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Global biomass production potentials exceed
expected future demand without the need for
cropland expansion

Wolfram Mauser!, Gernot Klepper?, Florian Zabel!, Ruth Delzeit?, Tobias Hank', Birgitta Putzenlechner!
& Alvaro Calzadilla?

Global biomass demand is expected to roughly double between 2005 and 2050. Current
studies suggest that agricultural intensification through optimally managed crops on today's
cropland alone is insufficient to satisfy future demand. In practice though, improving crop
growth management through better technology and knowledge almost inevitably goes along
with (1) improving farm management with increased cropping intensity and more annual
harvests where feasible and (2) an economically more efficient spatial allocation of crops
which maximizes farmers’ profit. By explicitly considering these two factors we show that,
without expansion of cropland, today's global biomass potentials substantially exceed pre-
vious estimates and even 2050s’ demands. We attribute 39% increase in estimated global
production potentials to increasing cropping intensities and 30% to the spatial reallocation of
crops to their profit-maximizing locations. The additional potentials would make cropland
expansion redundant. Their geographic distribution points at possible hotspots for future
intensification.
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lobal demand for biomass-based products will increase

over the next decades. In addition to ensuring food

security for a growing and richer world population,
bio-fuels and bio-based materials will increasingly drive future
demand!~”. Present studies conclude that global agricultural
production of 2005 needs to increase by 70-110 percentage points
(pp) to meet demand in 2050 (refs 7,8) before the backdrop of
climate change. Agro-economic reactions to climate change have
been investigated in an integrated modelling intercomparison
exercise with so far inconclusive results’.

Expanding cropland, more productive plants, efficiency gains
in crop and farm management, and land-use change towards an
allocation of crops to locations with optimal environmental
conditions are options to meet the increasing demand!>10-12,
While expansion of cropland among other things reduces
biodiversity and releases greenhouse gases, sustainable
agricultural intensification®!® and optimal allocation of crops
on current cropland may be a preferred option for meeting the
future demand for biomass-based products. However, the results
of recent studies'#"17* which are based on estimates of agro-
ecological potential biomass production increase (PBPI) raise
doubt whether this is sufficient. The agro-ecological PBPI
describes the extent (in pp) to which site- and crop-specific
potential yield exceeds currentlZ harvested yield under perfect
crop management conditions'®1” (fertilizer, pest control, sowing,
harvest (no losses), and so on). Yield refers here to the harvested
fresh marketable biomass, which can be biomass of fruits, grains,
roots or total plants depending on the respective crop. We use the
term ‘biomass’ in PBPI as the fraction of the total agricultural net
primary production which is used to satisfy human demands.

Recent studies find that realizing agro-ecological yield
potentials of current croplands creates a global agro-ecological
PBPI of 55-77 pp (refs 14-16). The studies use biophysical
models, field trials or maximum farmed yields!4"!7 and take the
local environmental and climate conditions as well as stresses
(water, temperature, radiation, and so on) into account. They use
current agricultural land-use patterns?®?! and statistics of
harvested area and cropping intensity?? (number of annual
harvests).

Adjustment to an increasing demand for biomass, though,
is not solely confined to locally improved crop management
and optimal use of inputs during crop growth. Instead,
it includes combinations of economic, societal and technological
reactions"?3. They should be taken into account when estimating
PBPI.

Improving crop management skills by better qualifying and
equipping farmers is considered to be the main driver for
realizing the agro-ecological PBPI. We assume that improved
crop management skills inevitably go along with improved farm
management skills. Better training of farmers in crop manage-
ment also enables them to reduce fallow periods, increase rain-fed
and irrigation water use efficiency to save water for additional
harvests, select the most suitable cultivars, increase cropping
intensity and reduce harvest, storage and transport losses.
Although first statistical analyses of changing global cropping
intensities are available and estimate its PBPI to 50 pp (ref. 12),
the full global potential of multiple harvests has not yet been
quantitatively simulated in the context of analysing PBPI

On top of farm management factors, increasing global biomass
demand will likely create incentives for farmers and farming
organizations to improve market access, intensify trade, and
produce more to market conditions. We assume that this will
result in new cropping patterns on existing cropland by
reallocating crops to fields where they can be grown more
profitably. Simulating the spatial reallocation of crops needs to
take into account how reallocation takes place with respect to
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crop rotation patterns and the risk aversion of farmers in
choosing their crop mix. In principle, a profit-maximizing
reallocation increases production potentials by shifting high-
profit crops to high-yielding locations. Rare cases of decreasing
potentials may point to factors which have currently not been
included in the analysis.

Two factors were identified, multiple cropping and profit-
maximizing reallocation of crops on current cropland, which add
to the global agro-ecological PBPI quantified in existing studies.
Consequently, the extent to which they potentially allow a rise in
global and regional agricultural production merits further analysis
and quantification.

Results

Coupled biophysical and economic models. We explore, for the
major commercial crops and across the Globe, the impact of both
potential cropping intensity and profit-maximizing reallocation
of crops on PBPI by coupling the biophysical, dynamic crop
growth model PROMET with the computable general equilibrium
model DART-BIO. We use data from the recent past on climate
(1981-2010), economic conditions (2007), cropland distribution
and actual yield statistics (around the year 2000). This provides a
solid database to study and quantify the impact of optimized
cropping and market-oriented crop allocation on PBPI. Despite
being an important further research question, the impact of
climate change on PBPI is not covered.

PROMET globally simulates the spatially distributed agro-
ecological yield potential and potential cropping intensities
given local climate and environmental conditions. DART-BIO
simulates marginal profit functions with respect to land which are
used to spatially allocate crop categories to land. We denote the
result of this coupled approach ‘agro-economic PBPT.

To attribute the relative shares of PBPI to cropping intensities
and economic factors, we perform a series of global simulations:
(A) we simulate agro-ecological production potentials given
current cropping intensities and cropland as to be able to
compare our results with existing studies on agro-ecological
potentials; (B) we determine the additional potential of cropping
intensity; and (C) we determine the agro-economic production
potentials of reallocation including the factors considered in (B).
We choose the 18 globally most important agricultural food- and
energy-crops (Table 1), which for the economic simulations are
grouped into 10 economic crop categories (Table 2). Conversion
and aggregation from potential yields to PBPI is carried out for
23 regions each divided into 18 agro-ecological zones (AEZs; see

Table 1 | List of 18 crops modelled with PROMET.

Summer barley (Hordeum vulgare)
Cassava (Manihot esculenta)
Groundnut (Arachis hypogaea)
Maize (Zea mays)

Maize silage

Millet (Pennisetum americanum)
Oil palm (Elaeis guineensis)

Potato (Solanum tuberosum)
Rapeseed (Brassica napus)

Paddy rice (Oryza sativa)

Rye (Secale cereale)

Sorghum (Sorghum bicolor)

Soy (Glycine maximum)

Sugarcane (Saccharum officinarum)
Sugar beet (beta Vulgaris subsp. vulgaris)
Sunflower (Helianthus annus)
Summer wheat (Triticum aestivum)
Winter wheat (Triticum aestivum)
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Methods). PBPI is area weighted over the crop categories for each
region and the globe.

PROMET in the context of previous studies. Figure 1
summarizes the globally averaged results of our PBPI
simulations (green) and compares them with assessments of
PBPIs in recent studies (blue).

Although yield of perfectly managed crops, which represents
the yield potential, can in principle be determined under
laboratory or experimental field conditions, it is not possible to
measure yield potentials at each location on the globe. Therefore
available yield statistics always include the accumulated
influences of imperfect management conditions. Consequently,
it is in the nature of global PBPI, that measurements of actual
yield cannot be used to validate the skill of a simulation set-up
like the one used in this study. We therefore compare our
simulation results of PBPI with the results of existing studies.

The first three columns in Fig. 1 refer to simulation (A) and
show global agro-ecological PBPI under today’s climate, with
current spatial crop allocation and with current cropping
intensities. They compare PROMET’s agro-ecological PBPI
(column 3) with the maximum observed yield approach of
Mueller et al!® (column 1) and the global AEZs (GAEZs)
approach of the Food and Agriculture Organization (FAQ)!41>
(column 2). All three approaches use the same assumptions and
levels of disaggregation. We use actual cropping intensities?? to
calculate agro-ecological potentials with PROMET. The resulting
global PROMET-PBPI of 79 pp is similar to that of FAO-GAEZ.
Both approaches use crop growth models and climate drivers
from global climate simulations.

Figure 2a uses the biophysical simulation results of potential
agro-ecological yield (tha™") of PROMET and FAO-GAEZ for

Table 2 | Aggregated crop categories.

AGR Cassava, potato, maize silage
CB Sugarcane, sugar beet

GRON Sorghum, millet, rye, barley
MZE Maize

OSDN Groundnut, sunflower

PDR Rice

PLM Oil palm

RSD Rapeseed

SOY Soy

WHT Summer wheat, winter wheat
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all compared crops and regions to detail the comparison. We use
log-log representation to allow detailed representation of small
and large yields and production. The linear correlation (1% = 0.85,
mean absolute error (MAE) = 4.66) shows that on the regional
level agro-ecological potential yields simulated with PROMET
compare well with the FAO-GAEZ, even though different models,
climate inputs and statistical sources on actual cropping
intensities are used. Potential agro-ecological production (poten-
tial yield x harvested area) in Fig. 2b shows a very strong
correlation between PROMET and FAO-GAEZ and is aggregated
together with actual yield statistics to the global PBPIs shown in
Fig. 1. The good agreement of FAO-GAEZ and PROMET on the
global (Fig. 1) and regional (Fig. 2) level justifies using PROMET
to study potential cropping intensities.

Mueller et al. estimate the global agro-ecological PBPI to be 58
pp, which is lower than FAO-GAEZ and PROMET. They use a
statistical approach based on 100 global climate regions. The
largest measured yield in each climate region is assumed to
represent its potential agro-ecological yield. Here, PBPI is
determined by comparing the largest measured yield in the
climate region of a selected location with the actual yield at that
location. Pragmatic in nature, this approach tends to under-
estimate PBPI because the analysis of the potential is based on
today’s best practice and does not consider further improvements
in crop cultivation.

PBPI increase through multiple cropping. Global potential
cropping intensities were determined for simulation (B) by cal-
culating the optimum sowing dates and vegetation cycle lengths
of all considered crops under the prevailing climatic and hydro-
logical conditions (rainfall pattern and/or irrigation). Dates of
first, possible second and third sowing are calculated for each
crop and selected global location by shifting the period of the
phenological cycle across the growing season(s) and identifying
the optimal sowing date(s) using a fuzzy-logic approach®®.
Columns 3 and 4 in Fig. 1 show the difference between global
PBPIs using patterns of present’’ and potential cropping
intensities. The full utilization of potential cropping intensities
increases the estimate of global PBPI from 79 to 118 pp. This
increase amounts to 39 pp of today’s total agricultural production
and is 11 pp lower than the statistical estimates of Ray and
Foley!2. Increasing cropping intensities thereby turns out to be an
important contributor to increased production.

PBPI increase through profit-maximizing reallocation. The
additional effect on global PBPI of a profit-maximizing spatial
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Figure 1 | Comparison of global potential biomass production increase (PBPI) in percentage points (pp) determined under present climate

conditions and on today's cropland; blue: previous studies, green: this study. Column 1: statistical approach of Mueller et a

116, column 2: modelling

approach FAO-GAEZ'>, column 3: agro-ecological PBPI from PROMET simulations, column 4: column 3 plus potential cropping intensities, column 5:

column 4 plus profit-maximizing spatial reallocation of crops.
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Figure 2 | Log-log scatterplots of potential agro-ecological yields and production. (a) Yields in tha—'and (b) production in Mt comparing the PROMET
model results and the FAO-GAEZ'1> model results for coinciding crops and regions. The dotted lines show the 95% confidence bounds of the regression line.

reallocation of crops on today’s cropland (C) is shown in
column 5 of Fig. 1. Instead of allocating crops according to
their highest yields (biomass per ha or energy content per ha)
we determine crop allocation according to production costs,
market prices and crop rotation. We simulate with DART-BIO
the allocation of crops on current cropland to locations
where they yield the highest profit. We take crop rotation
and risk aversion of farmers into account by allowing a mix
of crops to be cultivated at each location. For a detailed
description of the approach see Methods section and Supporting
Information. The resulting increase in simulated global PBPI
from 118 to 148 pp is shown in columns 4 and 5 of Fig. 1.
It indicates that not all current land-use decisions are optimal
in terms of profitability and that reallocating crops increases
global PBPL

Geographic distribution of PBPI increases. Increase in
estimated PBPI is region specific. By taking a more regional
perspective, we can identify which regions would gain the most
from moving towards land-use decisions that raise cropping
intensity and/or that consider profit-maximization in the alloca-
tion of crops. Fig. 3 shows the iglobal distribution of the simulated
PBPIs on today’s cropland?!. Brown regions indicate small
potentials of up to 60 pp, yellow-brown regions moderate
potentials of up to 100 pp, green regions large potentials of up to
500 pp and above. Assuming actual cropping intensities (Fig. 3a)
PBPI is small in Western Europe (for example, 19 pp in France,
23 pp in Germany and 33 pp in GB), the USA (54 pp) and Japan
(8 pp). It is moderate in China (70 pp) and Eastern Europe
(86 pp), while it is large in the countries of the former Soviet
Union (excluding Russia; 131 pp), Brazil (153 pp), India (255
pp) and Latin America (247 pp). Sub-Saharan Africa (AFR)
shows the largest average PBPI of 420 pp. Large additional
increases in potentials also show up in the tropical regions of
Africa and Latin America when maximizing cropping intensities
as shown in Fig. 3b. In contrast a moderate additional increase
occurs in India, Argentina and Brazil and almost no changes
occur in the extratropical regions of Russia, Europe, North
America and Australia, which are climatically restricted to one
harvest. Figure 3c shows the additional potential of profit-
maximizing reallocation. The largest increase in PBPI in relation
to Fig. 3b occurs in parts of AFR, India, China and Latin and
South America; again almost no change occurs in Western
Europe and North America. As expected, small agro-economic
PBPIs coincide with high degrees of commercialization of
agriculture and vice versa.

4

Regional crop-specific increase of PBPI. Increases in estimated
PBPI are also crop specific. The three graphs in Fig. 4 compare
regionally aggregated PBPIs for four important crops in four
regions. The graph (a) uses agro-ecological PBPI and compare
potential cropping intensities with actual cropping intensities; (b)
compares agro-economic with agro-ecologic PBPI (both with
potential cropping intensities) and (c) shows the combined effect
of factors (a) and (b) with agro-ecological PBPI with actual
cropping intensities. Results for wheat, maize, rice and soy were
chosen because they constitute the economically most important
crops. The USA, the countries of the former Soviet Union
(without Russia), AFR and Brazil were selected to cover regional
agricultural production systems that differ in commercialization,
use of farming technologies, and environmental conditions.
Points above the identity line represent increased PBPI through
(a) more harvests per year, (b) the profit-maximizing reallocation
of crops and (c) a combination of both. Points close to an
absolute PBPI value of zero represent constellations in which the
actual biomass production is already approaching potential
biomass production.

PBPIs in Fig. 4a range from 20 (soy in USA) to 650 pp (maize
in AFR). The position of the USA and Former Soviet Union
(FSU) crops shows that cropping intensity has little influence on
PBPI there. These regions do not have the climatic potential for a
second harvest (except for rice in the USA). Agro-ecological
PBPIs under potential cropping intensities are high for wheat
both in the USA and FSU, whereas maize and soy show relativel
low PBPIs in both regions. This corresponds to FAO-GAEZ!41>,
who found that in both regions agro-ecological yield gaps of
wheat are much larger than those of maize. AFR as well as Brazil
show considerable potential for increasing cropping intensity by
making better use of the available temperature and water.

Figure 4b compares the agro-ecological and the agro-economic
PBPI based on potential cropping intensities. Again, the USA
resides close to the identity line which means that profits and the
related PBPI hardly increase when crops are reallocated to their
most profitable locations.

In the case of maize and soy in the USA our allocation
procedure even decreases PBPIL. This somewhat counterintuitive
result can be explained by the difference between our assumption
of risk-averse farmers who choose a diverse crop portfolio and the
observed behaviour in some regions. Large areas in the USA show
little crop rotation and seem to be more exposed to the risk of bad
harvests. For example, the actual crop mix at location 89.9452°
W/ 42.1428° N within AEZ 10 in the USA is 73% maize and 27%
wheat. Our simulation allocates 31% GRON, 24% rice, 23%
maize, 12% AGR, 6% OSDN and 4% others. We explain this
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Figure 3 | Global distribution of estimated potential biomass production increase (PBPI) in percentage points (pp). (a) agro-ecological with actual
cropping intensities, (b) agro-ecological with potential cropping intensities and (¢) agro-economic with potential cropping intensities.

difference with the presence of institutional factors such as the
availability of harvest insurances or specific risk compensation
schemes which may reduce the risks of reduced crop rotation and
act as indirect additional income for the farmers. These factors
are not yet included in DART-BIO. They open up another avenue
of research which looks at the role of risk reduction for a more
intensive and concentrated agriculture. Given our assumption of
more risk-averse farmers, our estimates represent a lower bound
on PBPI in highly commercialized agriculture.

Figure 4b also shows that in FSU the PBPI of maize and soy
increases by a factor of 2 and more (green symbols) through
reallocation whereas wheat seems to be already well allocated to
its most profitable locations. The situation in FSU differs from
that of the USA indicating a large potential PBPI through both a
more market-oriented spatial allocation of crops and better yields.
For AFR and Brazil the situation is similar. PBPI is large at the

current crop locations. It could be further increased through a
profit-maximizing spatial reallocation. This indicates synergies in
these regions between improving crop management and improv-
ing farm management.

Figure 4c shows the combined effect of Fig. 4a,b. It does not
change PBPI for wheat in the USA, AFR and FSU. Nevertheless,
the low value of PBPI for wheat in AFR and the USA in relation
to its PBPI in FSU indicates regional potential in the FSU. In the
case of Brazil crops can significantly increase PBPI by larger
cropping intensity. All other crops and regions in Fig. 4c are
positioned along a line roughly parallel to the identity line,
representing a PBPI that is ~100 pp larger than that of
conventional agro-ecological estimates. Overall, Fig. 4 provides
some details for our estimated increase in global PBPI compared
with the previously published estimates. At the same time it
illustrates the large variety of regionally differing results.
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Discussion

Using the full biomass potential on today’s cropland around the
world will decisively contribute to meeting the food demand of a
growing and wealthier world population. We show that the PBPI
of current cropland rises from 79 to 148 pp when multiple
harvests are fully realized given the biophysical conditions and
economically efficient land-use decisions are included. This
suggests that global future biomass demand may not serve as a
justification for the expansion of current cropland or the
increased use of genetically modified crops with higher yields.

The strongest effects on PBPI can be found in tropical and
subtropical and/or less industrialized regions. Increasing cropping
intensity is an important factor in AFR and Latin America.
Several regions in China and South America also show increased
production potentials through a reallocation of crops towards
more profitable locations.

By using data from the recent past our study currently ignores
important factors affecting future PBPI. Most importantly,
the impacts of climate change should be studied using ensembles
of climate model outputs that account for the uncertainties

6

related to emission scenarios and model differences®.

A recent intercomlgarison of simulations for impacts of climate
change on yields?®?” demonstrates large uncertainties with a
model-dependent range of up to * 50 pp climate change-induced
yield changes. CO, fertilization effects and achievements in crop
breeding seem crucial but are currently not well understood.
Realizing these large global PBPIs is a prerequisite but not a
guarantee for future access to food and food security. It will
require a substantial re-evaluation of policies, knowledge transfer
as well as technological and management improvements in the
agricultural sector. It may also result in adverse environmental
(nutrient leaching, soil degradation, adverse effects of pesticides,
biodiversity loss, increased greenhouse gas (GHG) emissions, and
so on) and social outcomes. This has also been recognized in
high-level assessments such as the IAASTD?3. Further studies
should therefore concentrate on quantifying regional and global
PBPIs with a focus on sustainable agricultural intensification.
However, the geographical distribution of PBPI of current
cropland can be used today to prioritize activities intended to
increase biomass production by focusing on increasing human
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capital as well as physical capital endowments. In addition, better
market access and market orientation can support a process
towards a better use of biomass potentials on today’s cropland,
contributing to better access and affordability of food.

Our results indicate that investment in improving management
of current cropland though interlinked effects has a larger
potential for achieving food security than previous studies have
indicated. Yet, further analyses are needed that assess the trade-
off between the intensification on current cropland with its
impacts on biodiversity, carbon stocks and flows, as well as social
aspects and the expansion of cropland into forests, pasture, or so
far unused areas.

Methods
Conceptual framework. The conceptual framework of our coupled simulation
approach is shown in Fig. 5. We simulate the potential agro-ecological yields of the
selected crops listed in Table 1 at all agriculturally suitable geographical locations
on the globe?%. Urban areas, International Union for Conservation of Nature
(TUCN)-protected areas, forests, wetlands, rangeland and unirrigated deserts
are excluded?!"?%-31. We postulate current economic and climate conditions
(1980-2010), the 2000 data on cropland?®2! and 2007 economic conditions2.
We use the biophysical model PROMET?>3* to compute the global distribution
of potential agro-ecological yields. The computable general equilibrium model
DART-BIO provides the marginal profits of cultivating a ton of a crop per
hectare for each of 23 regions (Supplementary Fig. 1) and AEZs (Supplementary
Fig. 2). We combine the results of PROMET and DART-BIO to conduct
profit-maximizing spatial allocation of crops. Crops are sequentially allocated to
the respective location in a region and AEZ with the largest profit until all
cultivated cropland is allocated. Regional PBPIs are determined by comparing, for
each crop category (Table 2), the potential production resulting from potential
cropping intensities or reallocation with current agricultural statistics. In this
way, regional PBPIs are determined from agro-ecological (PROMET) and
agro-economic (DART-BIO) considerations, which include technical, social and
cultural factors. We denote this ‘agro-economic PBPI’. The two components of the
model framework are shortly described below, followed by a description of the
coupling approach.

Biophysical crop modelling. Potential agro-ecological yields are simulated on
246,000 randomly chosen representative locations on the total agriculturally
suitable area of the Globe?* using the environmental model PROMET3>34,
The sample locations are randomly chosen from a 30-arcsec global data set on
agricultural suitability?* considering soil>®, topography>®, optimal sowing dates®*,
potential cropping intensities** and irrigation®!. Each sample location represents
an average agricultural area of ~ 32,000 ha. We assume optimal crop management
of standard cultivars of 18 different crops, consisting of optimal nutrient supply,
optimal sowing and harvest dates, no harvest losses due to pests, diseases, and so
on. Crop growth is simulated hourly for 30 years of present climate (1981-2010).
Climate drivers are downscaled, bias-corrected and disaggregated from 0.5° to
30 arcsec spatial and from 6 h to hourly temporal resolution from the output of the
general circulation model ECHAMS (ref. 37) using daily correction factors derived
from WorldClim®8, This ensures that spatial and temporal temperature and
precipitation patterns follow the best available high-resolution climatologic data set
and that climate variability throughout the selected period is taken into account.

PROMET. PROMET is a hydrological land surface process model**3°, which was
extended by a biophysical dynamic vegetation component to model crop growth
and potential yield formation3>, Tt uses first order physical and physiological
principles to determine net primary production and respiration based on
approaches from Farquhar et al.#! and Ball ef al.*2, combined with a phenology and
a two-layer canopy architecture component*3, PROMET has extensively been
applied and carefully validated for yield simulations in the context of precision
agriculture studies on field, farm and watershed scale under different climate
conditions®? by using remote sensing data to adjust model parameters to represent
spatial heterogeneity on the field scale**. It takes into account the dependency of
net primary production and phenology on environmental factors including
meteorology, CO, concentration for C3 and C4 pathways as well as water and
temperature stress. The mass and energy balance of the canopy and underlying soil
surface are iteratively closed for each simulation time step. The canopy and
phenology component allocates assimilates into the different plant organs of the
canopy depending on the phenological development. Assimilates that are
accumulated within the fruit fraction during the growing period determine the dry
biomass available for yield formation. PROMET contains parameters, which
represent the sensitivity of the crops to environmental conditions (for example,
temperature or soil suction) or which determine phenological development.
PROMET uses high-resolution (30 arcsec) global geographical data on climate, soil
that is derived from the Harmonized World Soil Database (HWSD)3® and

topography that is derived from the SRTM (Shuttle Radar Topography Mission)3®.
In case of irrigation, we assume unlimited water availability for the irrigated area
fraction on today’s irrigated areas according to Siebert et al.3!

The simulation is performed on an hourly time step to account for non-linear
reactions of plant growth to environmental factors (mainly light, water,
temperature and wind). CO, concentrations in the free atmosphere are globally
updated on a monthly basis. Depending on the reaction of the considered crop to
meteorological and soil-specific conditions, the crop may either die due to water,
heat or cold stress before being harvested or it may not reach maturity. In both
cases, this results in total yield loss. If local conditions allow for a successful harvest,
the simulation result is the potential agro-ecological yield for the respective
location.

Sowing dates and the number of harvests per season are globally determined by
the length of the growing period that again depends on the seasonal course of both
temperature and water supply. Optimal sowing dates for rain-fed and irrigated
conditions are derived from Zabel et al?* From these dates, the potential number
of sowings per year for each crop at each sample location is determined. Depending
on the simulated phenological progress, the model decides whether the potential
number of crop cycles is realized or not. We assume a time gap of 2 weeks between
harvest and replanting, accounting for technical field work, such as ploughing,
harrowing, and so on. Multiple harvests are accumulated over the year to produce
the annual potential agro-ecological yield.

Sampling approach. The global land surface (excluding Antarctica and
Greenland) consists of ~ 133 million km?. Approximately 40% are currently not
suitable for agricultural use?* due to ice cover, permafrost, lakes, deserts or urban
area and are therefore excluded from potential yield simulation. The remaining
~79 million km? are more or less potentially suitable for cultivation of crops®*.
It seems worthwhile to exclude unsuitable land from potential yield simulations in
order to save computational costs. However, a simulation completely covering
79 million km? for a 30-year period on an hourly base seems computationally
inefficient. Therefore, we developed a spatial sampling strategy to select locations
from the 30-arcsec global data set on which to carry out potential yield simulations.
The sampling approach takes into account the spatial heterogeneity of the global
climate, soil and terrain conditions as represented by the determined crop
suitability?®. The sampling strategy is based on the hypothesis that yields increase
with higher suitability.

On the suitable area?*, a pseudo-random selection of points is carried out
using an equal distribution random number generator®® to produce a set of
representative sample locations for each region. The number of samples necessary
to represent a region statistically increases with the spatial heterogeneity of its crop
suitability. The degree of representativeness of the selected samples is measured
with the two-sided nonparametric Kolmogorov-Smirnov test*® by using the crop
suitability data set of the reference period 1981-2000 as parent population.

The number of samples is chosen so that they represent a sample which is
statistically equivalent to its parent population within the 95% level of significance.
To find the minimally required representative number of points we employed
exploratory data analysis by testing between the entire population and the samples
with increasing sample size, starting at 0.001% of parent population”4, The
Kolmogorov-Smirnov statistic measure is calculated on the basis of the cumulative
distribution function of the respective sample and its corresponding parent
population (Supplementary Fig. 3) for a representative region. Thus, the valid
number of random samples within an agro-economic region is determined

by its respective crop suitability value distribution.

This approach ensures that only regions suitable for agriculture are simulated.
At global scale, the sampling procedure resulted in 246,561 samples for the present
suitability conditions.

2

Climate data. The 30-year climate data from 1981 to 2010 used in this study are
outputs from high-resolution T213 runs of the general circulation model ECHAMS5
of the Max-Planck Institute for Meteorology. The specific configuration of
ECHAMS5 was described and extensively validated with re-analysis as well as
measured station data”4%%0, The climate data result from a collection of runs,
which use the old SRES emission scenarios, which were used in previous IPCC
Assessment Reports instead of the current representative concentration pathways
(RCPs). Since the simulation results we use cover the past no assumptions were
made on a specific emission scenario. Instead the simulations are driven with
observed or reconstructed CO, and other greenhouse gas concentrations and
ozone, measured sea surface temperature and sea ice concentrations, as well as
radiative forcings from observations for the past period from 1981 to 2010 (refs
37,49,50). The 6-hourly data set (temperature, precipitation, direct and diffuse
short wave radiation, long wave radiation, surface pressure, relative humidity and
wind speed) is temporally interpolated to an hourly time step using cubic splines.
The data is spatially downscaled from 0.56° to 0.00833° (30 arcsec), based on an
approach by Marke et al.>!, using sub-grid terrain information, provided by the
Shuttle Radar Topography Mission data set°.

A bias correction is executed during the downscaling procedure for temperature
and precipitation based on daily derived factors from the WorldClim data set®.
The climate data is used to drive the PROMET model. We chose this data set
because:
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1. It is one of the very few high-resolution (T213) long-term past-climate data sets,
which was carefully validated specifically for the representation of storms in the
tropical and extratropical regions of the globe*?. Storms deliver rainfall and to
a large extent determine its temporal variability, which is crucial for crop and
yield development.

2. Validation of the ECHAMS5 results shows that the high spatial resolution of the
data set enables a ‘realistic description of the El Nifio-Southern Oscillation
(ENSO) and storm tracks both in the extratropics and the tropics™®. Even more
importantly for the analysis of global crop potentials, ‘the model also gives a
good description of tropical intraseasonal variability’C.

3. The ECHAM data set is available with a 6-h time resolution, which allows to
take advantage of PROMET’s dynamic vegetation model, which fully considers
the non-linearities and stress reactions (for example, inhibition through
maximum temperature stress) which may occur during the course of the day
and which are hard to parameterize when using daily data.

Comparison between PROMET and FAO-GAEZ. The PROMET agro-ecological
model results are compared with existing global simulations of potential yields. The
data used for comparison is available in the Supplementary Data 1. Since the
Mueller et al.'® data result from a statistical approach, we use the FAO-GAEZ!®
potential yield data for comparison that also result from biophysical simulations.
It is in the nature of a potential yield that it cannot be validated with measurements
of actual yield. Consequently, a comparison between the PROMET and
FAO-GAELZ results aim at demonstrating that the PROMET model results are
comparable to existing and generally accepted data, such as from the FAO-GAEZ
global model approach. Thus, we statistically analyse and compare the potential
crop yields (tha 1) and productions (t) with actual cropping intensities of the two
models.

Figure 2 shows the correlation between the simulation results of PROMET and
FAO-GAELZ in a scatter plot with the linear regression line and its 95% confidence
bounds together with agro-ecological potential yields in tha~! and potential
productions in Mt. It includes the values of all 18 considered crops (Table 1) for the
23 regions (Supplementary Fig. 1). The global aggregation level is interpreted as an
additional region. Consequently, the population for the statistical comparison
consists of all crops and regions for which results exist in both models. We exclude
from this population 33 samples where the number of locations to determine
agro-ecological yields with PROMET was <40 to ensure a sufficient number of
locations for robust potential yield estimation. Finally, 207 samples remain for the
comparison.

The slope of the regression line is 0.85 (potential yield) and 0.93 (potential
production). Figure 2 includes a number of statistical quality and error measures
(r3, MAE, root mean square error, Nash-Sutcliffe). The coefficient of determination
(r%) is 0.85 for potential yields and 0.98 for the potential productions, which
indicates a close linear relationship between the model results and a similar range
of variances.

Supplementary Figure 4 shows the histograms of the potential yields and
potential productions for the PROMET and FAO-GAEZ model results with the
same population as before. The values of mean, median and standard deviation are
included in Supplementary Fig. 4. The mean value of the PROMET potential yield
is 1.6tha~! higher than the FAO-GAEZ mean value, while median is only
0.04 tha ~ ! higher and s.d. is slightly higher in the PROMET simulation results for
both, potential yield and potential production.

By using a two-sided Wilcoxon-Mann-Whitney test, we verify that the
medians of the model results are not significantly different (P> 0.05) for both,
the potential yields and the potential productions. Additionally, a two sample
Kolmogorov-Smirnov test between the PROMET and the FAO-GAEZ
distributions concludes that the samples are from the same population. Hence,
the distributions are considered equal (P> 0.05).

In summary, the statistical analysis shows that the simulated results from both
models highly correlate with each other and are significantly similar, showing
similar distributions, similar means and s.d.’s. Thus, we conclude that the
PROMET simulation provides similar results to existing studies.

Potential agro-ecological yields. Biophysical crop growth models, both empirical
(like FAO-GAEZ) and mechanistic (like PROMET) follow the same strategy

of simulating crop growth and development. They simulate ideal situations

(no nutrient stress, no pests, ideal seeding dates, and so on) based on varying
environmental conditions (temperature, rainfall) and then reduce growth by taking
into account water, humidity, radiation, heat and cold stress. This results in
potential agro-ecological yields which is not actual yield. Other reduction factors
like nutrient stress and calamities produced by pests or natural disasters (death or
yield reduction through floods, droughts, hail, and so on) as well as suboptimal
choices of crops or cultivars, seeding and harvest dates, as well as harvest-,
transportation- and storage-losses are not taken into account.

The actual yield in the statistical data is the result of the potential
agro-ecological yield and (non-ideal) yield reducing crop- and farm-management
practices, which mainly consist of (in-) adequate fertilization and pest control as
well as the other factors mentioned above. They result from individual capabilities
and decisions of farmers and extension services and have a strongly non-linear
effect on yield. Consequently this detailed data on crop- and farm-management

8

would have to be included in the simulations. However, such data does not globally
exist. Therefore no study is known to us, which simulates actual yields globally
based on considering directly yield reductions resulting from actual crop- and
farm-management practices.

A common way to reproduce actual yield with biophysical crop models on the
global and regional scale is to use empirical factors to calibrate their potential yields
on a regional basis using yield statistics®>>>. The empirical factors have the nature
of yield gaps. For regional studies these calibration factors indirectly try to consider
all reducing management deficiencies. Following this route of calibration would be
easy with PROMET. We do not, because using yield-gap-like factors to calibrate
PROMET would mean a circular argument in the case of our study.

We showed in a recent study that PROMET is able to simulate current yield
accurately when assimilating actual crop growth information derived from remote
sensing data®>. We are convinced that this is a promising way forward in the future
and are presently working actively on assimilating remote sensing-derived crop
growth information to PROMET for different agricultural systems to also be able to
produce actual yields through a combination of simulations and observations.

Economic model. We use the computable general equilibrium model DART>*
to simulate market prices and marginal profits. DART is a multi-sectoral,
multi-regional, inter-temporal, computable general equilibrium model for the
world economy. Regional disparities of global economy are represented in DART
through 23 geographical regions (Sugplementary Fig. 1). Each of the regions is
further disaggregated into 18 AEZs>> (Supplementary Fig. 2).

DART-BIO. The particular version of DART used here (DART-BIO®®) is
disaggregated with respect to the agricultural sector. It contains especially detailed
features concerning the agricultural sectors. A total of 31 activities in agriculture
(thereof ten crop sectors) are explicitly modelled which represent a realistic picture
of the complex value chains in agriculture. Agricultural production takes into
account the joint uses of crops for food, feed and bio-energy purposes. It also takes
into account the joint production of different commodities within one crop

(for example, oil and cake for soy or rape or corn and dried distiller grains with
solubles for different grains). Each region is modelled as a competitive economy
that trades with all other regions with flexible prices and market clearing. A global
equilibrium is reached by simultaneously matching the demand and supply for all
goods, domestic and foreign, on all markets given by the external determinants,
such as population, capital endowments, technologies, tax and trade policies or
other policy measures (for example, subsidies, climate or renewable energy
policies). DART-BIO determines the profitability of different agricultural activities
in each AEZ of each region as a function of the area used for each agricultural
commodity (marginal profit function). Marginal profits of the first allocated
hectare of a crop, as determined by DART-BIO, depend on the technological, social
and cultural conditions in each AEZ and region as well as on crop prices. Marginal
profits approach zero as the cultivated area of the crop in an AEZ becomes
allocated. DART-BIO also provides the acreage of crops, the regional supply and
demand for all crops, as well as the interaction through trade on the world market
under current or under scenario conditions. It can therefore be used to assess the
economic impact of, for example, an increasing demand for biomass, yield
improvements, or changes in global market conditions.

DART-BIO is based on microeconomic theory: in each of the regions, the
economy is modelled as a competitive economy with flexible prices and market
clearing. Agents represented in the model are consumers who maximize utility,
producers who maximize profits and regional governments setting policy
parameters such as taxes or tariffs. All industry sectors operate at constant returns
to scale. Output is produced by the combination of energy, non-energy
intermediate inputs and the primary factors of labour and capital. In addition, the
agricultural sectors use land as an essential input. Producer goods are consumed by
the representative household in each region, by governments, the investment
sector, by other sectors as intermediates and the export sector. The representative
household receives income from the provision of primary factors (capital, labour
and land) to the production process. Consumers save a fixed share of income in
each time period which is invested in producing investment goods, thus increasing
the capital stock of the economy. The government provides a public good financed
by tax and tariff revenues. The regions are connected via bilateral trade flows,
where domestic and foreign goods are imperfect substitutes, distinguished by
country of origin (Armington assumption). Factor markets are perfectly
competitive and full employment of all factors is assumed. Labour and capital are
assumed to be homogeneous goods, mobile across industries within regions but
internationally immobile.

The primary factor land is used in agriculture and forestry and exogenously
given. All 23 regions are subdivided into AEZs which represent different
productivity characteristics for agriculture based on soil, climate and other natural
parameters. In each AEZ land enters the production of agricultural goods and
earns the same land rent. The development of the economies over time is
represented through a recursive-dynamic approach in DART-BIO. DART-BIO
solves for a sequence of static one-period equilibria for future time periods. The
transition from one period to the other is governed by (a) capital accumulation,
(b) changes in labour supply and (c) technological change. The regional capital
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accumulation itself is limited by the exogenously given regional saving rates which
are assumed to change over time as an economy develops.

A global equilibrium is reached by simultaneously matching demand and
supply for all goods, domestic and foreign, on all markets given the external
restriction through tax and trade policies or other policy measures such as quota
of emission trading. A detailed description of DART-BIO is available in
Calcadilla et al.*®.

Thus, DART-BIO is able to simulate different policy scenarios or the economic
impact of climate change on the economics of land-use decisions. In both cases the
information provided by PROMET on yields are used by DART-BIO.

Marginal profit functions. From the market equilibrium which is derived for each
AEZ and each crop the marginal profit function can be derived for each crop
category (Table 2). The marginal profit functions themselves depend on the
productivity of the land in relation to other factor inputs for the different crop
categories. This productivity can be adjusted, for example based on information
delivered by the PROMET model.

Marginal profit functions determine the profit that can be achieved in a certain
region for growing a certain crop category on an additional unit of land as a
function of the area already allocated to this crop category and given that all other
inputs are at their optimal level. In other words, if a certain area in a region has
already been allocated to different crop categories, the marginal profit functions
provide a ranking of the profitability of crop categories that can be grown on an
additional unit of land. The information of the marginal profit functions is used
together with the potential agro-ecological yields, which result from PROMET to
determine the spatial allocation of crops to the land by the coupling approach.
DART-BIO provides marginal profit functions for each crop category in each AEZ.
The derivation of the marginal profit functions is given below.

To determine marginal profit functions the following procedure is used:

Suppose for an AEZ in a region the distribution of crop categories (i) on the
agricultural area is given by the vector y = (y1,.., ¥i»..y). The production vector y is
the market solution of allocating agricultural land to the most profitable use given a
crop price vector p and other factor prices.

The DART model has a production function for crop categories in the
following form:

y= min(x,v) 1)

) a[oK (§>+o G)] @)

with x representing a vector of intermediate inputs as well as primary inputs

X = (X155» XiposXm> K, L). The composite primary factor input v is produced with the
composite input of the factors capital, labour, energy (K) and agricultural land (L).
This nested input is modelled through a CES-production function shown in
calibrated share from Béhringer et al.>” Variables with a bar denote benchmark
values. The elasticity of substitution p is defined by

-1

p= (3)

g

Agricultural land L in a particular region is divided into different AEZs, denoted by
a(a=1,...,24) and is allocated to different crop categories, denoted by i (i = AGR,
C_B, GRON, MZE, OSDN, PDR, PLM, RSD, SOY, WHT)

Let 0,,,; be defined as the benchmark value share of input m = (K, L,;) for crop i
and all AEZs a

Lyw,
Omi:y

v

with wy,, = w, Yac€AEZ (4)

with w,, being the factor prices of the respective inputs and p, denoting the shadow
price of the nested output v.
In the benchmark equilibrium the following definitions hold:

V=VXm =Xy and wy, =Wy, m=K,Lip=v=y=1=w (5)

Without loss of generality we can ignore the intermediate inputs and thus let the
profit function for a crop category i be defined as

TiK L) = Piyi — wiKi — Z wiLai (6)

acAEZ

The marginal profit function with respect to land (L) is given by the first
derivative of (equation (6)) with K representing the optimal K, and L representing
the optimal land use of crop category i in all AEZs except for AEZ a. Also
considered is the fact that the benchmark case is normalized to p;=w; =y;=1and
therefore the normalized land endowment is equal to the factor share in the

benchmark

eaiz - - = Lai (7>

1-p

5
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where b and a denote all AEZs in the particular region under consideration.

The marginal profit function can be determined numerically for every crop
category i by using the factor income shares 0,; from DART-BIO, the normalized
land use in an AEZ a for crop category i (L,;) and the elasticity of substitution p.
The marginal profit function has negative slope and goes to zero as the land input
approaches the benchmark land use L,;.

Supplementary Figure 5 illustrates marginal profit functions of different
agro-economic crop categories in an AEZ of a region. To get the marginal profits of
the actual land areas, the marginal profit functions are scaled to the benchmark
area that is assigned to a particular crop category. These scaled marginal profit
functions are used to allocate all crops categories to the sample locations where
they earn the highest profits relative to other potential locations.

Omi(K;' Ly, 4 i Lai)
8Lai

Coupling PROMET and DART-BIO for agro-economic PBPI. A farmer’s land-use
decision depends both on achievable yields and on the profit s/he makes with each
ton of a crop harvested. Current assessments compute PBPI on a sample location
by taking the crop that is currently grown. This assumption is difficult to defend if
one analyses future scenarios with different demand conditions. Alternative choices
for the allocation of crops to sample locations are either the crop with the highest
physical yield or the crop which offers the highest profitability under given local
and global demand conditions. We assume that the latter is realized by the farmers.
We further assume that farmers, to diversify risk and follow crop rotation patterns,
cultivate more than one crop and that these crops compete for the best land and
that a crop’s share of cropland at a chosen location is equal to its share of total
marginal profit at that location. As a result a combination of the most profitable
crops determines land-use patterns. The total acreage of each crop within the
different regions and AEZs in DART-BIO is known. What is unknown is the
spatial distribution of these crops across the different AEZs and regions since
PROMET determines the yield potentials for each crop on each sample location
and cannot decide on which crop mix at each location maximizes regional profit.
For linking the regional crop production as given by DART-BIO to this a priori
unknown spatial crop distribution in PROMET, an allocation mechanism is
needed.

We use the following approach to allocate crops to land, which is schematised
in Supplementary Fig. 6.

Coupling approach. The potential agro-ecological yields, which were simulated for
all investigated crops at all samples do not tell which crop mix is best chosen at
each sample location. The marginal profit functions which are available from the
DART-BIO simulations for each crop category in each AEZ are therefore used to
determine the most profitable allocation of crops to the sample locations. Results of
potential yields therefore have to be coupled with marginal profits from DART-
BIO for a profit-maximizing allocation of crop. The coupling proceeds in five steps
which are sequentially repeated for each simulated location in each AEZ in each of
the 23 regions of the Globe until all cultivated acreages have been allocated:

(1) Marginal profits are largest for the first cultivated hectare of a crop because the
production is taking place at the most suitable location for the considered crop
within the selected AEZ and will thus yield the highest return. Marginal profits
decrease with the area of the crops allocated and approach zero when the
whole acreage of the particular crop in a region is spatially allocated
(Supplementary Fig. 6). Further extension of crop area would result in negative
marginal profits under the assumed economic conditions. For each sample
location the specific marginal profit per crop (marginal profit per ton and
hectare) is multiplied with the potential agro-ecological yield to get the
potential marginal profit per hectare.
Each sample location holds a mix of crops because, on global average, it
represents an agricultural area of about 32,000 ha. The total profit per sample is
computed by populating it with the harvested crops in areal fractions, which
correspond to their relative potential marginal profits per hectare (1) and
multiplying the potential marginal profits per hectare with the their
corresponding acreages. This procedure applied to all sample locations results
in a potential marginal profit value for each sample location.

(3) The sample location with the largest marginal profit is chosen.

(4) The already allocated cultivation areas of the selected crops in the maximum
profit sample of (3) are increased by the acreages determined in (2). The
increase in cultivation area decreases the values of the marginal profit functions
of the selected crops in the following steps.

(5) The selected sample location is removed from the list of samples and the
procedure of steps (1-4) is repeated.

(2

-

| 6:8946 | DOI: 10.1038/ncomms9946 | www.nature.com/naturecommunications 9

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

This procedure is repeated until all areas of all crops grown as a result of the
economic model DART-BIO in an AEZ are allocated to the AEZ. At the end, the
total global production of each crop is assigned to an area according to the best
agro-ecological and economic conditions.

Under the assumption that the selected samples adequately represent the
respective region, the procedure allocates crops in a way that maximizes regional
profits and results in spatially distributed agro-economic potential yields given the
prevailing economic conditions of the scenario under investigation.

Our approach relies on the assumption that the marginal profit functions,
which are either determined with DART-BIO from actual yield statistics or from
scenario simulations with varying economic (demand, regulations, and so on) and
natural conditions (for example, climate change), are also valid for potential yields.

Procedure for the calculation of PBPI. Potential yield is converted to production
(t) by multiplying yield (tha ~!) with today’s harvested area (ha). Production and
area are then regionally and globally aggregated. For the calculation of PBPI,
potential crop production is aggregated to crop categories. The PBPI (pp) of
each crop category is calculated from the ratio of potential production to actual
production. The PBPI across all crop categories is computed as an area weighted
average.

The data from different sources were made comparable in a consistent way. The
crops’ actual and potential yields out of FAO-GAEZ!'> and Mueller et al.' are
converted to regional and global actual and potential production, by multiplying
yield (tha™ 1y with harvested area (ha). We use the respective source of harvested
area of FAO-GAEZ or Mueller et al. Actual and potential production is then
regionally and globally aggregated for each crop and further aggregated to the crop
categories.

For the calculation, we used the Supplementary Data provided by Mueller et al.
and the data provided by the FAO-GAEZ data portal (http://gaez.fac.org). In case
of FAO-GAEZ, we used the ‘potential production capacity for current cultivated
land for high input level rain-fed crops’ and the ‘potential production capacity for
current cultivated land for high input level irrigated crops’ for the baseline period
1961-1990. The yield of the irrigated areas is taken from the irrigated harvested
area given by the FAO-GAEZ data portal. Since the FAO-GAEZ yield data are in
dry weight (kg DW ha ~ 1), we used the conversion factor as suggested by the GAEZ
Documentation!” for each crop to convert dry weight to fresh weight.

Potential yields simulated with PROMET are converted to potential production.
Thereby, we consider today’s harvested areas?® and irrigated areas®!. In case of
actual cropping intensities, we multiply the average potential annual yield with the
actual cropping intensity22 for each crop. In case of potential cropping intensities,
we accumulate potential yields for each crop over the year and use physical crop
area instead of the harvested area for the aggregation of yields to production.
Physical crop areas are calculated for each crop by dividing harvested area®® by
cropping intensity?2. This is necessary, since the harvested area depends on the
number of harvests a year and thus already includes cropping intensities.
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