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ABSTRACT We consider an infinitely large population under stabilizing selection and mutation in which the
allelic effects determining a polygenic trait vary between loci. We obtain analytical expressions for the
stationary genetic variance as a function of the distribution of effects, mutation rate, and selection coefficient.
We also study the dynamics of the allele frequencies, focusing on short-term evolution of the phenotypic mean
as it approaches the optimum after an environmental change. We find that when most effects are small, the
genetic variance does not change appreciably during adaptation, and the time until the phenotypic mean
reaches the optimum is short if the number of loci is large. However, when most effects are large, the change
of the variance during the adaptive process cannot be neglected. In this case, the short-term dynamics may be
described by those of a few loci of large effect. Our results may be used to understand polygenic selection
driving rapid adaptation.
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In the study of fast adaptation, polygenic selection may be more
important than selection on single genes. At single genes, strong
selection driving fast adaptation generally leads to the rapid fixation
of beneficial alleles or at least large allele frequency shifts between
populations. Classical examples of this type of adaptation are the
case of industrial melanism in moths (van’t Hof et al. 2011) and
insecticide resistance in Drosophila (Daborn et al. 2002). However,
in many (if not most) cases of fast adaptation, such as in island
lizards that are able to adapt very quickly to a changing vegetation
[e.g., revealed in an experimental evolution study by Kolbe et al.
(2012)], small shifts of allele frequencies at many loci may be suf-
ficient to move a phenotype toward a new optimum under changed
environmental conditions.

There is a large and growing body of literature on the detection
of adaptive signatures in molecular population genetics. Following
pioneering work of Maynard Smith and Haigh (1974), the impact of
positive selection on neutral DNA variability (selective sweeps) has
attracted much interest. This theory has been applied to huge datasets
that emerge from modern high-throughput sequencing. A large num-
ber of statistical tests have been developed to detect sweep signals and
estimate the frequency and strength of selection (Kim and Stephan
2002; Nielsen et al. 2005; Pavlidis et al. 2010). However, most theory
so far excludes the phenotypic side of the adaptive process (except for
fitness). Usually, selection is simply modeled as a constant force that
acts on a new allele at a single locus. This is in striking contrast to the
classical phenotype-based models of adaptation that are successfully
used in quantitative genetics (Barton and Keightley 2002). These mod-
els typically assume that adaptations are based on allele frequency
shifts of small or moderate size at a large number of loci. Also, adap-
tation does not require new mutations, at least in the short term.
Instead, selection uses alleles that are found in the standing genetic
variation. Genome-wide data of the past few years show that this
quantitative genetic view is relevant. In particular, association studies
confirm that quantitative traits are typically highly polygenic. High
heritabilities most probably result from standing genetic variation at
a large number of loci with small individual effect. Also, local adap-
tation to environmental clines involves moderate frequency shifts
at multiple loci (Hancock et al. 2010). As a consequence, there is
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growing evidence that the molecular scenario of sweeps only covers
part of the adaptive process and needs to be revised to include poly-
genic selection.

Because genome-wide association studies (GWAS) yield informa-
tion about the distribution of single-nucleotide polymorphisms
relevant to quantitative traits (Visscher et al. 2012), it is important to
understand the models of polygenic selection in terms of the fre-
quency changes of molecular variants, i.e., in terms of population
genetics. So far, however, the dynamics of only very simple polygenic
models have been studied and applied to data [e.g., Turchin et al.
(2012)]. In this article, we analyze the dynamics of a quantitative trait
given by a much more general model that was originally proposed by
Wright (1935) and recently re-visited by de Vladar and Barton (2014).
These authors consider an infinitely large population evolving under
stabilizing selection and mutation. Following the observations from
many empirical studies [particularly from biomedicine, see Visscher
et al. (2012)], they assume that the effects are locus-dependent. Fur-
thermore, they consider additivity of the effects and linkage equilib-
rium between loci.

Here we study this model and obtain some analytical results on the
stationary genetic variance and also the dynamics of the phenotypic
mean. We show that the stationary genetic variance may exhibit
nonmonotonic dependence on the shape of the distribution of effects.
We also study how the trajectories of the allele frequencies and the
mean trait respond to a sudden environmental shift. When most effects
are small, as is the case in experiments on Drosophila (Mackay 2004),
in livestock (Hayes and Goddard 2001; Goddard and Hayes 2009), and
for human height (Visscher 2008), a simple analysis shows that the
magnitude of the deviation of the phenotypic mean from the optimum
decays roughly exponentially with time and approaches zero over a
time scale that is inversely proportional to the initial genetic variance.
When most effects are large, the short-term dynamics of the mean and
variance can be understood by considering a few loci with large effects.

MODEL WITH LOCUS-DEPENDENT EFFECTS
We consider the ℓ-locus model recently analyzed by de Vladar and
Barton (2014) where each locus is biallelic. The þ allele at site i has
frequency pi whereas the 2 allele occurs with frequency qi = 1 2 pi.
The effects are assumed to be additive so that the trait value is
z ¼Pℓ

i¼1sgnðiÞ gi, where sgnðiÞ ¼ 61 denotes the sign of the ge-
notypic value of locus i and gi . 0 is the effect of the allele at the ith
locus. The loci are assumed to be in linkage equilibrium so that the
joint distribution of effects at the loci factorises. As a result, the nth
cumulant cn of the phenotypic effect, obtained on averaging over the
population distribution, can be written as the sum over the corre-
sponding quantities at individual loci. The first three cumulants viz.
mean c1, variance c2, and skewness c3, are given by the following
(Bürger 1991):

c1 ¼
Xℓ
i¼1

gi
�
pi 2 qi

�
(1a)

c2 ¼ 2
Xℓ
i¼1

g2i piqi (1b)

c3 ¼ 2
Xℓ
i¼1

g3i
�
qi 2 pi

�
piqi: (1c)

The allele frequency evolves in time under selective pressure and is
given by the following (Barton 1986):

@pi
@t

� piðt þ 1Þ2 piðtÞ ¼ piqi
2�w

@�w
@pi

; (2)

where �w is the average fitness of the population. For large ℓ, as the
trait value z of an individual can be treated as a continuous variable,
from (1a) and (1b), we obtain

�w ¼
Z N

2N
dz   pðzÞwðzÞ ¼ 12

s
2

�
c2 þ ðDc1Þ2

�
� e2

s
2 ðc2þðDc1Þ2Þ;

(3)

where the approximate equality sign holds because s is assumed to
be small. In the above expression, wðzÞ ¼ 12 ðs=2Þðz2zoÞ2 is the
fitness distribution of the phenotypic trait under stabilizing selec-
tion, z0 the phenotypic optimum and Dc1 ¼ c1 2 zo the mean de-
viation from z0. Thus the maximum fitness (namely, one) is obtained
when the population is at the phenotypic optimum and has no
genetic variance. Inserting equations (1) and (3) in (2) and account-
ing for mutations, we obtain the following basic equation for the
evolution of allele frequencies,

@pi
@t

¼ 2
sg2i
2

piqi

�
2
Dc1
gi

þ qi 2 pi

�
þ m

�
qi 2 pi

�
; i ¼ 1; . . . ; ℓ;

(4)

where m is the probability of (symmetric) mutation between the þ
and 2 allele at locus i. Note that the equation (1) of de Vladar and
Barton (2014) is obtained by replacing s by 2s in the above
equation.

On the right-hand side (RHS) of (4), the first term (in the first
parenthesis) expressing the mean deviation from the optimum cor-
responds to directional selection toward the phenotypic optimum: if
the mean is above (below) the optimum, the allele frequencies de-
crease (increase). However, once the phenotypic mean is sufficiently
close to the optimum, stabilizing selection (described by the second
term) takes over.

One of the difficulties in solving (4) is that it involves the mean c1,
which depends on all the allele frequencies. Moreover, it has been
shown that the differential equations for the cumulants do not close:
each one not only involves two higher cumulants but also contains
terms that cannot be written in terms of other cumulants (Barton and
Turelli 1987; Bürger 1991).

GENETIC VARIANCE IN THE STATIONARY STATE
In the stationary state in which the left-hand side of (4) vanishes, if the
mean c�1 ¼ zo, the allele frequency p�i has three solutions, namely 1=2

and
�
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ðĝ=giÞ2

q �.
2, where ĝ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2m=s

p
. The latter two sol-

utions are stable for gi . ĝ, and therefore the allele frequency is close
to fixation when the effects are large. For gi , ĝ, the effects are small
and the stationary state solution p�i ¼ 1=2 is the only stable solution
for the allele frequency (de Vladar and Barton 2014). From these re-
sults, the stationary genetic variance (1b) is easily seen to be (de Vladar
and Barton 2014)

c�2 ¼
4m
s
nl þ

1
2

X
gi , ĝ

g2i ; (5)

where, for large ℓ, the number of effects larger than ĝ is given
by nl ¼ ℓ

RN
ĝ dg   pðgÞ with pðgÞ being the distribution of effects.

Thus the genetic variance in the stationary state can be neatly
written as
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c�2 ¼
ℓ
2

"
ĝ2
Z N

ĝ
dg   pðgÞ þ

Z ĝ

0
dg   g2   pðgÞ

#
; (6)

where the first (second) term is the contribution from loci with large
(small) effects.

The gamma distribution pðgÞ � gk21e2kg=�g with shape parameter
k. 0 and mean �g has been used to fit the distribution of quantitative
trait loci effects (Hayes and Goddard 2001). This distribution is
L-shaped for k, 1 and bell-shaped for k. 1, whereas for k ¼ 1, it
is an exponential function. For the gamma distribution, the stationary
genetic variance (6) is given by

c�2 ¼
ℓĝ2

2

	
Gðk; kgrÞ
GðkÞ þ Gð2þ kÞ2Gð2þ k; kgrÞ

g2r k
2GðkÞ



; (7)

where gr ¼ ĝ=�g and Gða; bÞ ¼ RNb dt   ta21e2t is the incomplete
gamma function. For the special case of exponentially distributed
effects ðk ¼ 1Þ, (7) simplifies to give c�2 ¼ ℓ�g2ð12 e2gr ð1þ grÞÞ.

For �g � ĝ, the House of Cards (HoC) variance, namely
c�2 ¼ ℓĝ2=2 ¼ 4mℓ=s (Turelli 1984), is obtained when ĝ is finite
but �g/N for all k. In the opposite case ð�g � ĝÞ, we have
c�2 ¼ ℓ�g2ðkþ 1Þ=ð2kÞ, which depends on the shape of the distribution
of effects. For fixed mean �g, the genetic variance increases monoton-
ically with the scale ĝ because a larger mutation probability increases
the variance. If instead the distribution mean �g is increased keeping ĝ
fixed, the variance increases with �g toward the HoC value. This is
because for fixed k, the width of the distribution increases with �g and
therefore larger effects can be accessed.

The stationary genetic variance has been computed numerically for
various shape parameters when ĝ ¼ 0:063; �g ¼ 0:1 and ℓ ¼ 1000 in
de Vladar and Barton (2014). From (7), the variance for k = 1, 2, 10,
and 100 is found to be 1.32, 1.57, 1.94, and 2, respectively, which
agrees well with the numerical data in their Figure 5. To understand
how the variance depends on the shape parameter, we first note that
with increasing k (and fixed �g), the width of the gamma distribution
decreases. For large k, if �g. ĝ, the variance saturates to the HoC
variance since almost all loci have large effects with narrow distribu-
tions whereas in the opposite case, most effects are small and the
variance tends to ℓ�g2=2 (see Figure 1). For small k, irrespective of
whether �g is above or below ĝ, we find that most effects are small. To
see this, consider the fraction fs ¼ 12 ðnl=ℓÞ of loci with small effects
which is given by

fs ¼ ðkgrÞk
ðk2 1Þ!

Z 1

0
dx  xk21e2kgrx ¼ 12

Gðk; kgrÞ
GðkÞ : (8)

If k, ðgrÞ21, the aforementioned equation yields fs � ðkgrÞk=k!.
Then for finite gr, when k/0, we find that ns/ℓ for any gr, as
claimed previously. To summarize, as shown in Figure 1, for ĝ, �g,
the variance increases with k toward the HoC variance, whereas for
ĝ. �g, both c�2 and ns are nonmonotonic functions of k.

When the effects are chosen from an exponential distribution, the
fraction fs ¼ 12 e2gr . On eliminating gr in favor of fs in (7) for
k ¼ 1, we find the relative contribution of loci with small effects to
the total variance to be

c�2;small

c�2
¼ 2fs þ

�
12 fs

�
ln
�
12 fs

��
22 ln

�
12 fs

��
2fs þ 2

�
12 fs

�
ln
�
12 fs

� ; (9)

which increases as fs=3 for small fs and approaches unity as fs increases
toward one. The aforementioned expression shows that if 10% of the

effects are small, their contribution to the variance is merely 3%, which
increases to 21% when fs is one half. To obtain an equal contribution
from small and large effects, a disproportionately large fraction (~83%)
of small effects is required. We are unable to obtain an analytical ex-
pression analogous to (9) for arbitrary k since fs is not a simple function
of gr (see (8), shown previously). However, a numerical analysis using
(7) and (8) shows that for the same value of fs, small effects contribute
more to the total genetic variance as the distribution of effects gets
narrower. For fs = 0.1, the relative contribution is found to be 2%, 3%,
and 5% for k = 1/2, 1, and 2, respectively. To obtain an equal contri-
bution from loci with small and large effects, fs = 0.89, 0.83, and 0.77 is
needed for the shape parameters k = 1/2, 1, and 2, respectively.

DYNAMICS OF THE ALLELE FREQUENCY
We now turn to a description of the allele frequency dynamics and
will consider the situation when the phenotypic optimum is suddenly
shifted. As mentioned previously, due to the term Dc1 on the RHS of
(4), all the frequencies are coupled, which makes it hard to obtain an
exact analytical solution of the allele frequency dynamics. However,
under certain conditions, it is a good approximation to consider only
the c1 term in (4) for the initial dynamics and the rest of the terms for
long-term evolution.

To see this, we first note that because 0 , pi , 1, the mean
jc1ðtÞj,

P
igi � �gℓ. For independent and uniformly distributed

initial frequencies, as the average initial frequency is one half, the
leading order contribution (in ℓ) to the initial mean is zero. The initial
variance is, however, nonzero which gives the typical initial mean
jc1ð0Þj � �g

ffiffi
ℓ

p
. When the phenotypic optimum zo&�g

ffiffi
ℓ

p
and the

number of loci is large, the initial value jDc1ð0Þj=gi �
ffiffi
ℓ

p � 1. Thus
at short times, we can neglect

��2pi 2 1
�� (which is bounded above by

one) and the mutation term in comparison to the term 2Dc1=gi in (4).
At large enough crossover time t·, as explained in the following sec-
tion, the mean deviation is close to zero and the reverse condition
holds, i.e., 2jDc1ðtÞj=gi �

��2pi 2 1
�� in (4), and we may set Dc1 � 0

for later evolution. Biologically, these considerations mean that ini-
tially the effects are weaker than the mean trait deviation, but as the
population adapts due to directional selection, the deviation of the
mean from the phenotypic optimum becomes smaller than the effects.

The aforementioned argument applies not only to uniformly
distributed initial frequencies but in more general settings as well
where jc1ð0Þj � �gℓ by replacing

ffiffi
ℓ

p
by ℓ. Here we will focus on the

dynamics of the allele frequency when the optimum is suddenly
shifted to a new value zf ð, ℓ�gÞ, starting from the population which
is equilibrated to a phenotypic optimum value zo. In this situation, as
the initial frequency is close to one half when gi , ĝ, the frequency��2pið0Þ2 1

�� is obviously negligible compared with Dc1ð0Þ=gi,
whereas for gi . ĝ,

��2pið0Þ2 1
�� is close to one because the initial

frequency is close to either zero or one (de Vladar and Barton 2014).

When most effects are small
The effects at most of the loci can be smaller than the scale ĝ either if
k is large and �g, ĝ, or if k is small. Then for most loci, at short times,
the full model defined by (4) can be approximated by

@pi
@t

¼2 sgipiqiDc1 (10a)

@cn
@t

¼2 sDc1cnþ1;  n$ 1; (10b)

where the last equation for cumulants is obtained from the results of
Bürger (1991). Equation (10b) for n ¼ 1 shows that the magnitude of
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the mean deviation decreases with time, and for the phenotypic opti-
mum smaller than the maximum attainable value of the mean
ðzo � �gℓÞ, the trait mean becomes close to the phenotypic optimum
at large times (see Figure 2A). We now assume that the variance c2 is
independent of time and stays at its initial value c2ð0Þ (Chevin and
Hospital 2008). As explained in Appendix A, this approximation is good
when a combination of the initial cumulants is small (see also Figure 2B).
This allows us to solve (10a) and (10b), and we immediately find that

Dc1ðtÞ ¼ Dc1ð0Þe2c2ð0Þst (11)

piðtÞ ¼ pið0Þ
pið0Þ þ qið0Þe

giDc1ð0Þ
c2ð0Þ ð12e2 c2ð0ÞstÞ

: (12)

Equation (11) shows that the mean deviation approaches zero over
a time scale t· � ðsc2ð0ÞÞ21.

Next we analyze the long-term evolution of the allele frequencies.
As Figure 2A shows, there is a small but nonzero mean deviation Dc�1
in the stationary state. Taking this into consideration and accounting
for the other terms in (4), for t. t· , we can write

@pi
@t

¼2
s
2
g2i piqi

�
12 2pi þ 2Dc�1

gi

�
þ m

�
12 2pi

�
: (13)

For Dc�1 ¼ 0, the aforementioned equation can be easily solved to
give

pð6Þ
i ðtÞ¼ 1

2

 
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12mi

12MiðtÞ

s !
; t. t· ; (14)

where

MiðtÞ ¼ 4p2i ðt· Þ2 4piðt· Þ þmi�
2piðt · Þ21

�2 e2
sg2
i ð12miÞðt2t · Þ

2 ; t. t · ; (15)

mi ¼ ðĝ=giÞ2 and piðt· Þ is obtained from (12). We check that the
stationary state solutions ð16 ffiffiffiffiffiffiffiffiffiffiffiffiffi

12mi
p Þ=2 and 1=2 are obtained

from the above result for mi , 1 and . 1, respectively. Furthermore,
the solution pðþÞ

i ðtÞ is obtained for piðt· Þ. 1=2 and pð2 Þ
i ðtÞ for

piðt · Þ, 1=2.
Figure 2 and Figure 3 show a comparison between the numerical

solution of (4) and the approximation described previously, when the
initial condition is the stationary state of the population equilibrated
to a phenotypic optimum z0. The initial mean deviation Dc1ð0Þ is seen
to be close to 2 zf , and the initial variance c2ð0Þ ¼ c�2 for the zero
mean deviation is 0.0967, which is close to the value 0.131 obtained
from the set of effects used in Figure 2 and Figure 3. As Figure 2
shows, the dynamics of the mean deviation are captured well by (11)
and approach a stationary value close to zero ðDc�1 � 2 0:016Þ in
about 1500 generations. The variance also evolves with time, but the
change is not substantial and the approximation c2ðtÞ � c2ð0Þ is good
over the time scale directional selection toward the phenotypic

Figure 1 Genetic variance in the stationary state
as a function of the shape parameter k when the
effects are distributed according to the gamma
function. The plot shows the total genetic variance
(solid), variance caused by small effects (small
dashes), large effects (large dashes), and the frac-
tion of small effects (dotted) for (a)
�g ¼ 0:04; ĝ ¼ 0:08 and (b) �g ¼ 0:1; ĝ ¼ 0:05 for
ℓ ¼ 1000. The asymptotic values ℓ�g2ðk þ 1Þ=ð2kÞ
when ĝ. �g and ℓĝ2=2 when ĝ, �g are also shown
(top solid curves).
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optimum operates. Equation (11) also indicates that directional selec-
tion toward the optimum will occur faster when the initial variance is
large since t· � 1=c�2.

Because the stationary genetic variance displays a nonmonotonic
dependence on the shape parameter k of the gamma distribution (see
Figure 1), the relaxation time for the mean deviation is expected to
decrease and then increase with increasing k. Indeed, as the inset of
Figure 2A shows, the difference c1ðtÞ2 c�1 (which, by definition, is
zero in the equilibrium state for all k) equals a reference value 20.05
at time 360, 340, and 370 for k = 1, 5, and 20, respectively.

The allele frequency dynamics are shown in Figure 3. We see that
although the short-term dynamics can be accurately described by (12)
for loci with effects smaller than or close to the distribution mean,
there is a substantial difference when the effects are larger than the
mean. This is because for such loci, the initial frequency is not close to
half and the term involving qi 2 pi on the RHS of (4) cannot be
neglected. For t. t· , the long-term behavior described by (13) is
shown with Dc�1 ¼ 0 and the actual mean deviation.

When most effects are large
When �g. ĝ and k is large, the number of loci with large effects is also
large, and the initial allele frequencies are close to either zero or one.

In this parameter regime, both the variance and the skewness may
change appreciably during directional selection toward the optimum,
and the constant-variance approximation discussed above is not suit-
able. However, at very short times when Dc1 (t) is close to its initial
value, the solution (12) for the allele frequency gives

piðtÞ � 1

1þ qið0Þ
pið0Þe

giDc1ð0Þst
: (16)

From the aforementioned equation, we first note that the allele
frequency at large-effect loci changes fast as expected intuitively.
Equation (16) also shows that for Dc1 (0) , 0, the allele frequency
quickly increases toward unity, if the initial frequency is close to
unity and therefore does not contribute to the dynamics of the
variance or skewness. Thus, to understand the short-term dynamics,
we need to focus our attention on large-effect loci with low initial
allele frequency for negative initial mean deviation. Similar remarks
apply to the situation when Dc1 (0) is positive where the large-effect
loci with high initial frequency determine the dynamics.

In the following, we assume that Dc1 (0), 0 and consider the time
evolution of the allele frequency P of the largest effect locus with
lowest initial frequency. Figure 4 shows that the allele frequency

Figure 2 Response to change in optimum
when most effects are small. The plot shows
the results for (A) mean deviation Dc1ðtÞ and
(B) variance c2ðtÞ and skewness c3ðtÞ obtained
using the exact numerical solution of the full
model (solid) and the short-term dynamics
model (large dashes). The dotted curves show
the time-dependent solution (11) for mean and
(A.1) for variance. The parameters are ℓ ¼ 50;
s ¼ 0:02;m ¼ 5 ·1025; ĝ ¼ 0:14. �g ¼ 0:05;
zo ¼ 20:0012; zf ¼ 0:5;nl ¼ 5. The effects
are chosen from an exponential distribution,
and the parameter C = 20.01 (see Appendix
A). The inset in the top figure shows the differ-
ence Dc1ðtÞ2Dc�1 as a function of time for the
full model when the effects are gamma-distrib-
uted with shape parameter k = 1 (large
dashes), 5 (small dashes), and 20 (dotted).
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P sweeps to fixation, but the frequency of the next relevant locus (i.e.,
the next largest effect locus with low initial frequency) does not. In
such a case, we can approximate the mean c1 and variance c2 by the
contribution from the frequency P with effect G, and obtain

c1ðtÞ � 2GðP2 P0Þ þ c1ð0Þ (17a)

c2ðtÞ � 2G2ðPQ2 P0Q0Þ þ c2ð0Þ; (17b)

where P0[Pð0Þ. Then using the aforementioned expression for the
phenotypic mean in (4) and neglecting mutations (since most effects
are large), we get

@P
@t

¼ 2 sG2Pð12 PÞðP þ aÞ; (18)

where

a ¼ Gþ 2Dc1ð0Þ
2G

2 2P0: (19)

We thus find that the allele frequency P is a solution of the following
equation:

ðP=P0Þ1þa

ðQ=Q0Þa ¼ e2sG2að1þaÞt P þ a

P0 þ a
: (20)

An explicit solution of (20) seems hard to obtain since a is in general
not an integer. However, for large and negative a, the aforemen-
tioned equation yields

P ¼ 1

1þ Q0
P0
e2sG2jajt : (21)

Thus for zf � G, the frequency P sweeps to fixation in a time of
order ðsGzf Þ21.

Figure 4 shows the allele frequency of the largest effect locus with
lowest initial frequency obtained using (4). It agrees reasonably well
with the solution of (20) and the expression (21) where a = 21.43. In
Figure 5, the dynamics of the first two cumulants given by (1a) and
(1b) are compared with the approximate expressions (17a) and (17b),
respectively, and we see a good agreement.

A detailed numerical analysis of the set of parameter values of
Figure 4 suggests that the dynamics of this example can be understood
by considering one, two, or three of the largest-effect loci. When only
the largest-effect locus was required, the second largest effect was
much lower than the largest one.

Figure 3 Response to change in optimum when
most effects are small. The plot shows the allele
frequencies for two representative loci with (A)
gi ¼ 0:252 and (B) gi ¼ 0:028 for the full model
(solid) and short-term dynamics model (large
dashes). The dotted curves show the time-
dependent solution (12) for t, t · and (14) for
t. t · where t · ¼ 1500. The dashed curve for
t. t · is the solution of (13) with Dc�1 ¼
20:016. The other parameter values are the
same as in Figure 2.
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DISCUSSION
One of the fundamental questions in adaptation is whether the
adaptive process is governed by many loci of small effect or few loci of
large effect (Orr, 2005). However, which effects are small, and which
large? de Vladar and Barton (2014) have provided a scale ĝ � ffiffiffiffiffiffiffiffi

m=s
p

for the size of effects, which is a function of basic population genetic
parameters, namely mutation probability m and selection coefficient s,
relative to which an effect is defined as large or small. For a given
distribution of effects, assumed here to be a gamma distribution with
mean �g and shape parameter k, an effect is small (large) if it is below
(above) ĝ. But for fixed �g and ĝ, whether most or a few effects are
small depends on the shape parameter k: for small k, most effects are
small, but for large k, the number of small effects depends on the ratio
gr ¼ ĝ=�g.

Genetic variance in stationary state
Here we have provided analytical expressions for the stationary
genetic variance c�2 when the effects are locus-dependent. We find that
when most effects are small, c�2 is a nonmonotonic function of the
shape parameter of the gamma distribution (going through a maxi-
mum for intermediate values of k; see Figure 1). In contrast, it
increases monotonically when most effects are large. As Figure 1
shows, when the shape distribution is narrow, large (small) effects
contribute most to the variance when gr . 1ð, 1Þ. However, for
broad distributions, although the number of small effects is large,
small effects do not contribute much when gr , 1. The HoC variance
is obtained irrespective of k when gr/0 because all loci have large
effect in this limit. As noted previously (de Vladar and Barton, 2014),
HoC provides an upper bound on the genetic variance.

Dynamics when most effects are small
As the distribution of quantitative trait loci measured in experimental
and natural populations (Hayes and Goddard, 2001; Mackay, 2004;
Visscher, 2008; Goddard and Hayes, 2009) find most effects to be
small, it is important to study this situation in detail. Here we have
obtained analytical expressions for the dynamics by assuming the
genetic variance to be constant. Although the fact that the variance
does not change much in time when most effects are small was ob-
served numerically in de Vladar and Barton (2014), an explanation of
this behavior was not provided. Here, as explained in Appendix A, it is

a good approximation to assume the variance to be time-independent
provided the product of the initial values of the mean deviation and
skewness is small.

In the absence of mutations, Chevin and Hospital (2008) have
considered the effect of background with a time-independent genetic
variance on the frequency at a single focal locus. Their results match
the ones obtained here using the short-term dynamics model with
directional selection only; in particular, (11) and (12) match the results
(21) and (25) of Chevin and Hospital (2008), respectively, on identi-
fying their parameters v2 and a with 1=s and g from this study.

Our basic result concerning the dynamics of the phenotypic mean
is that it relaxes over a time scale that is inversely proportional to the
initial variance. Because the variance is of order ℓ, we thus have the
important result that the mean approaches the optimum faster if
a larger number of loci is involved. Moreover, this time depends
nonmonotonically on the shape parameter of the gamma distribution.
Note that the phenotypic mean deviation relaxes to zero when the
phenotypic optimum is far below the upper bound �gℓ on the pheno-
typic mean. However, when the phenotypic optimum exceeds the
maximum typical value of the mean, such that the mean deviation
remains substantially different from zero at late times, (10b) shows
that all higher cumulants vanish at the end of the phase of directional
selection.

Dynamics when most effects are large
When the initial mean deviation is moderately large (and negative),
the genetic variance changes by a large amount over the time scale
directional selection occurs and the dynamics can be understood by
considering a few loci whose effect is large but initial frequency is
low.

However, for larger mean deviations (but smaller than ℓ�g), a few
large-effect loci do not completely capture the dynamics of the mean
and the variance. As Supporting Information, Figure S1 shows, the
initial increase of the absolute mean deviation and the transient rise of
the variance can be explained by considering the large-effect locus. At
later times, however, as the change in variance is small, we can use the
constant-variance approximation to understand the dynamics of the
phenotypic mean deviation until it nearly vanishes. The constant-
variance approximation also can be used when the initial mean de-
viation is sufficiently small (see Figure S2).

Figure 4 Response to change in optimum when
most effects are large. The plot shows the exact
numerical solution of the full model (solid) and the
equations (20) (large dashes) and (21) (small dashes)
for the dynamics of the allele frequency P with
the largest effect and lowest initial frequency
ðG ¼ 0:776;P0 ¼ 3:3 · 1024Þ. The solid curve at the
bottom shows the numerical solution of the full model
for the frequency of the next relevant locus with effect
size 0.319 and initial frequency 1:9 · 1023. The param-
eters are ℓ ¼ 20; s ¼ 0:1;m ¼ 1025; ĝ � 0:028 �
�g ¼ 0:2; zo ¼ 7:8 · 1025; zf ¼ 1:5; nl ¼ 19.
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Applications
The approximations presented here hold for the short-term evolution
of phenotypic traits and allele frequencies. This means that our results
may be used to understand polygenic selection driving rapid adapta-
tion. In this respect, our most important result is that the mean of
a phenotypic trait may respond faster to a sudden environmental
change when the number of loci is large and most effects are small.

Evidence for rapid phenotypic evolution has been reported in
recent years from several groups of organisms. For instance in Dro-
sophila subobscura, latitudinal clines of wing size have been formed
within 20 years since this species colonized America (Huey et al.,
2000). Similarly, in field experiments in which lizard populations were
newly established on small islands in the Bahamas, the hindlimbs
adapted very quickly to the different vegetations on the islands (Kolbe
et al., 2012). To our knowledge, however, data from GWAS are not yet
available in these cases.

The theory presented here can also be applied to the large amounts
of GWAS data that have been gathered in model species such as
humans and Drosophila. To analyze the observed allele frequency
shifts in single-nucleotide polymorphisms associated with quantitative
traits, such as human height (Turchin et al. 2012) and cold tolerance

in Drosophila (Huang et al. 2012), the results derived in this study
provide a more general theoretical basis than the dynamical equations
used in previous analyses (e.g., Turchin et al. 2012).

Open questions
The analytical calculations in this article work when the phenotypic
mean at the equilibrium coincides exactly with the optimum. How-
ever, in the stationary state, there is a small but nonzero mean
deviation due to which the long-term dynamics are not accurately
captured, especially when effects are small, as shown in Figure 3B. An
improved calculation of the dynamics that takes a nonzero mean
deviation into account is certainly of interest, for instance to estimate
the frequency of selective fixations (leading to selective sweeps) in this
model (Chevin and Hospital 2008; Pavlidis et al. 2012; Wollstein and
Stephan 2014).

Another open question concerns the generality of our results
presented here. The current model perhaps oversimplifies biological
reality in that it neglects genetic drift and assumes additive effects,
symmetric mutations and free recombination between loci. It can be
shown that the current model (neglecting mutation) can be derived
from the classical symmetric viability model with arbitrary position of

Figure 5 Response to change in optimum when
most effects are large. Solid lines show the mean
deviation (A) and variance (B), whereas the large
dashed curves show the contribution to these cumu-
lants from the locus with the largest effect and lowest
initial frequency ðG ¼ 0:776;P0 ¼ 3:3 · 1024Þ. In
both cases, the exact numerical solution of the full
model is used. The numerical solution of (18) (small
dashes) is also shown. The other parameter values are
the same as in Figure 4.
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the optimum under the quasi-linkage equilibrium assumption. In the
latter model, the probability of selective fixation has been studied
numerically for up to eight loci (Pavlidis et al. 2012; Wollstein and
Stephan 2014). However, at present we are lacking an analytical un-
derstanding of the role of recombination in this model and how it
relates to the high-recombination limit represented by our current
model.
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APPENDIX

A Validity of Constant-Variance Approximation
As explained in the main text, we obtain (11) when the variance is assumed to be constant in time. To see under what conditions this
approximation holds, we find a correction to the variance by assuming that the skewness c3 is nonzero and time-independent (see the inset of
Figure 2B). Using (11) on the RHS of (10b) for n ¼ 2, we immediately get

c2ðtÞ ¼ c2ð0Þ
h
12 C�12 e2c2ð0Þst�i; (A.1)

where C ¼ Dc1ð0Þc3ð0Þ=c22ð0Þ. Plugging the above solution into (10b) for n ¼ 1 gives the mean deviation as

Dc1ðtÞ ¼ Dc1ð0Þ exp
h
2 stc2ð0Þð12 CÞ2 C

�
12 e2stc2ð0Þ

�i
: (A.2)

The solution (11) is recovered if the constant C, which depends on the initial value of the first three cumulants, is negligible.
If we start with the initial condition in which the population is equilibrated to an optimum and most effects are small, since most initial allele

frequencies are close to one half, the initial variance is substantial and the skewness is close to zero. In this case, the constant-variance
approximation is expected to work well. However, if most effects are large, since most initial allele frequencies are close to fixation, although the
skewness remains small, the variance also becomes small, thus leading to an increase in C. Then for sufficiently small mean deviations, we also
may employ the constant-variance approximation when most effects are large.
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