diluting the com-
bined 5A+B peptide in plasma and subsequently reducing the disulfide bond between peptide
5A and peptide 5B. The LC/MS method showed good linearity in the range from 4.1 up to
1674 ng/mL (Fig 3A) with an expected lower limit of quantification of 13.5 ng/mL (S/N at
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Fig 2. Quantification of peptide 5A in blood plasma by ELISA. A standard curve was generated using
nanoparticles decorated with peptide 5A in a concentration range of 0.3 to 20 ng/mL peptide (A).
Nanoparticles containing peptide 5A were injected into the lateral tail vein of male Wistar rats (n = 3). Plasma
was prepared from venous blood samples collected at different time points after injection and peptide 5A
concentration was measured by ELISA (B). Data shown are the mean ± S.E.M. peptide concentration in the
plasma of three individual animals. The standard curve was generated using the Hill equation.

doi:10.1371/journal.pone.0126136.g002
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Fig 3. Quantification of peptide 5A in blood plasma by LC/MS. A standard curve for the quantification of
peptide by LC/MS was generated using peptide 5A in a concentration range of 4.1 to 1674 ng/mL peptide (A).
Blood plasma samples of animals injected with peptide 5A decorated nanoparticles were reduced and free
peptide was quantified by LC/MS (B). Data shown are the mean ± S.E.M. peptide concentration in the plasma
of three individual animals.

doi:10.1371/journal.pone.0126136.g003
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13.5 ng/mL was 330, Fig 4). Quality controls at 83.7 and 837 ng/mL measured in parallel with
the in vivo study samples showed accuracies ranging between -7% and +7%.

LC/MS quantification of peptide 5A in blood plasma showed a similar pharmacokinetic
profile as the ELISA based quantification. Interestingly, the peptide concentrations measured
by LC/MS were approximately a factor 4 higher compared to the ELISA measurements. Im-
mediately after injection a mean ± S.E.M. concentration of 7515 ± 2403 ng/mL was measured
(Fig 3B; Peak area ratios can be found in S4 Table). As with the ELISA measurements, the
highest concentration of 11724 ± 3062 ng/mL was found at the 15 minutes post-injection
time point.

Discussion
We have developed a convenient ELISA method for detecting a peptide conjugated to a nano-
particle, in vivo in rat plasma. By using a HRP conjugated antibody against FITC instead of
measuring fluorescence directly, high sensitivity can be attained without the need for a spectro-
fluorometer. The ELISA proved to be highly sensitive, detecting the peptide 5A with a detection
limit of 1 ng/mL. In addition, the ELISA detected peptide 5A in blood plasma after injection of
nanoparticles decorated with peptide 5A in the lateral tail vein of Wistar rats. The blood plasma
profile showed a maximum concentration of peptide in plasma 15 minutes after injection. The
peptide was detectable in blood plasma up to 2 hours after injection (Fig 2B). The LC/MS anal-
ysis of the same samples also showed the highest peptide concentration after 15 minutes
(Fig 3B). However, the measured peptide concentrations in plasma were higher by LC/MS than
those measured by ELISA. There are several potential reasons for this difference. For example,
the ELISA detects peptide attached to the nanoparticle and it is possible that not all of the pep-
tide was accessible due to steric hindrance. In contrast, the LC/MS method detects the peptide
that is released from the nanoparticle by reduction of the disulfide bond. Another factor that
could account for the differences between the ELISA and LC-MS measurements are the differ-
ent methods which are required for the preparation of the standards/samples.

In conclusion, we demonstrated that, the labeling of acrylamide nanoparticles with peptides
containing functional groups such as biotin and carboxyfluorescein allows for detection of
these nanoparticles by ELISA in blood plasma. This suggests that this technique is useful for

Fig 4. LC/MS chromatograms comparing different concentrations of peptide 5A in blood plasmamatrix. Peptide 5A peaks in plasmamatrix spiked
with 0, 13.6 and 45.2 ng/mL (SRM trace: 877.7! (412.2 + 341.1 + 946.4).

doi:10.1371/journal.pone.0126136.g004
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the study of pharmacokinetics of nanoparticles in vivo and the development of therapeutic
nano delivery systems. Finally, this method can be easily adapted for labeling of other nanopar-
ticles with different chemical compositions and the detection of nanoparticles in other biologi-
cal fluids and tissue, such as cerebrospinal fluid, brain and liver (manuscript in preparation).
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S1 Fig. Schematic representation of the structure of peptide 5A, peptide 5B and peptide 5A
+B.
(TIF)

S1 Table. Absorbance data of the ELISA standards. The raw absorbance values of the dupli-
cates at 450 nm and the average values are shown. A Hill equation was used to fit the data to a
curve, which yielded the formula Concentration = (27.59�Absorbance/(1.626-Absorbance))^
(1/1.366). This formula was subsequently used to calculate the peptide 5A concentrations of
the samples.
(DOCX)

S2 Table. Concentrations and area ratios of the LC/MS standards. The formula derived from
the standard curve to calculate the concentrations of the samples was: Concentration = (Area
ratio+4.32257�10–4)/7.46704�10–5
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S3 Table. ELISA absorbance data of the plasma samples shown in Fig 2. Blank subtracted
absorbance at 450 nm of 1 to 500 diluted plasma samples. Values shown are the average
of duplicates.
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S4 Table. Raw data of LC/MS analysis. Peak area ratios and dilution factors of the plasma
samples shown in Fig 3. Values shown are the average of duplicates.
(DOCX)

Acknowledgments
We would like to thank Geertjan van Zonneveld for his excellent assistance with the artwork in
the figures.

Contributors
Members of The European NanoBioPharmaceutics Research Initiative are: Society for Chemi-
cal Engineering and Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany (Kurt
Wagemann); Ecole Polytechnique Fédérale de Lausanne, Laboratoire des Polymères, Batiment
MX-D, Station 12, 1015 Lausanne, Switzerland (Harm-Anton Klok); Johannes Gutenberg Uni-
versity, Institute for Pathology, Patholoy Research Laboratory, Building 707, Langenbeck-
strasse 1, 55101 Mainz, Germany (Ronald E. Unger); Medical University of Graz, Department
of Internal Medicine, Diabetes and Metabolism, Auenbruggerplatz 15, 8036 Graz, Austria
(Thomas Pieber); University of Trieste, Department of Biochemistry, Biophysics and Macro-
molecular Chemistry, Via Giorgieri 1, 34127 Trieste, Italy (Attilio Cesàro); University of
Twente, Zuidhorst, Institute for Biomedical Technology, Postbus 217, 7500 AE Enschede, The
Netherlands (Johan Engbersen); Chalmers University of Technology, Department of Applied
Physics, 41296 Göteborg, Sweden (Bengt Kasemo); Deutsches Wollforschungsinstitut an der
RWTH Aachen e.V., Pauwelsstr. 8, 52056 Aachen, Germany (Martin Moeller); Tel-Aviv

Detection of Peptide-Based Nanoparticles in Biological Fluids by ELISA

PLOSONE | DOI:10.1371/journal.pone.0126136 May 21, 2015 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126136.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126136.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126136.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126136.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126136.s005


University, Marian Gertner Institute for Medical Nanosystems, Department of Physiology and
Pharmacology, 69978 Tel Aviv, Israel (Rafi Korenstein), University of Liège, Centre Interfacul-
taire des Biomatériaux (CEIB), Chemistry Institute B6C, 4000 Liège, Belgium (Christian
Grandfils); University of Innsbruck, Department of Pharmaceutical Technology, Institute of
Pharmacy, Innrain 52A, 6020 Innsbruck, Austria (Andreas Bernkop-Schnuerch); University
Ramon Llull, Industrial Engineering Department, Via Augusta 390, 08017 Barcelona, Spain
(Salvador Borrós); Centre for Research and Technology Hellas and Aristotle University of
Thessaloniki, Department of Chemical Engineering, P.O. Box 472, 54124 Thessaloniki, Greece
(Costas Kiparissides); Center of Molecular and Macromolecular Studies, Sienkiewicza 112, 90–
363 Lodz, Poland (Stanislaw Slomkowski); Joanneum Research GmbH, Auenbruggerplatz 20/
3, 8036 Graz, Austria (Frank Sinner); National Institute of Chemistry, Hajdrihova 19, 1001 Lju-
bljana, Slovenia (Peter Venturini); NCSR “Demokritos”, Institute of Physical Chemistry, 15310
Agia Paraskevi, Attiki, Greece (Constantinos M. Paleos); Lek Pharmaceuticals, Verovškova 57,
1526 Ljubljana, Slovenia (Barbara Podobnik); MagnaMedics Diagnostics BV, Oxfordlaan 70,
6229 EVMaastricht, Netherlands, Diagnostics BV, Oxfordlaan 70, 6229 EV Maastricht, Neth-
erlands (Paul Borm); Regulon A.E., Gregoriou Afxentiou 7, Alimos, 17455 Athens, Greece
(Ewoud C.A. van Winden); Deutsches Wollforschungsinstitut an der RWTH Aachen e.V.,
Pauwelsstr. 8, 52074 Aachen, Germany (Juergen Groll); ThioMatrix GmbH, Trientlgasse 65,
6020 Innsbruck, Austria (Birgit Zassler); Lipoxen plc, 2 Royal College Street, London NW1
0NH, United Kingdom (Gregory Gregoriadis); Novo Nordisk, Department of Protein Chemis-
try, Novo Alle, 2880 Bagsvaerd, Denmark (Peter Kresten Nielsen); AplaGen GmbH, Arnold-
Sommerfeld-Ring 2, 52499 Baesweiler, Germany (Hans-Georg Frank); GlaxoSmithKline Bio-
logicals, 89 Rue de l’Institut, 1330 Rixensart, Belgium (Abdelatif Elouahabi); Maastricht Uni-
versity, Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, P.O.
Box 616, 6200 MDMaastricht, The Netherlands (Pilar Martinez-Martinez).

Author Contributions
Conceived and designed the experiments: ML FMS AJGP H-GF CS SB PM-M. Performed the
experiments: GHB KEP BAMS-P. Analyzed the data: GHB KEP. Contributed reagents/materi-
als/analysis tools: AJGP H-GF CS SB HWMS. Wrote the paper: GHB KEP ML PM-M.

References
1. Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, et al. Complete sequence of a

novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem. 1999;
72(3):1283–93. Epub 1999/02/26. PMID: 10037502.

2. Quraishe S, Cowan CM, Mudher A. NAP (davunetide) rescues neuronal dysfunction in a Drosophila
model of tauopathy. Mol Psychiatry. 2013; 18(7):834–42. Epub 2013/04/17. mp201332 [pii]. doi: 10.
1038/mp.2013.32 PMID: 23587881; PubMed Central PMCID: PMC3690421.

3. Magen I, Gozes I. Microtubule-stabilizing peptides and small molecules protecting axonal transport and
brain function: focus on davunetide (NAP). Neuropeptides. 2013; 47(6):489–95. Epub 2013/11/12.
S0143-4179(13)00077-2 [pii]. doi: 10.1016/j.npep.2013.10.011 PMID: 24210139.

4. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;
81(1):136–47. Epub 2012/12/21. doi: 10.1111/cbdd.12055 PMID: 23253135.

5. Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and
protease substrates. J Control Release. 2012; 159(1):2–13. Epub 2011/11/08. S0168-3659(11)00995-
3 [pii] doi: 10.1016/j.jconrel.2011.10.023 PMID: 22056916; PubMed Central PMCID: PMC3288222.

6. Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P. Delivery of peptide and protein drugs
over the blood-brain barrier. Prog Neurobiol. 2009; 87(4):212–51. Epub 2009/04/28. S0301-0082(09)
00012-4 [pii]. doi: 10.1016/j.pneurobio.2008.12.002 PMID: 19395337.

7. Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv
Mater. 2012; 24(28):3803–22, 710. Epub 2012/06/08. doi: 10.1002/adma.201200832 PMID:
22674563.

Detection of Peptide-Based Nanoparticles in Biological Fluids by ELISA

PLOSONE | DOI:10.1371/journal.pone.0126136 May 21, 2015 11 / 12

http://www.ncbi.nlm.nih.gov/pubmed/10037502
http://dx.doi.org/10.1038/mp.2013.32
http://dx.doi.org/10.1038/mp.2013.32
http://www.ncbi.nlm.nih.gov/pubmed/23587881
http://dx.doi.org/10.1016/j.npep.2013.10.011
http://www.ncbi.nlm.nih.gov/pubmed/24210139
http://dx.doi.org/10.1111/cbdd.12055
http://www.ncbi.nlm.nih.gov/pubmed/23253135
http://dx.doi.org/10.1016/j.jconrel.2011.10.023
http://www.ncbi.nlm.nih.gov/pubmed/22056916
http://dx.doi.org/10.1016/j.pneurobio.2008.12.002
http://www.ncbi.nlm.nih.gov/pubmed/19395337
http://dx.doi.org/10.1002/adma.201200832
http://www.ncbi.nlm.nih.gov/pubmed/22674563


8. Arosio D, Casagrande C, Manzoni L. Integrin-mediated drug delivery in cancer and cardiovascular dis-
eases with peptide-functionalized nanoparticles. Curr Med Chem. 2012; 19(19):3128–51. Epub 2012/
05/23. CMC-EPUB-20120518-4 [pii]. PMID: 22612699.

9. Psarros C, Lee R, Margaritis M, Antoniades C. Nanomedicine for the prevention, treatment and imaging
of atherosclerosis. Nanomedicine. 2012; 8 Suppl 1:S59–68. Epub 2012/05/30. S1549-9634(12)00186-
4 [pii]. doi: 10.1016/j.nano.2012.05.006 PMID: 22640906.

10. Lobatto ME, Fuster V, Fayad ZA, Mulder WJ. Perspectives and opportunities for nanomedicine in the
management of atherosclerosis. Nat Rev Drug Discov. 2011; 10(11):835–52. Epub 2011/10/22.
nrd3578 [pii]. doi: 10.1038/nrd3578 PMID: 22015921.

11. Spuch C, Saida O, Navarro C. Advances in the treatment of neurodegenerative disorders employing
nanoparticles. Recent Pat Drug Deliv Formul. 2012; 6(1):2–18. Epub 2012/01/26. DDF-EPUB-
20120125-001 [pii]. PMID: 22272933.

12. Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine. 2012;
8 Suppl 1:S51–8. Epub 2012/05/30. S1549-9634(12)00187-6 [pii]. doi: 10.1016/j.nano.2012.05.007
PMID: 22640910.

13. Svensen N, Walton JG, Bradley M. Peptides for cell-selective drug delivery. Trends Pharmacol Sci.
2012; 33(4):186–92. Epub 2012/03/20. S0165-6147(12)00020-X [pii]. doi: 10.1016/j.tips.2012.02.002
PMID: 22424670.

14. Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X. Thermo-sensitive polymeric micelles based on poly(N-iso-
propylacrylamide) as drug carriers. Progress in Polymer Science. 2009; 34(9):893–910. doi: 10.1016/j.
progpolymsci.2009.05.002

Detection of Peptide-Based Nanoparticles in Biological Fluids by ELISA

PLOSONE | DOI:10.1371/journal.pone.0126136 May 21, 2015 12 / 12

http://www.ncbi.nlm.nih.gov/pubmed/22612699
http://dx.doi.org/10.1016/j.nano.2012.05.006
http://www.ncbi.nlm.nih.gov/pubmed/22640906
http://dx.doi.org/10.1038/nrd3578
http://www.ncbi.nlm.nih.gov/pubmed/22015921
http://www.ncbi.nlm.nih.gov/pubmed/22272933
http://dx.doi.org/10.1016/j.nano.2012.05.007
http://www.ncbi.nlm.nih.gov/pubmed/22640910
http://dx.doi.org/10.1016/j.tips.2012.02.002
http://www.ncbi.nlm.nih.gov/pubmed/22424670
http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002
http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002

