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Abstract. Landscape fires show large variability in the

amount of biomass or fuel consumed per unit area burned.

Fuel consumption (FC) depends on the biomass available to

burn and the fraction of the biomass that is actually com-

busted, and can be combined with estimates of area burned

to assess emissions. While burned area can be detected from

space and estimates are becoming more reliable due to im-

proved algorithms and sensors, FC is usually modeled or

taken selectively from the literature. We compiled the peer-

reviewed literature on FC for various biomes and fuel cate-

gories to understand FC and its variability better, and to pro-

vide a database that can be used to constrain biogeochemi-

cal models with fire modules. We compiled in total 77 stud-

ies covering 11 biomes including savanna (15 studies, aver-

age FC of 4.6 t DM (dry matter) ha−1 with a standard devi-

ation of 2.2), tropical forest (n= 19, FC= 126± 77), tem-

perate forest (n= 12, FC= 58± 72), boreal forest (n= 16,

FC= 35± 24), pasture (n= 4, FC= 28± 9.3), shifting culti-

vation (n= 2, FC= 23, with a range of 4.0–43), crop residue

(n= 4, FC= 6.5± 9.0), chaparral (n= 3, FC= 27± 19),

tropical peatland (n= 4, FC= 314± 196), boreal peatland

(n= 2, FC= 42 [42–43]), and tundra (n= 1, FC= 40).

Within biomes the regional variability in the number of mea-

surements was sometimes large, with e.g. only three mea-

surement locations in boreal Russia and 35 sites in North

America. Substantial regional differences in FC were found

within the defined biomes: for example, FC of temperate pine

forests in the USA was 37 % lower than Australian forests

dominated by eucalypt trees. Besides showing the differ-

ences between biomes, FC estimates were also grouped into

different fuel classes. Our results highlight the large variabil-

ity in FC, not only between biomes but also within biomes

and fuel classes. This implies that substantial uncertainties

are associated with using biome-averaged values to repre-

sent FC for whole biomes. Comparing the compiled FC val-

ues with co-located Global Fire Emissions Database version

3 (GFED3) FC indicates that modeling studies that aim to

represent variability in FC also within biomes, still require

improvements as they have difficulty in representing the dy-

namics governing FC.

1 Introduction

Landscape fires occur worldwide in all biomes except

deserts, with frequencies depending mostly on type of vege-

tation, climate, and human activities (Crutzen, 1990; Cooke

and Wilson, 1996; Andreae and Merlet, 2001; Bowman et

al., 2009). The amount of fire-related research is increasing,

partly due to improved abilities to monitor fires around the

world using satellite data and appreciation of the important

role of fires in the climate system and in air quality (Bow-

man et al., 2009, Johnston et al., 2012). Studies focusing on

the effects of fires on the atmosphere require accurate trace

gas and particle emissions estimates. Historically, these are

based on the Seiler and Crutzen (1980) equation, multiplying

burned area, fuel loads (abbreviated as “FL” in the remain-

der of the paper), combustion completeness (abbreviated as

“CC” in the remainder of the paper), and emission factors

over time and space of interest.

These four properties are obtained in different ways and,

generally, uncertainties are substantial (van der Werf et al.,

2010). The burned area may be estimated directly from satel-

lite observations, with the MODerate resolution Imaging

Spectroradiometer (MODIS) 500 m maps (Roy et al., 2005;

Giglio et al., 2009) being currently the most commonly used

products for large-scale assessments. Although small fires

and fires obscured by forest canopies escape detection with

this method (Randerson et al., 2012), the extent of most

larger fires can be relatively well constrained in this way.

With burned area estimates improving, the other parame-

ters may become the most uncertain component when esti-

mating emissions (French et al., 2004) as they are less easily

observed from space. In general, the FL is equivalent to the

total biomass available. New studies do provide estimates of

standing biomass (e.g., Baccini et al., 2012). However, fires

do not necessarily affect standing biomass. Especially in sa-

vannas the trees are usually protected from burning by a thick

barch, and in some of the literature the FL therefore has a

more restrictive definition, referring to only that portion of

the total available biomass that normally burns under speci-

fied fire conditions, which is often only the fine surface fuels.

In both definitions, the FL is typically expressed as the mass

of fuel per unit area on a dry weight basis. CC corresponds

to the fraction of fuel exposed to a fire that was actually con-

sumed or volatilized. Just like total FL, CC cannot be directly

derived from satellite observations. Instead, these quantities

are usually based on look-up tables of biome-averaged val-

ues, or are calculated from global vegetation models includ-

ing dynamic global vegetation models (DGVM, e.g., Kloster

et al., 2010) and biogeochemical models (e.g., Hély et al.,

2007; van der Werf et al., 2010).

Another approach that has been developed over the past

decade is the measurement of fire radiative power (FRP)

(Wooster et al., 2003, 2005; Kaiser et al., 2012). FRP per

unit area relates directly to the fuel consumption (abbreviated

as “FC” in the remainder of the paper) rate, which again is

proportional to the fire emissions. The FRP method has sev-

eral advantages compared to the Seiler and Crutzen (1980)

approach, such as the ability to detect smaller fires and the

fact that the fire emissions estimates derived this way do not

rely on FL or CC. One disadvantage is that the presence of

clouds and smoke can prevent the detection of a fire, and the

poor temporal resolution of polar orbiting satellites hampers

the detection of fast-moving or short-lived fires (which still

can show a burn scar in the burned area method), and makes

the conversion of FRP to fire radiative energy (FRE, time-

integrated FRP) difficult.
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Finally, emission factors, relating the consumption of dry

matter to trace gas and aerosol emissions of interest, are

obtained by averaging field measurements for the different

biomes. Andreae and Merlet (2001) have compiled these

measurements into a database that is updated annually, while

Akagi et al. (2011) used a similar approach to derive biome-

averaged emission factors but focused on measurement of

fresh plumes only and provided more biome-specific infor-

mation. The accompanying database is updated frequently

and is online.

To improve and validate fire emissions models, it is crucial

to gain a better overview of available FC measurements, as

well as of the FL and CC components that together govern

FC. This is obviously the case for emissions estimates based

on burned area, but FRP estimates could also benefit from

this information because one way to constrain these estimates

is by dividing the fire-integrated FRE by the fire-integrated

burned area, which in principle should equal FC.

Over the last few decades, many field measurements of

FL and CC have been made over a range of biomes and geo-

graphical locations. An examination of these studies revealed

several generalities: forested ecosystems in general show rel-

atively little variability in FL over time for a given location,

but CC can vary due to weather conditions. Fine fuels usually

burn more completely than coarser fuels, and therefore CC

in grassland savannas is often higher than in forested ecosys-

tems. While CC in the savanna biome shows relatively little

variability over time, the FL can vary on monthly timescales

depending on season, time since fire, and grazing rates. An-

other generalization that can be made is that FL in boreal

and tropical forests are relatively similar, but the distribution

into components (organic soil, boles, peat) is very different,

with FL in tropical forests being mostly composed of above-

ground biomass, while in the boreal region the organic soil

(including fermentation and humus layers) represents a large

part of the FL. Overall CC is often higher in tropical forests

though, leading to higher FC values.

While these findings are relatively easy to extract from the

body of literature, what is lacking is a universal database list-

ing all the available measurements so that they can be com-

pared in a systematic way, used to constrain models, and to

identify gaps in our knowledge with regard to spatial repre-

sentativeness. Building on Akagi et al. (2011), who listed 47

measurements for nine fuel types, this paper is a first attempt

to establish a complete database listing all the available FC

field measurements for the different biomes that were found

in the peer-reviewed literature. We focus on FC estimates,

but if FL and/or CC were reported separately, these were in-

cluded as well. The database, available at http://www.falw.

vu/~gwerf/FC, will be updated when new information be-

comes available. In follow-up papers we aim to provide more

in-depth analyses of the variability we found; the goal of this

paper is to give a quantitative overview of FC measurements

made around the world to improve large-scale fire emissions

assessments. This paper is organized as follows: in Sect. 2,

we list all the measurements and divide them into 11 differ-

ent biomes. In that section we also provide a short summary

of the methods used during the field campaigns, give a brief

introduction to fire processes in each biome, and present data

for different fuel classes (ground, surface, and crown fuels).

Our findings are discussed in Sect. 3, and in addition a com-

parison between the FC field measurements and (1) the val-

ues used in the GFED3 (van der Werf et al., 2010) modeling

framework, and (2) several FRE-derived estimates, is given.

Finally, our results are summarized in Sect. 4.

2 Measurements

Figure 1 provides an overview of the locations where peer-

reviewed FC was measured in the field, overlaid on mean

annual fire carbon (C) emissions (van der Werf et al., 2010).

Field measurements of FC were conducted in most fire-prone

regions in the world, including the “arc of deforestation” in

Amazonia, the boreal regions of North America, and savan-

nas and woodlands in Africa, South America and Australia.

Due to ecological, technical, and logistical reasons (e.g.,

wildfire versus prescribed fire), the FL and FC sampling pro-

cedures at these measurement locations have ranged in scope

from simple and rapid visual assessment (e.g., Maxwell,

1976; Sandberg et al., 2001) to highly detailed measurements

of complex fuel beds along lines (line transect method: van

Wagner, 1968) or in fixed areas (planar intersect method;

Brown, 1971) that take considerable time and effort. Most

of the studies we found in the literature rely on the planar

intersect method (PIM), where fuel measurement plots are

typically divided into multiple, randomized smaller subplots.

The (small-size) biomass in these subplots is oven dried and

weighed both pre- and post-fire to estimate the CC and to

determine the FC. The consumption of larger-size material

(diameter > 10 cm) is often estimated based on experimental

observations of randomly selected trunks and branches that

were identified before the fire (Araújo et al., 1999). The PIM

is mainly applied in prescribed burns, and obtaining FC mea-

surements for large wildfires is logistically more challenging

but can be based on comparing burned and adjacent unburned

patches. Usually, the total FC of a fire is presented, but some

studies also include separate values for different fuel cate-

gories of the total below-ground biomass (peat, organic soils,

and roots) and total above-ground biomass (above-ground lit-

ter and live biomass). Diameters of woody fuels have been

classified according to their “time-lag”, which refers to the

length of time that a fuel element takes to respond to a new

moisture content equilibrium (Bradshaw et al., 1983). The

time lag categories traditionally used for fire behavior are

specified as 1, 10, 100, and 1000 h, and correspond to round

woody fuels in the size ranges of 0–0.635, 0.635–2.54, 2.54–

7.62, and 7.62–20.32 cm, respectively. In this study, we used

US fire management standards to classify fuels into three

different categories: (1) ground (all materials lying beneath

www.biogeosciences.net/11/7305/2014/ Biogeosciences, 11, 7305–7329, 2014
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Fuel Consumption field measurement locations

Savanna
Tropical forest
Temperate forest
Boreal forest
Pasture
Shifting cultivation
Crop residue
Chaparral
Tropical peatland
Boreal peatland
Tundra
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Figure 1. Fuel consumption field measurement locations for different biomes. Background map shows annual GFED3 fire C emissions in

g C m−2 year−1, averaged over 1997–2009.

the surface, including organic soil, roots, rotten buried logs,

and other woody fuels), (2) surface (all materials lying on or

immediately above the ground, including needles or leaves,

grass, small dead wood, downed logs, stumps, large limbs,

low brush, and reproduction) and (3) crown (aerial) fuel (all

green and dead materials located in the upper forest canopy,

including tree branches and crowns, snags, moss, and high

brush).

Although a substantial body of grey literature of FC mea-

surements is available, we focused on peer-reviewed stud-

ies. An exception was made for a few reports that focus

on measurements conducted in the boreal forest and cha-

parral biome, because these reports were extensive and cited

in peer-reviewed literature. Because the available data from

peer-reviewed literature were obtained from a wide variety

of sources spanning multiple decades, the reported FC data

needed to be standardized. We converted all FC measure-

ments to units of tons dry matter per hectare (t ha−1), which

is the most commonly used unit. A carbon to dry matter con-

version factor of 2 was used to convert carbon FC values to

dry matter FC values. We note though that this conversion

factor is not always representative of all biomes. Especially

in the boreal regions – having a relative large contribution

of organic soil fuels – but also in other biomes, this factor

is sometimes lower, and therefore our approach may slightly

overestimate FL and FC.

In Table 1 we present the FL, CC, and FC data compiled

for 11 different biomes that are frequently used in global

fire emissions assessments (e.g., van der Werf et al., 2010;

Wiedinmeyer et al., 2011; Kaiser et al., 2012; Randerson

et al., 2012). Some studies provided data for specific fuel

classes (e.g., ground fuels) only, while others estimated a to-

tal FC for both the below- and above-ground biomass. The

data presented in Table 1 focused on FC. Additional stud-

ies on FL measurements exist and were not included here,

but are listed in a spreadsheet that is available online at

http://www.falw.vu/~gwerf/FC. These estimates were exten-

sive, mostly for southern Africa (e.g., Scholes et al., 2011)

and Australia (e.g., Rossiter et al., 2003). Including these ad-

ditional field measurements may change regional FL aver-

ages. More specific details on the measurements and different

fuel categories for each biome are listed in Sects. 2.1–2.11.

2.1 Savanna

Savanna fires in the tropics can occur frequently, in some

cases annually. Their FL consists mainly of surface fuels

(like grass and litter from trees), and is influenced both by

rainfall of the previous years and the time since the last fire

(Gill and Allan, 2008). Traditionally, (African) savannas are

split into dry and wet forms (Menaut et al., 1995). This split

occurs at a precipitation rate of about 900 mm year−1. Most

savanna fires burn due to human ignition, but it is believed

that these systems are seldom ignition limited, and more of-

ten limited by available fuel (Archibald et al., 2010). Fire

incidence generally increases after years of above-average

rainfall, especially in dry savannas with low population den-

sities (van Wilgen et al., 2004; Russell-Smith et al., 2007). As

these systems are generally fuel limited, grass production and

consumption by herbivores are very important factors con-

trolling the extent of area burned, particularly in drier regions

Biogeosciences, 11, 7305–7329, 2014 www.biogeosciences.net/11/7305/2014/
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Table 1. Location, fuel load (FL), combustion completeness (CC) and fuel consumption (FC) for field measurements conducted in the

savanna (a), tropical forest (b), temperate forest (c), boreal forest (d), pasture (e), shifting cultivation (f), crop residue (g), chaparral (h),

tropical peat (i), boreal peat (j), and tundra biome (k). Standard deviation (SD) is shown in parenthesis, and values indicated in bold were

used to calculate the biome average.

Refa Lat. Lon. Location FL CC FC Description

(◦) (◦) (t ha−1) (%) (tha−1)

(a)

1 25.15 S 31.14 E Kruger Park, South Africa 4.4 (1.4) 80 (16) 3.5 (1.4) Lowveld sour bushveld savanna

1 12.35 S 30.21 E Kasanka National Park, Zambia 5.4 (2.1) 81 (15) 4.2 (1.0) Dambo, miombo, chitemene

1 16.60 S 27.15 E Choma, Zambia 5.1 (0.4) 88 (2) 4.5 (–) Semi-arid miombo

2 14.52 S 24.49 E Kaoma local forest, Zambia 5.8 (3.8) 53 (32) 2.2 (1.2) Dambo and miombo

3 15.00 S 23.00 E Mongu region, Zambia 4.2 (0.8) 69 (21) 2.9 (0.9) Dambo and floodplain

4 12.22 N 2.70 W Tiogo state forest, Senegal 5.8 (1.6) 75 (15) 4.2 (0.7) Grazing and no grazing

5 15.84 S 47.95 W Brasilia, Brazil 8.3 (1.3) 88 (13) 7.2 (0.9) Different types of cerrado

6 8.56 N 67.25 W Calaboza, Venezuela 6.9 (2.3) 82 (17) 5.5 (1.9) Protected savanna for 27 years

7 15.51 S 47.53 W Brasilia, Brazil 8.3 (–) 90 (–) 7.5 (–) Campo limpo and campo sujo

8 15.84 S 47.95 W Brasilia, Brazil 8.9 (3.1) 92 (4.1) 8.2 (2.8) Different types of cerrado

9 3.75 N 60.50 W Roraima, Brazil 6.1 (3.6) 56 (27) 2.6 (0.9) Different types of cerrado

10 12.40 S 132.50 E Kapalga, Kakadu, Australia 4.8 (1.3) 94 (0.6) 4.5 (1.3) Woodland

11 12.30 S 133.00 E Kakadu National Park, Australia 5.6 (0.9) 91 (–) 5.1 (–) Tropical savanna

12 12.43 S 131.49 E Wildman Reserve, Australia 2.9 (1.8) 91 (14) 2.4 (1.1) Grass and woody litter

13 12.38 S 133.55 E Arnhem Plateau, Australia 3.6 (3.1) 44 (35) 1.4 (1.6) Early and late season fires

14 12.38 S 133.55 E Arnhem Plateau, Australia 8.5 (–) 39 (–) 4.8 (–) Grass and open woodland

15 17.65 N 81.75 E Kortha Valasa and Kudura, India 35 (6.4) 22 (7.7) 7.7 (2.6) Woodland

(b)

5 4.30 S 49.03 W Marabá, Pará, Brazil 207 (–) 48 (–) 103 (–) Primary and secondary forest

16 2.29 S 60.09 W Fazenda Dimona, Manaus, Brazil 265 (–) 29 (–) 77 (–) 200 ha clearing for pasture

17 7.98 S 38.32 W Serra Talh., Pernambuco, Brazil 74 (0.2) 87 (8.6) 64 (6.4) Second-growth tropical dry forest

18 4.50 S 49.01 W Marabá, Pará, Brazil 364 (–) 52 (–) 190 (–) Cleared for pastures

18 15.85 S 60.52 W Santa Barbara, Rondônia, Brazil 326 (–) 50 (–) 166 (–) Cleared for shifting cultivation

19 2.61 S 60.17 W Manaus, Brazil 425 (–) 25 (–) 107 (–) Tropical dense rainforest

20 9.11 S 63.16 W Jamari, Rondônia, Brazil 377 (31) 50 (4.5) 191 (33) Primary forest slash

21 2.61 S 60.17 W Manaus, Brazil 402 (–) 20 (–) 82 (–) Humid dense tropical forest

22 10.16 S 60.81 W Ariguimes, Rondônia, Brazil 307 (49) 36 (–) 110 (–) Open tropical forest

23 3.37 S 52.62 W Altamira, Pará, Brazil 263 (–) 42 (–) 110 (–) Lowland amazonian dense forest

24 2.50 S 48.12 W Igarape do vinagre, Pará, Brazil 214 (–) 20 (–) 43 (–) Tropical dense rainforest

25 5.35 S 49.15 W Djair, Pará, Brazil 121 (17) 43 (–) 52 (–) Slashed second-growth forest

25 9.20 S 60.50 W Rondônia, Brazil 118 (45) 56 (7.7) 65 (21) Second-, third-growth forest

25 4.30 S 49.03 W José, Pará, Brazil 64 (4.0) 86 (–) 55 (–) Third-growth forest

26 2.34 S 60.09 W Fazenda dimona, Manaus, Brazil 369 (187) 30 (–) 111 (–) Lowland amazonian dense forest

27 9.52 S 56.06 W Alta floresta, Mato Grosso, Brazil 496 (–) 39 (18) 192 (87) 1, 4, and 9 ha clearings

28 9.97 S 56.34 W Alta floresta, Mato Grosso, Brazil 306 (–) 24 (–) 73 (–) Primary forest, 4 ha

29 12.53 S 54.88 W Feliz Natal, Mato Grosso, Brazil 219 (–) 71 (–) 155 (–) Seasonal semi-deciduous forest

30 7.90 S 72.44 W Cruzeiro do Sul, Acre, Brazil 583 (–) 39 (–) 226 (–) Primary forest, 4 ha clearing

31 18.35 N 95.05 W Los Tuxtlas, Mexico 403 (–) 95 (–) 380 (–) Evergreen tropical forest

32 19.30 N 105.3 W San Mateo, Jalisco, Mexico 127 (–) 71 (–) 91 (–) Tropical dry forest

33 0.52 S 117.01 E East Kalimantan, Indonesia 237 (106) 56 (24) 120 (47) Lightly and heavily disturbed stands

(c)

34 34.80 N 82.60 W Southern Appalachians, USA 110 (–) 59 (–) 65 (–) Mixed pine hardwoods

34 35.21 N 83.48 W Nantahala, N. Carolina, USA 177 (49) 52 (5.5) 93 (34) Pine: jacob w. and e., devil den

34 36.00 S 79.10 W Hillsborough, N. Carolina, USA 21 (1.2) 11 (–) 2.3 (–) Loblolly pine forest floor

34 34.80 N 82.60 W South East Piedmont, USA – – 5.2 (3.4) Pinus taeda plantation, forest floor

34 37.50 N 122.00 W South East Coastal plain, USA – – 15 (9.1) Pine forest floor

35 34.82 N 94.13 W Scott County, Arkansas, USA 10 (–) 45 (–) 4.7 (–) Shortleaf pine grassland

36 36.60 N 118.81 W Sequoia National Park, USA 230 (–) 92 (–) 212 (–) Mixed conifer trees

37 38.90 N 120.67 W Dark Canyon Creek, USA 141 (49) 79 (–) 111 (–) Two week post fire

38 38.90 N 120.62 W Blodgett Forest, California, USA 154 (–) 70 (–) 108 (–) Mixed conifer: moist and dry burn

39 24.73 N 81.40 W National Key Deer Refuge, USA 23 (5.9) 57 (11) 13 (4.3) Pine forest, potential fuels

40 42.40 N 124.10 W Southwestern Oregon, USA – – 39 (–) Mixed conifer forest

41 33.56 N 81.70 W Savannah River, USA 19 (–) 55 (–) 11 (–) Mature loblolly, old longleaf pine

42 34.63 N 77.40 W Camp Lejeune, N. Carolina, USA 11 (3.8) 45 (29) 5.6 (4.7) Pine understory

42 34.01 N 80.72 W Fort Jackson, S. Carolina, USA 10 (–) 54 (–) 6.3 (2.0) Pine understory

34 36.00 S 148.00 E Southeastern Australia 79 (–) 84 (–) 67 (–) 27 year old pine plantation

43 33.68 S 116.25 E Wilga, Australia 48 (–) 76 (–) 28 (–) Eucalypt forest

43 34.20 S 116.34 E Quillben, Australia 183 (–) 46 (–) 58 (–) Eucalypt forest

43 33.91 S 116.16 E Hester, Australia 101 (–) 68 (–) 53 (–) Eucalypt forest

43 37.09 S 145.08 E Tallarook, Victoria, Australia 60 (–) 61 (–) 27 (–) Eucalypt forest

43 33.93 S 115.46 E McCorkhill, Australia 70 (–) 78 (–) 43 (–) Eucalypt forest

43 43.22 S 146.54 E Warra, Tasmania 644 (–) 62 (–) 299 (–) Eucalypt forest

43 35.77 S 148.03 E Tumbarumba, Australia 99 (–) 70 (–) 47 (–) Eucalypt forest

44 19.50 N 99.50 W Mexico City, Mexico – – 17 (12) Pine-dominated forest

www.biogeosciences.net/11/7305/2014/ Biogeosciences, 11, 7305–7329, 2014
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Table 1. Continued.

Refa Lat. Lon. Location FL CC FC Description

(◦) (◦) (t ha−1) (%) (tha−1)

(d)

45 46.98 N 83.43 W Aubinadong River, ON, Canada 99 (4.2) 66 (5.4) 34 (6.6) Different depth classes used

46 46.78 N 83.33 W Sharpsand Creek, ON, Canada 48 (10) 49 (18) 23 (7.6) Immature jack pine

47 48.92 N 85.29 W Kenshoe Lake, ON, Canada 332 (–) 7.5 (–) 24 (–) Surface and crown

48 63.38 N 158.25 W Innoko, Alaska, USA – – 37 (7.0) Black spruce forest/shrub/bog

49 64.45 N 148.05 W Rosie Creek, Alaska, USA – – 83 Ground fuels

49 60.43 N 149.17 W Granite Creek, Alaska, USA – – 30 Ground fuels

49 67.14 N 150.18 W Porcupine, Alaska, USA – – 25 Ground fuels

49 63.12 N 143.59 W Tok River, Alaska, USA – – 51 Ground fuels

49 63.45 N 145.12 W Dry Creek, Alaska, USA – – 41 Ground fuels

49 63.08 N 142.30 W Tetlin, Alaska, USA – – 56 Ground fuels

49 63.50 N 145.15 W Hajdukovich Creek, Alaska, USA – – 129 Ground fuels

50 61.60 N 117.20 W Fort Providence, NT, Canada 83 (10) 44 (7.6) 36 (5.8) Jack pine and black spruce

51 65.10 N 147.30 W Alaska, USA – – 19 (1.7) Forest floor

52 64.40 N 145.74 W Delta Junction, Alaska, USA 75 (–) 48 (–) 35 (–) Ground fuels: (non)-permafrost

53 53.92 N 105.70 W Montreal Lake, SK, Canada 43 (4.0) 62 (7.5) 26 (3.9) Spruce, pine, mixed wood

54 65.03 N 147.85 W Fairbanks, Alaska, USA 95 (17) 61 (17) 57 (19) Differently facing slopes

55 46.87 N 83.33 W Sharpsand Creek, ON, Canada 13 (2.0) 69 (32) 9 (4.0) Experimental fire: forest floor

55 48.87 N 85.28 W Kenshoe Lake, ON, Canada 17 (3.0) 35 (13) 6 (2.0) Experimental fire: forest floor

55 61.37 N 117.63 W Fort Providence, NT, Canada 47 (9.0) 36 (9.0) 17 (3.0) Experimental fire: forest floor

55 61.69 N 107.94 W Porter Lake, NT, Canada 15 (0.0) 60 (20) 9 (3.0) Experimental fire: forest floor

55 55.07 N 114.03 W Hondo, AB, Canada 3 (1.0) 33 (35) 1 (1.0) Experimental fire: forest floor

55 59.31 N 111.02 W Darwin Lake, NT, Canada 18 (3) 72 (20) 13 (3.0) Experimental fire: forest floor

55 55.74 N 97.91 W Burntwood River, MB, Canada 72 (12) 26 (8.0) 19 (5.0) Wildfire: forest floor

55 54.29 N 107.78 W Green Lake, SK, Canada 36 (13) 86 (54) 31 (16) Wildfire: forest floor

55 53.57 N 88.62 W Kasabonika, ON, Canada 69 (19) 55 (46) 38 (30) Wildfire: forest floor

55 55.74 N 97.85 W Thompson, MB, Canada 23 (14) 87 (63) 20 (8.0) Wildfire: forest floor

55 54.05 N 105.81 W Montreal Lake, SK, Canada 61 (41) 57 (47) 35 (17) Wildfire: forest floor

55 64.06 N 139.43 W Dawson City, YT, Canada 84 (30) 46 (31) 39 (22) Wildfire: forest floor

55 59.40 N 113.03 W Wood Buffalo Nat. Pk., Canada 37 (9.0) 59 (35) 22 (12) Wildfire: forest floor

56 60.49 N 150.98 W Soldotna, Alaska, USA 91 (22) 37 (5.2) 33 (4.8) Mystery creek 1–3

56 61.61 N 149.04 W Palmer, Alaska, USA 84 (4.2) 61 (3.5) 51 (5.7) Deshka 1–2

56 62.69 N 141.77 W Tetlin Refuge, Alaska, USA 105 (16) 45 (15) 49 (20) Tetlin, chisana 1–4

56 64.87 N 147.71 W Fairbanks, Alaska, USA 86 (16) 36 (23) 32 (22) Bonanza creek, frostfire

57 63.00 N 142.00 W Alaska, USA 152 (–) 59 (–) 90 (–) Black spruce forest

58 65.00 N 146.00 W Alaska, USA 72 (–) 58 (–) 40 (–) Black spruce forest

59 60.45 N 89.25 E Bor, Krasnoyarsk, Russia 34 (–) 50 (–) 17 (–) Pine-lichen forest and litter

60 58.58 N 98.92 E Lower Angara, Russia 54 (12) 31 (15) 17 (8.6) Scots pine, larch mixed wood

60 58.70 N 98.42 E Lower Angara, Russia 43 (–) 42 (–) 18 (–) Scots pine, larch mixed wood

(e)

20 9.17 S 63.18 W Jamari, Rondônia, Brazil 66 (13) 31 (10) 21 (17) 12 year old pasture site

61 5.30 S 49.15 W Fransico, Pará, Brazil 53 (4.8) 83 (–) 44 (–) Two slash fires prior to burning

61 9.20 S 60.50 W João and Durval, Rondônia, Brazil 96 (–) 34 (–) 30 (–) 4 year old pasture site

62 2.54 N 61.28 W Vila de Apiau, Roraíma, Brazil 119 (–) 20 (–) 24 (–) Pasture and forest

32 19.30 N 105.3 W San Mateo, Jalisco, Mexico 35 (–) 69 (–) 23 (–) High and low severity

(f)

63 10.53 S 31.14 E Kasama, Zambia 75 (–) 64 (–) 43 (–) Shifting cultivation

64 17.59 N 81.55 E Damanapalli and Velegapalli, India 14 (–) 30 (–) 4.0 (–) Shifting cultivation in dry forest

(g)

65 40.00 N 2.00 W Spain, Europe 1.4 (–) 80 (–) 1.1 (–) Cereal crops

66 22.85 S 47.60 W Piracicaba, Sao Paulo, Brazil – – 20 (–) Sugar cane

67 33.94 N 118.33 E Suqian, China 6.7 (1.2) 44 (4.6) 2.9 (0.5) Mix (wheat, rice, corn, potato)

68 40.00 N 98.00 E North America 2.4 (3.6) 86 (6.0) 2.1 (3.2) Mix of crop types

68 46.73 N 117.18 E North America 12 (–) 90 (–) 11 (–) Seedgrass

(h)

69 34.10 N 117.47 W Lodi Canyon, California, USA – – 45 (–) Prescribed chaparral fire

70 33.33 N 117.16 W Bear Creek, California, USA 60 (5.9) 83 (6.0) 50 (8.4) Mature caenothus and chamise

70 34.29 N 118.33 W Newhall, California, USA 20 (6.7) 75 (4.0) 15 (5.4) Mature chamise

70 32.32 N 117.15 W TNC, California, USA 21 (–) 77 (–) 16 (–) Young and healthy chamise

42 34.73 N 120.57 W Vandenberg, California, USA 14 (–) 68 (–) 10 (–) Coastal sage and maritime chaparral
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Table 1. Continued.

Refa Lat. Lon. Location FL CC FC Description

(◦) (◦) (t ha−1) (%) (tha−1)

(i)

71 2.52 S 113.79 E Kalimantan, Indonesia – – 500 (–) Peat and overstory

72 2.50 S 114.17 E Palangka Raya, Indonesia 399 (11) 27 (4.7) 109 (19) Various peat fire fuels

73 2.37 S 102.68 E Pelawan, Riau, Indonesia 45 (6.1) 81 (10) 37 (8.2) Litter and branches

74 2.52 S 113.79 E Kalimantan, Indonesia – – 332 (6.4) Measured by LIDAR

(j)

75 55.85 N 107.67 W Patuanak, Canada – – 42 (25) Continental and permafrost bogs

76 54.93 N 114.17 W Chisholm, Canada – – 43 (–) Hummocks and hollows

(k)

77 68.58 N 149.72 W Anaktuvuk River, Alaska, USA 165 (15) 24 (5.0) 40 (9.0) Soil and plants

a References: (1) Shea et al. (1996)/Ward et al. (1996); (2) Hoffa et al. (1999); (3) Hély et al. (2003b); (4) Savadogo et al. (2007); (5) Ward et al. (1992); (6) Bilbao and

Medina (1996); (7) Miranda et al. (1996); (8) De Castro and Kauffman (1998); (9) Barbosa and Fearnside (2005); (10) Cook et al. (1994); (11) Hurst et al. (1994); (12)

Rossiter-Rachor et al. (2007); (13) Russell-Smith et al. (2009); (14) Meyer et al. (2012); (15) Prasad et al. (2001); (16) Fearnside et al. (1993); (17) Kauffman et al. (1993); (18)

Kauffman et al. (1995); (19) Carvalho et al. (1995); (20) Guild et al. (1998); (21) Carvalho et al. (1998); (22) Graça et al. (1999); (23) Fearnside et al. (1999); (24) Araújo

et al. (1999); (25) Hughes et al. (2000a); (26) Fearnside et al. (2001); (27) Carvalho et al. (2001); (28) Christian et al., 2007/Soares Neto et al. (2009); (29) Righi et al. (2009); (30)

Carvalho Jr. et al. (2014); (31) Hughes et al. (2000b); (32) Kauffman et al. (2003); (33) Toma et al. (2005); (34) Carter et al. (2004); (35) Sparks et al. (2002); (36) Stephens and

Finney (2002); (37) Bêche et al. (2005); (38) Hille and Stephens (2005); (39) Sah et al. (2006); (40) Campbell et al. (2007); (41) Goodrick et al. (2010); (42) Yokelson et

al. (2013); (43) Hollis et al. (2010); (44) Yokelson et al. (2007); (45) Stocks et al. (1987a); (46) Stocks et al. (1987b); (47) Stocks (1989); (48) Goode et al. (2000); (49) Kasischke

et al. (2000); (50) Stocks et al. (2004); (51) Harden et al. (2004); (52) Harden et al. (2006); (53) de Groot et al. (2007); (54) Kane et al. (2007); (55) de Groot et al. (2009); (56)

Ottmar and Sandberg (2010); (57) Turetsky et al. (2011); (58) Boby et al. (2010); (59) FIRESCAN Science Team (1996); (60) Ivanova et al. (2011); (61) Kauffman et al. (1998);

(62) Barbosa and Fearnside (1996); (63) Stromgaard, 1985; (64) Prasad et al. (2000); (65) Zarate et al. (2005); (66) Lara et al. (2005); (67) Yang et al. (2008); (68) McCarty

et al. (2011); (69) Cofer III et al. (1988); (70) Hardy et al. (1996); (71) Page et al. (2002); (72) Usup et al. (2004); (73) Saharjo and Nurhayati (2006); (74) Ballhorn et al. (2009);

(75) Turetsky and Wieder (2001); (76) Benscoter and Wieder (2003); (77) Mack et al. (2011).

where rainfall can vary strongly between years (Menaut

et al., 1991; Cheney and Sullivan, 1997; Russell-Smith et

al., 2007). Grass production controls fire spread because low-

biomass grasslands have less continuous fuel swards and

also because they burn at lower intensities, which reduces

the probability of spread. In wet savannas, the grass pro-

duction is poorly correlated with rainfall and much higher

than in dry savannas (10 to 20 t ha−1 year−1, Gignoux et al.,

2006). This results in higher-intensity fires, keeping the land-

scape relatively open. In Australia, the division into dry and

wet savannas is less clear. Annual grass production is typ-

ically low (less than 3 t ha−1 year−1), even for precipitation

rates of 2000 mm year−1. This difference is mostly due to

the fact that Australia’s native grasses are limited by nitrogen

availability at high rainfalls, something African grasses such

as Andropogon gayanus overcome through various mecha-

nisms (Rossiter-Rachor et al., 2009).

Miombo woodlands in Africa are high-rainfall savannas

where up to 40 % of the fuel can be provided by litter

from trees (Frost et al., 1996). A similar type of vegeta-

tion can be found in Brazil, mainly consisting of wood-

lands with a closed canopy of tall shrubs and scattered

trees (Cerrado denso). We found several measurements con-

ducted in Miombo woodlands, as well as field measure-

ments in the Brazilian Cerrado denso. Moreover, one study

was found for an Indian deciduous forest, which can be

classified as wooded savanna and thus the savanna biome

(Ratnam et al., 2011).

To calculate averages, we divided the savanna biome into

grassland savanna and wooded savanna by using the fuel type

description that was provided in each study. The savanna

measurements presented in Table 1a were taken between

1990 and 2009, and represent 17 unique measurement loca-

tions (Fig. 1) taken from 15 different studies. For all measure-

ments conducted, we found an average FL of 7.6± 6.5 t ha−1

and FC of 4.6± 2.2 t ha−1. The average of the CC values

as presented in the different studies indicated a value of

71± 26 %, higher than the ratio derived from the average FL

and FC (61 %) above. This difference is because not all FC

measurements reported FL. Within the savanna biome, re-

gional differences were found (Fig. 2): FL and FC for South

American savannas, 8.2± 1.6 and 6.0± 2.4 t ha−1, respec-

tively, were nominally higher than the ones measured in the

savannas of Australia (5.1± 2.2 and 3.6± 1.6 t ha−1). Mea-

surements conducted in Africa, contributing to roughly 40 %

of all measurements in the biome, showed the lowest FC

(3.4± 1.0 t ha−1) of all regions. A larger number of measure-

ments are required to say conclusively whether these differ-

ences are statistically significant. To show the difference be-

tween grassland savannas and wooded savannas, data of both

types of savanna are also provided in Fig. 2. For grassland

savannas the average FL was relatively low (5.3± 2.0 t ha−1)

and the CC high (81± 16 %), yielding an average FC of

4.3± 2.2 t ha−1. Wooded savannas, on the other hand, had

a higher FL (11± 9.1 t ha−1) but lower CC (58± 32 %), and

therefore the average FC of 5.1± 2.2 t ha−1 was only slightly

higher than the one found for grasslands.

In Table 2 these values are given for different fuel cate-

gories. For the savanna biome most of the fuels were clas-

sified as surface fuels (Table 2a). In general, fuels with a

large surface-area-to-volume ratio (like litter, grass and di-

cots) had a high CC of at least 88 %. CC values were signifi-

cantly lower for the woody debris classes, with a minimum of

21± 12 % found for woody fuels with a diameter larger than
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2.54 cm (100 h fuel). FC for the different fuel types was be-

tween 0.3 and 1.9 t ha−1, with litter having the highest values.

In general, the total sum of different fuel categories agrees

well with the biome-averaged values presented. However, not

all measurements distinguished between fuel categories and

therefore small discrepancies were sometimes found: for FC

in the savanna biome, for example, the sum of different fuel

categories is 5.3 t ha−1, slightly higher than the biome aver-

age of 4.6± 2.2 t ha−1.

2.2 Tropical forest

Tropical evergreen forests are generally not susceptible to

fire except during extreme drought periods (e.g., Field et al.,

2009; Marengo et al., 2011; Tomasella et al., 2013) due to

their dense canopy cover keeping humidity high and wind

speed low, and also because the amount of fuel on the surface

is low due to rapid decomposition. Human activities have re-

sulted in fire activity in tropical forests, often with the goal

to clear biomass and establish pasture or cropland. These de-

forestation fires can be small-scale (e.g., shifting cultivation,

discussed in Sect. 2.6) or on a large scale with the aid of

heavy machinery. In the latter case, biomass is often piled in

windrows after the first burn and subject to additional fires

during the same dry season to remove the biomass more

completely. In large-scale deforestation regions like the state

of Mato Grosso in the Brazilian Amazon, the expansion of

mechanized agriculture could result in increased fuel con-

sumed per unit area (Cardille and Foley, 2003; Yokelson et

al., 2007a). All these fires, but also selective logging, may

lead to more frequent accidental fires as fragmented forests

are more vulnerable to fire (Nepstad et al., 1999; Siegert et

al., 2001; Pivello, 2011).

The total FL in tropical forests is mostly determined by

the tree biomass (surface and canopy fuels) and generally

on the order of a few hundred t ha−1. CC depends partly

on the size of the clearing and on the curing period. In

general, the CC for tropical forest clearings is lower than

50 % (Balch et al., 2008), but when there is a long (more

than a year) lag between slash and burning the CC might

increase to 60 % and more (Carvalho et al., 2001). The El

Niño–Southern Oscillation (ENSO) phenomenon may also

have a large effect on fuel conditions over tropical regions.

Large-scale fires have been shown to occur in South Amer-

ica, Southeast Asia, and Africa in ENSO years, thereby likely

increasing CC due to drought conditions (Chen et al., 2011;

Field et al., 2009; Hély et al., 2003a).

The 22 unique measurement locations shown in Table 1b

cover Brazil (19), Mexico (2), and Indonesia (1). In general,

measurement sites were divided into several smaller subplots

and the forest was slashed at the beginning of the dry season.

The biomass was then weighed using the PIM. After about

2 months the plots were set on fire and the remaining biomass

was weighed within 1 week after the burn. The average FL

for the whole biome was 285± 137 t ha−1, CC averaged

49± 22 %, and total FC was 126± 77 t ha−1. Since more

than 90 % of all measurements were conducted in Brazil

(Fig. 3), the biome-averaged values are biased towards mea-

surements conducted there. Studies conducted in Mexican

and Indonesian tropical forests reported average FL of 265

and 237 t ha−1, respectively. Surprisingly, the CC of tropi-

cal forest in Mexico was the highest of all the studies (83 %

on average), resulting in an average FC of 236 t ha−1, which

was significantly higher than values found for both Brazil

(117± 56 t ha−1) and Indonesia (120± 47 t ha−1). However,

due to the small number of measurements conducted in Mex-

ico and Indonesia, these findings are not conclusive.

Different forest types may partly explain the discrep-

ancy found, and therefore we distinguished between mea-

surements conducted in primary tropical evergreen forest,

secondary tropical evergreen forest, and tropical dry for-

est (Fig. 3). To distinguish between tropical dry forests and

wooded savannas (Sect. 2.1), we harmonized with the emis-

sion factor compilation of Akagi et al. (2011) in which

60 % canopy cover (Hansen et al., 2003) was the delin-

eation between both ecosystems. FL and FC were largest

for primary tropical evergreen forests, with average values of

339± 104 and 143± 79 t ha−1, respectively. For secondary

tropical evergreen forests these values were substantially

lower (101± 32 and 57± 7.0 t ha−1) and comparable with

tropical dry forests in South America and Mexico, where the

average FL was 100 and the FC 78 t ha−1.

Different fuel categories for the tropical forest biome are

presented in Table 2b and can be mainly classified as sur-

face fuels, except for the attached foliage (crown fuels) and

rootmat category (ground fuels). Large woody debris (di-

ameter > 20.5 cm) and trunks – although not always taken

into account in certain studies – correspond to a large part

of the above-ground biomass (FL= 147± 83 t ha−1) but are

usually only slightly burned during a forest clearing pro-

cess (Carvalho et al., 1995), as shown by an average CC

of 32± 23 % leading to an FC of this category of only

37± 32 t ha−1. Similar to the savanna biome, we found a

high CC of at least 73 % for surface fuels with a large sur-

face area to volume ratio (litter, leaves, and dicots). The small

woody fuels (1 and 10 h) also had a high CC, and the CC of

the woody debris generally decreased with increasing diam-

eter. From an FC perspective, the most important fuel types

in the tropical forest biome were litter (14± 8.4 t ha−1) and

woody debris size classes with a diameter larger than 0.64 cm

(15–37 t ha−1).

2.3 Temperate forest

Although accounting for only a small part of the global

emissions, temperate forest fires frequently occur nearby the

wildland–urban interface with important consequences for

human safety and air quality. While tropical fires are largely

intentionally ignited to pursue land management goals, the

temperate forest is also subject to wildfires. Obtaining FC
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Table 2. Fuel load (FL), combustion completeness (CC) and fuel consumption (FC) field measurements for different fuel categories within

the savanna (a), tropical forest (b), temperate forest (c), and boreal forest (d) biomes. Standard deviation (SD) is shown in parentheses.

Cla Fuel category FL CC FC Referencesb

(t ha−1) (%) (tha−1)

(a)

S Dicots 0.4 (0.5) 91 (12) 0.3 (0.3) 1, 2, 5

S Grass-dormant 1.9 (1.4) 93 (14) 1.3 (0.5) 1, 2, 5

C Grass-green 0.4 (0.2) 88 (23) 0.3 (0.1) 1, 2, 5

S Litter 2.1 (0.5) 88 (13) 1.9 (0.5) 1, 2, 5, 8, 12, 15

S Tree/shrub leaves 0.4 (0.8) 64 (12) 0.3 (0.6) 1, 2, 5

S Woody debris (0–0.64 cm) 0.6 (0.7) 65 (16) 0.4 (0.5) 1, 2, 5, 8

S Woody debris (0.64–2.54 cm) 0.9 (1.0) 39 (25) 0.5 (0.7) 1, 2, 5, 8

S Woody debris (> 2.54 cm) 1.0 (1.1) 21 (12) 0.3 (0.3) 1, 2, 5, 8

(b)

C Attached foliage 3.8 (3.0) 94 (5.1) 3.6 (2.8) 5, 18, 20, 25, 32

S Dicots 0.5 (0.3) 89 (23) 0.5 (0.3) 5, 18, 20, 25, 32

S Leaves 13 (8.8) 73 (38) 11 (9.8) 16, 17, 19, 21, 24, 27, 28, 29

S Litter 18 (9.9) 85 (30) 14 (8.4) 5, 17–29, 32

S Liana 5.2 (0.8) 21 (35) 0.9 (1.4) 19, 21, 24

G Rootmat 5.2 (2.7) 87 (13) 4.4 (2.2) 18, 20, 25

S Woody debris (0–0.64 cm) 4.6 (2.8) 94 (4.8) 6.4 (8.6) 5, 17, 18, 20, 25, 32

S Woody debris (0.65–2.54 cm) 17 (3.9) 87 (7.9) 15 (4.0) 5, 17, 18, 20, 25, 32

S Woody debris (2.55–7.6 cm) 27 (15) 65 (19) 18 (13) 5, 17, 18, 20, 25, 32

S Woody debris (7.6–20.5 cm) 45 (29) 41 (18) 18 (9.3) 5, 17, 18, 20, 25, 32

S Woody debris (> 20.5 cm), trunks 147 (83) 32 (23) 37 (32) 5, 16, 18–23, 26–30

(c)

G Organic soil 49 (37) 48 (44) 25 (31) 34, 37, 38

S Litter 20 (11) 81 (8.9) 17 (9.9) 34, 37, 38

S Woody debris (0–0.64 cm) 1.2 (0.8) 87 (11) 1.0 (0.6) 36, 37, 38

S Woody debris (0.65–2.54 cm) 5.2 (1.9) 79 (11) 4.0 (1.2) 36, 37, 38

S Woody debris (2.55–7.6 cm) 6.0 (0.9) 73 (14) 4.3 (0.2) 36, 37, 38

S Woody debris (7.6–20.5 cm sound) 16 (9.6) 38 (42) 6.2 (8.2) 36, 37, 38

G Woody debris (7.6–20.5 cm rotten) 20 (4.1) 96 (5.4) 20 (4.8) 36, 37, 38

(d)

G Ground fuels (soil, forest floor) 50 (29) 51 (18) 32 (26) 44, 48, 49, 50, 51, 53, 54, 55, 57, 58

S Surface fuels 44 (49) 52 (25) 12 (8.1) 44, 46, 49, 52, 55, 58, 59

C Crown fuels 37 (70) 71 (29) 8.1 (6.9) 44, 46, 49, 57, 59

a Fuel category classification: S= surface fuels, G= ground fuels, C= crown fuels.
b References: (1) Shea et al. (1996)/Ward et al. (1996); (2) Hoffa et al. (1999); (5) Ward et al. (1992); (8) De Castro and Kauffman (1998);

(12) Rossiter-Rachor et al. (2007); (15) Prasad et al. (2001); (16) Fearnside et al. (1993); (17) Kauffman et al. (1993); (18) Kauffman et al. (1995); (19)

Carvalho et al. (1995); (20) Guild et al. (1998); (21) Carvalho et al. (1998); (22) Graça et al. (1999); (23) Fearnside et al. (1999); (24) Araújo et al. (1999);

(25) Hughes et al. (2000a); (26) Fearnside et al. (2001); (27) Carvalho et al. (2001); (28) Christian et al. (2007)/Soares Neto et al. (2009); (29) Righi

et al. (2009); (30) Carvalho Jr. et al. (2014); (32) Kauffman et al. (2003); (34) Carter et al. (2004); (36) Stephens and Finney (2002); (37) Bêche

et al. (2005); (38) Hille and Stephens (2005); (45) Stocks et al. (1987a); (47) Stocks (1989); (49) Kasischke et al. (2000); (50) Stocks et al. (2004); (51)

Harden et al. (2004); (52) Harden et al. (2006); (53) de Groot et al. (2007); (54) Kane et al. (2007); (55) de Groot et al. (2009); (56) Ottmar and

Sandberg (2010); (58) Boby et al. (2010); (59) FIRESCAN Science Team (1996); (60) Ivanova et al. (2011).

measurements for wildfires is obviously challenging, so most

information is derived from prescribed fires that allow re-

searchers to measure pre-fire conditions. However, these fires

may not always be a good proxy for wildfires. For example,

wildfires in western conifer forests of the US are often crown

fires (while prescribed fires usually only burn surface fuels).

Due to potential discrepancies with respect to FC, we distin-

guished between these fire types in Sect. 3.2.

The 23 unique FC measurement locations for the temper-

ate forest are from sites in North America (14), Australia (7),

Tasmania (1) and Mexico (1), and were taken between 1983

and 2011 (Fig. 1). In general, measurements were conducted

on sites that were divided into multiple, randomized subplots
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Figure 2. Overview of field measurements of fuel load (FL), com-

bustion completeness (CC), and fuel consumption (FC) in the sa-

vanna biome. The pie charts on top correspond to the number of

unique measurement locations for different geographical regions

(left) and savanna types (right), and in the box plots below field

averages of FL, CC, and FC are presented. The boxes extend from

the lower to upper quartile values of the measurement data, with a

line at the median and a black filled circle at the mean. The whiskers

extend from the box to show the range of the data, and outliers are

indicated with pluses.

on which the pre-fire biomass was weighed according to the

PIM. The sites were then burned and within a few days af-

ter the burn the post-fire biomass was gathered, dried and

weighed.

The biome-averaged FL for the temperate forest biome

was 115± 144 t ha−1, the CC equaled 61± 18 %, and fuel

consumed by the fire was 58± 72 t ha−1. Note that we

focused on all the measurements presented in Table 1c,

so studies that provide information on one specific fuel

class only (e.g., ground fuels, Goodrick et al., 2010)

were also included to calculate biome-averaged values. Al-

though CC for North America, Australia and Tasmania

were comparable (∼ 60 %), the FC showed lower values for

North America (49± 62 t ha−1) than Australia and Tasma-

nia (78± 91 t ha−1). One possible cause of this discrepancy
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Figure 3. Overview of field measurements of fuel load (FL), com-

bustion completeness (CC), and fuel consumption (FC) in the trop-

ical forest biome. The pie charts on top correspond to the number

of unique measurement locations for different geographical regions

(left) and forest types (right), and in the box plots below field aver-

ages of FL, CC, and FC are presented. The boxes extend from the

lower to upper quartile values of the measurement data, with a line

at the median and a black filled circle at the mean. The whiskers

extend from the box to show the range of the data, and outliers are

indicated with pluses.

is the contribution of different vegetation types, as elabo-

rated in Fig. 4. Measurements in North America were mainly

conducted in conifer forest, while eucalypt was the more

dominant forest type for Australia and Tasmania. FC for

both forest types compares fairly well with the regional av-

erages found, and equaled 48± 58 t ha−1 for conifers and

79± 98 t ha−1 for eucalypt forest.

Table 2c shows that litter in the temperate forest had

a higher FL and FC than in the tropical forest biome,

and the average FC for this surface fuel category equaled

17± 9.9 t ha−1. The different woody debris classes had a

similar pattern to that found for the savanna and tropical for-

est biome, with decreasing CC for categories with increas-

ing fuel diameters. However, an interesting difference was

found in the biggest size class: sound woody debris had

a low CC (38± 42 %), while the fraction of rotten woody
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Figure 4. Overview of field measurements of fuel load (FL), com-

bustion completeness (CC), and fuel consumption (FC) in the tem-

perate forest biome. The pie charts on top correspond to the number

of unique measurement locations for different geographical regions

(left) and forest types (right), and in the box plots below field aver-

ages of FL, CC, and FC are presented. The boxes extend from the

lower to upper quartile values of the measurement data, with a line

at the median and a black filled circle at the mean. The whiskers

extend from the box to show the range of the data, and outliers are

indicated with pluses.

debris consumed by the fire was very high (96± 5.4 %), re-

sulting in an average FC of 20± 4.8 t ha−1 for this category.

Although this difference was observed in a few other studies

as well, little research is available on comparing the physi-

cal and chemical properties of sound and rotten woody de-

bris, which is likely to affect the FC (Hyde et al., 2011). The

most important fuel category from an FC perspective was or-

ganic soil, with an average value of 25± 31 t ha−1. For the

same reason as explained in Sect. 2.1, a small discrepancy

was found between the total FC sum of different fuel cate-

gories (77 t ha−1) and the biome average (58± 72 t ha−1).

2.4 Boreal forest

Fires in the boreal (high latitudes of about 50 to 70◦) forest

are thought to be mostly natural (wildfires) due to the vast
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Figure 5. Overview of field measurements of fuel load (FL), com-

bustion completeness (CC), and fuel consumption (FC) in the bo-

real forest biome. The pie charts on top correspond to the number

of unique measurement locations for different geographical regions

(left) and fuel classes (right), and in the box plots below field aver-

ages of FL, CC, and FC are presented. The boxes extend from the

lower to upper quartile values of the measurement data, with a line

at the median and a black filled circle at the mean. The whiskers

extend from the box to show the range of the data, and outliers are

indicated with pluses.

size of the forest region, the low population densities and

the difficult accessibility. However, much of the Asian boreal

forests are disturbed by (il)legal logging activities (Vanderg-

ert and Newel, 2003), which can increase fire activity in more

remote regions (Mollicone et al., 2006). Approximately two

thirds of the boreal forests are located in northern Eurasia,

while the remainder is in North America. The circumpolar

boreal fire regime is characterized by large forest fires, al-

though fires in North America are in general larger and less

frequent than the ones in Eurasia (de Groot et al., 2013a).

North American boreal fires are characterized by high inten-

sity crown fires, while fires in boreal Russia are more often

surface fires of lower intensity (Amiro et al., 2001; Soja et al.,

2004; Wooster et al., 2004; de Groot et al., 2013a). Canada

has a very long fire record, starting in 1959, while the record
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for Alaska starts in 1950 (Kasischke et al., 2002). Since 1990,

2.65 million ha year−1 burned in the North American bo-

real forest, with high year-to-year variability (Kasischke et

al., 2011). FL in the boreal forests depends to a large ex-

tent on tree species, stand density, climate, topography, mois-

ture, seasonal thawing of permafrost and the time since the

last burn. In many forest types, dead material accumulates

in deep organic soil horizons due to the slow decomposition

rates. CC in organic soils is mostly controlled by conditions

that control surface soil moisture, including topography, sea-

sonal thawing of permafrost, and antecedent weather condi-

tions. When dry conditions prevail, such as during a high-

pressure blocking event that can last for few days to several

weeks over North America (Nash and Johnson, 1996), much

of the forest floor can burn, and depths of 30 cm or more can

be reached. There is a strong relation between moisture con-

tent and fuel bed depth on the one hand and forest floor con-

sumption on the other hand (e.g., de Groot et al., 2009). Of

all global fire regimes, the boreal forest is most susceptible to

climate change due to polar amplification of temperature in-

crease (Flannigan et al., 2013; de Groot et al. 2013b). For ex-

ample, the area burned by lightning fires in the North Amer-

ican boreal region doubled between 1960 and 1990 (Kasis-

chke and Turetsky, 2006).

Field measurements described in the literature were al-

most all conducted in boreal North America (35 in total),

except for three measurement sets that came from boreal

Asia (Fig. 1, Table 1d). The general method for determin-

ing FL and FC was to apply the PIM. Approaches have also

been developed to estimate consumption of surface organic

layer fuels by estimating the pre- and post-fire thicknesses

and densities of surface organic horizons (de Groot et al.,

2009; Turetsky et al., 2011).

We estimated a biome-averaged FL of 69± 61 t ha−1, sub-

stantially lower than the average FL for the temperate forests.

The average FL for this biome is for upland forest types.

However, deep peatland deposits (see Sect. 2.10) cover about

107 M ha (Zoltai et al., 1998) or 18 % of the North American

boreal forest zone (Brandt, 2009) and 16 % of the northern

circumpolar permafrost soil area (Tarnocai et al., 2009). By

contrast, peatlands only cover about 0.07 M ha in the temper-

ate zone, which has higher FL overall. Despite low decom-

position rates due to a cold, moist climate, the lower FL in

the boreal forest region is primarily a result of slower tree

growth rates (biomass accumulation) and frequent to infre-

quent fire disturbance that can remove substantial amounts

of fuel. The average CC was 51± 17 %, and the FC equaled

35± 24 t ha−1. Similar as for the temperate forest, we in-

cluded all measurements (presented in Table 1d) to calcu-

late the biome-averaged values. The representativeness of

these values for wildfires and prescribed fires is discussed

in Sect. 3.2. Differences between boreal North America and

Siberia were observed, but it should be noted that only three

studies provided an FC estimate for Russia. Values on FL,

CC, and FC were overall higher for boreal fires in North

America than the field studies in Russia (Fig. 5).

Information on fuel categories is presented in Table 2d,

as well as in Fig. 5. Different classification systems were

sometimes used for boreal fuels, and therefore it was diffi-

cult to extract the right information for ground, surface and

crown fuels (further discussed in Sect. 3.4). Moreover, it was

not always clear in which class certain fuels are consumed:

e.g., organic material can be consumed on the ground but

also in a crown fire (Hille and Stephens, 2005). The high-

est FL (50± 29 t ha−1) and FC (32± 26 t ha−1) in the boreal

forest biome was found for ground fuels, mainly consisting

of organic soils. Furthermore, a difference in organic matter

FL in permafrost and non-permafrost regions was found (56

and 86 t ha−1, respectively). However, due to a CC of 62 and

41 % for permafrost and non-permafrost regions, the FC for

both regions was equal (35 t ha−1). Finally, slope aspect has

been shown to have an effect as well, with the south facing

slopes having the highest FL and FC due to warmer and drier

conditions that better favour plant growth and fire intensity

than shadowed north faces (Viereck et al., 1986; Turetsky et

al., 2011). As with most of our findings, however, the num-

ber of studies is far too low to evaluate whether this is also

the case in general.

2.5 Pasture

Fires related to agricultural practices were divided into shift-

ing cultivation (Sect. 2.6), the burning of crop residues

(Sect. 2.7) and pasture burning. The latter type of burning

often follows tropical deforestation fires and is used to con-

vert land into pasture. Prior to this conversion, lands can

be used in shifting cultivation as well. Typically, landown-

ers set fires every 2–3 years to prevent re-establishment of

forests (Kauffman et al., 1998) and to enhance the growth

of certain grasses (Fearnside, 1992). In general, these fires

mostly consume grass and residual wood from the original

forest. Pasture fires are most common in the Brazilian Ama-

zon where many cattle ranches have been established in areas

that were previously tropical forest. Although less abundant,

these “maintenance” fires also occur in tropical regions of

Africa, central America and Asia.

The pasture measurements presented in Table 1e represent

five unique measurement locations and cover two different

continents (Fig. 1). Pasture had an average FL, CC, and FC of

74± 34 t ha−1, 47± 27 %, and 28± 9.3 t ha−1, respectively.

Regional discrepancies for FC were found though, with FL

for Brazilian pastures (84± 29 t ha−1) being substantially

higher than those found in Mexico (35 t ha−1). However, FC

values compared reasonably well for both regions (30± 10

and 24 t ha−1 for Brazil and Mexico, respectively).
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2.6 Shifting cultivation

Shifting cultivation is commonly practiced in Africa, central

America, South America and Asia. In general, lands are cul-

tivated temporarily (often for only a few years) before soil

fertility is exhausted or weed growth overwhelms the crops.

The lands are then abandoned and may revert to their natural

vegetation, while the farmers move on to clear a new fields

elsewhere. The land is slashed and burned, which leaves only

stumps and large trees in the field after the fire (Stromgaard,

1985). Apart from the fact that fire is an easy and cheap tool

to clear the land, it has the further advantage that the ashes

will also (temporarily) enrich the soil.

For shifting cultivation fires the average FL was 44 with

a range of 14–75 t ha−1, the CC equaled 47 [30–64] %, and

FC was 23 [4–43] t ha−1. Note that these values are based on

the measurements of two studies only (Fig. 1, Table 1f). The

two shifting cultivation studies showed a remarkable differ-

ence: FC of Indian tropical dry deciduous forest (4.0 t ha−1;

Prasad et al., 2000) was 1 order of magnitude lower than for

shifting cultivation practices in the wooded savanna of Zam-

bia (43 t ha−1; Stromgaard, 1985). Due to the relatively small

number of measurements, these findings are not conclusive.

2.7 Crop residue

Crop residue burning is a common practice to recycle nu-

trients, control pests, diseases, and weeds and, in general,

to prepare fields for planting and harvesting. The main crop

residue types that burn are rice, grains (i.e., wheat) and sug-

arcane, but burning is not limited to these crop types. FL is

highly variable, as it depends on both the type of crop burned

and the method used for harvesting the crop (mechanized,

manual, etc.). Detecting these fires using global burned area

products is difficult, as in general, cropland fires are small

and the land can be tilled and replanted quickly after burning

(making it difficult to observe the latency of burned ground as

is common in less managed and/or more natural landscapes).

Moreover, the fuel geometry varies globally from short-lived

burning of loose residue in the field to long-lasting smol-

dering combustion of small hand piles of residue, and both

are hard to detect from space. Traditional methods of obtain-

ing estimates for agricultural fires are the use of governmen-

tal statistics on crop yield (e.g., Yevich and Logan, 2003),

residue usage for cooking and livestock (the leftovers are as-

sumed to be burned), field measurements, or the use of agro-

nomic data (e.g., Jenkins et al., 1992).

On average, crop residue burning had FL of

8.3± 9.9 t ha−1, CC of 75± 21 % and FC of 6.5± 9.0 t ha−1

(Table 1g). We estimated an average FL of 23 t ha−1 for

Brazilian sugarcane (Lara et al., 2005) by using a CC of

88 % as reported by McCarty et al. (2011). FC values for

different US crop types (McCarty et al., 2011) were used to

derive crop-specific FL data (French et al., 2013) and CC

values were taken from expert knowledge from agriculture
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Figure 6. Fuel consumption (FC) for different US crop types as

reported by McCarty et al. (2011), and Brazilian sugarcane (Lara

et al., 2005). The grey bar corresponds to the biome-averaged FC

value for crop residue burning as presented in this study.

extension agents in Arkansas, Louisiana, Florida, Kansas,

and Washington during field campaigns in 2004, 2005, and

2006, as well as from the scientific literature (Dennis et

al., 2002; Johnston and Golob, 2004). CC variables ranged

from 65 % for cotton and sugarcane and 85 % for wheat

and bluegrass, which are lower but within the range of the

CC value (−23 to −3 % less than CC of 88 %) used by the

Environmental Protection Agency (EPA) of 88 % (EPA 2008

GHG).

FC values varied between different crop types, as shown

in Fig. 6. For US crops the highest FC was found for seed-

grass (10 t ha−1) and rice (8.8 t ha−1), while values for soy-

beans (0.5 t ha−1) and corn (1.0 t ha−1) were lower. In gen-

eral, US crop values are assumed in the analysis to be ap-

proximately representative of other developed agricultural

areas like Brazil and Russia (McCarty et al., 2012), but un-

certainty increases for less industrialized agricultural areas

in Africa and Asia. However, Brazilian sugarcane (20 t ha−1)

was found to have an FC that is more than twice as high

as sugarcane in the US (8.0 t ha−1). More measurements are

needed to confirm this discrepancy.

2.8 Chaparral

Chaparral vegetation is a type of shrubland that is primar-

ily found in the southwestern US and in the northern por-

tion of Baja California (Mexico), but similar plant communi-

ties are found in other Mediterranean climate regions around

the world like Europe, Australia and South Africa. Typically,

the Mediterranean climate is characterized by a moderate

winter and dry summer, which makes the chaparral biome

most vulnerable to fires in summer and fall (Jin et al., 2014).

In California, the combination of human ignition, the large

wildland–urban interface, and extreme fire weather charac-

terized by high temperatures, low humidities, and high off-

shore Santa Ana winds (Moritz et al., 2010) may lead to large

and costly wildfires (Keeley et al., 2009).

We found two studies covering five different measurement

locations in the southwestern US (Table 1, Fig. 1h). Since
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Cofer III et al. (1988) only provided an FC for chaparral

burning, we used a CC of 76 % (average CC from the studies

of Hardy et al. (1996) and Yokelson et al., 2013) to derive

an FL estimate for the Cofer et al. (1988) study. We then

used the FL values of all three studies to estimate the biome-

averaged FL of 40± 23 t ha−1. The CC equaled 76 %, yield-

ing an average FC of 27± 19 t ha−1.

2.9 Tropical peat

Tropical peatland has only recently been recognized as an

important source of biomass burning emissions. Roughly

60 % of the worldwide tropical peatland is located in South-

east Asia, and more specifically in Indonesia (Rieley et al.,

1996; Page et al., 2007). Peat depth is an indicator for the to-

tal biomass stored in peatland, but only the peat layer above

the water table can burn. Drainage and droughts lower the

water table, adding to the total FL. On top of that, living

biomass and dead above ground organic matter also con-

tribute to the FLs in these peatlands. The bulk density and

carbon content of peat are of importance to determine the

amount of carbon stored. The average density is around

0.1 g cm−3 and the carbon content ranges between 54–60 %

(Page et al., 2002; Riely et al., 2008; Ballhorn et al., 2009;

Stockwell et al., 2014). The depth of burning is the key fac-

tor that determines the total FC, but information about it is

scarce. Results from several field measurements indicate a

link between this burning depth and the depth of drainage

(Ballhorn et al., 2009). Commercial logging in drained peat

swamps has increased their susceptibility to fire, especially

during droughts (such as during an ENSO event).

In total four studies provided data on tropical peatland

measurements in Indonesia (Table 1i). In general, post-fire

observations of the average burn depth were combined with

pre-fire conditions reconstructed from adjacent unburned

patches to determine the FC.

Tropical peatland (including peat soils and overstory)

had the highest FC of all biomes, with an average of

314± 196 t ha−1. Only two studies provided data on FL and

CC, and since the study of Saharjo and Nurhayati (2006)

focused on litter and branches only, a CC of 27 % (Usup

et al., 2004) was found to be representative for the tropical

peat biome. Taking a CC of 27 %, the biome-averaged FL

equaled 1056± 876 t ha−1, thereby having the highest FL of

all biomes. However, due to limited information on CC mea-

sured in the field there is no clear definition of the average

FL for tropical peat. Note that the measurements taken by

Ballhorn et al. (2009) were using Laser Imaging, Detection

And Ranging (LIDAR) aerial remote sensing, and the study

of Page et al. (2002) relied on field measurements combined

with information obtained from Landsat Thematic Mapper

(TM) images.

2.10 Boreal peat

The northern peatlands are a result of the slow decomposi-

tion of organic material over thousands of years. Tradition-

ally, northern peatlands have been considered a slow, con-

tinuous carbon sink. However, the vulnerability of this re-

gion to global warming and the resulting increase in wildland

fires have challenged this idea (Zoltai et al., 1998; Harden et

al., 2000; Turetsky, 2002). There are still large uncertainties

associated with the FL and CC of peat fires. The depth of

fires is not well documented, leading to large uncertainties

in the total FC estimates. In some cases, water table depth

may serve as a proxy for determining the depth of burning.

However, the susceptibility of peatlands to fire under differ-

ent moisture conditions is also poorly documented at best.

This makes modeling peat fires very difficult and stresses the

importance of more field measurements.

Two measurements were taken between 1999 and 2001 in

boreal Canada (Table 1j). On each burn site, multiple plots

were established and information on the peat density (which

is assumed to increase nonlinearly with depth) was used in

combination with the burn depth to determine the FC. No

data on FL and CC were provided, but the average FC of

the two studies is 43 [42–43] t ha−1. A standard deviation

of 25 t ha−1 (Turetsky and Wieder, 2001) can be used as the

average uncertainty for the boreal peat biome. Turetsky and

Wieder (2001) showed that FC of permafrost bogs (58 [43–

72] t ha−1) is more than twice as high as that of continental

bogs (27 [11–42] t ha−1). A similar difference was found for

hummocks and hollows, which are raised peat bogs and lows,

respectively: FC for hummocks was 29± 2.0 t ha−1, while

fires in hollows consumed on average 56± 6.0 t ha−1 (Ben-

scoter and Wieder, 2003).

2.11 Tundra

The Arctic tundra stores large amounts of carbon in its or-

ganic soil layers that insulate and maintain permafrost soils,

although these soil layers are shallower than those found in

peatlands and boreal forests. While the region is treeless,

some vegetation types include a substantial shrub compo-

nent where additional carbon is available for burning. On

Alaska’s North Slope approximately 10 % of the land cover

is shrub dominated (> 50 % shrub cover), while the remain-

der is dominated by herbaceous vegetation types (Raynolds

et al., 2006). Fire regime in the Arctic is largely unknown,

but historically fire is generally absent in the tundra biome

compared to other biomes. However, the evidence of increas-

ing fire frequency and larger extent of the fires in the arctic

(Hu et al., 2010) may represent a positive feedback effect of

global warming, so in the future more fires may occur in this

biome (Higuera et al., 2011). There are still large unknowns

of the impacts that fires have on the carbon stocks of the tun-

dra ecosystems. Even the topsoil layers in the tundra store

large pools of carbon in organic-rich material. This removal
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of the topsoil may also expose the permafrost layers to heat-

ing by the warm summer temperatures, thawing the ground

and destabilizing the tundra carbon balance.

The only measurements found in the literature of FC in

the tundra biome are from the Anaktuvuk River fire in 2007

(Mack et al., 2011). The measurements were taken on twenty

sites in the burned area and the pre-fire peat layer depth was

reconstructed to determine the pre-fire FL. The FL was on

average 165± 15 t ha−1, and averaged CC and total FC was

respectively 24± 5.0 % and 40± 9.0 t ha−1 (Table 1k). These

measurements represent a thorough effort to document FC,

but still represent just one fire that is considered to be a

fairly high severity event (Jones et al., 2009). Other measure-

ments of surface FC at fires in the Noatak region of Alaska

and a recent burn on the Alaskan North Slope showed min-

imal organic surface material loss (N. French, unpublished

data). These fires may represent more typical fire events with

more moderate consumption than was found in the Anak-

tuvuk River fire. There is no doubt that the lack of suffi-

cient field measurements in the tundra biome means a rea-

sonable estimate of FC in tundra fires is not fully known.

While the Anaktuvuk River fire measurements are of value,

there should be caution in using these data to generalize since

the event represents a more severe event than many fires in

the region. They may, however, be indicative of how future

fires in the region may impact carbon losses as the region

experiences increased fire frequency and severity.

3 Discussion

3.1 Spatial representativeness of fuel consumption

measured in the field

Due to the spatial heterogeneity in fuels and the limited num-

ber of measurements, one important question to ask is how

representative the biome-averaged values presented in this

review are. Field measurements of FC were spatially well

represented in the major biomass-burning regions, like the

Brazilian Amazon, boreal North America and the savanna

areas in southern Africa. However, several other regions

that are important from a fire emissions perspective were

lacking any measurements, and these include central Africa

(e.g., Congo and Angola, but also regions further north such

as Chad and southern Sudan), Southeast Asia and eastern

Siberia (Fig. 1). Due to these spatial gaps, it remains uncer-

tain whether measurements of FL, CC, and FC as presented

in this study are representative for the whole biome. As men-

tioned for the “Tundra”, where fire may become increasingly

important as the region warms, the one set of field samples

included in this review may not be representative of past and

future fire.

Within biomes differences were found to be large for cer-

tain regions, as shown in Figs. 2–5. For example, we found

substantial differences in FL and FC for boreal areas, with

Russian sites having lower values compared to the ones in

North America (Fig. 5). This difference might be due to dif-

ferent burning conditions in both regions, with a larger con-

tribution of surface fuels and less high-intensity crown fires

occurring in boreal Russia (Wooster et al., 2004). Although

available literature data showed that FC for crown fuels was

indeed higher than for surface fuels, more data for especially

boreal Russia is needed to confirm this line of thought. More-

over, Boby et al. (2010) and Turetsky et al. (2011) showed

that the timing of FC measurements (early dry seasons ver-

sus late dry season) contribute to different boreal FC values

as well. In general, both FC and CC may increase over the

course of the dry season as large diameter fuels dry out. This

was also suggested by Akagi et al. (2011) for the savanna

biome, and is consistent with the seasonal decrease in MCE

as proposed by Eck et al. (2013).

Regional differences were also found for the tropical for-

est biome, where almost all measurements were conducted

in the Brazilian Amazon, with a few exceptions for Mex-

ico and Indonesia. Southeast Asia (Myanmar, Vietnam, Laos,

and Cambodia) was lacking any FC measurements described

in the peer-reviewed literature, but this region is important

from a fire emissions perspective. Tropical forests in Mex-

ico had a higher CC than forests in the Amazon and Indone-

sia (Fig. 3), and had a higher FC as well. Different forest

types can likely explain this difference; in Fig. 3 substantial

differences are shown for FL, CC, and FC in primary tropi-

cal evergreen forest, secondary tropical evergreen forest, and

tropical dry forest. Obviously, the number of measurements

conducted in a specific forest type will impact the biome-

averaged value found for a certain region. Clearly, the defi-

nition of a certain biome is not always straightforward, and

uncertainty regarding regional discrepancies within the dif-

ferent biomes should be taken into account when averaged

values are interpreted and used by the modeling communi-

ties.

Coming back to the question posed in the beginning of

this section, we think care should be taken with using biome-

averaged values. They provide a guideline, but the path for-

ward is to continue developing models or remote sensing op-

tions that aim to account for variability within biomes, and

to use the database accompanying this paper to constrain

these models, rather than simply to use biome-averaged val-

ues (further discussed in Sect. 3.2). Use of FC for specific

vegetation types within broader biomes (like the different

crop types as presented in Fig. 6) or fuel categories offers an

interesting alternative and is further discussed in Sect. 3.4.

3.2 Field measurement averages and comparison with

GFED3

Although the definition of a certain biome is not al-

ways straightforward, the biome-averaged values that we

presented in this paper are still valuable for highlight-

ing differences in fire characteristics between regions with
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specific vegetation and climate characteristics. We compared

our work with estimates from the Global Fire Emissions

Database version 3 (GFED3) and several FRE derived stud-

ies (Sect. 3.3). GFED3 fire emissions estimates (monthly

0.5◦× 0.5◦ fields) are based on estimates of burned area

(Giglio et al., 2010) and the satellite-driven Carnegie–Ames–

Stanford Approach (CASA) biogeochemical model (van der

Werf et al., 2010). To calculate FC we divided the GFED3

total biome-specific emissions estimates (g dry matter) in

every modeling grid cell by the total burned area observed

for every grid cell. Since one grid cell may consist of mul-

tiple biomes we followed the GFED3 fractionation of emis-

sions estimates, which represents the contribution of a cer-

tain biome to total emissions within one grid cell. Biome-

specific information on the area burned within one grid cell

was not available, and therefore we assumed that burned area

followed the same fractionation as the GFED3 emissions es-

timates. This assumption may overestimate or underestimate

biome-averaged GFED3 FC values: for example, in a defor-

estation grid cell that consists of savannas and tropical ev-

ergreen forests, the contribution of savanna fire emissions to

total emissions can be small, even when the contribution of

savanna burned area to total burned area observed in a grid

cell is actually quite large. In this specific case – when as-

suming that burned area followed the same fractionation as

the emissions – the estimated FC of savannas would be over-

estimated.

In Table 3 an overview is given for biome-specific FL, CC,

and FC that we estimated from data found in the literature.

In the fifth column FC per unit burned area of GFED3 is

shown for the collocated grid cells, i.e., grid cells in which

measurements were taken, and the sixth column presents the

difference between GFED3 FC and the field measurements.

In general, substantial differences were found between co-

located GFED3 FC and the field measurements. Although

the average FC agreed reasonably well (< 40 %) for crop

residue, tropical peat and the boreal peat biome, much larger

discrepancies (> 59 %) were found for the other biomes.

Many field measurements for these biomes had a standard

deviation that was close to the measurement average, indi-

cating that the uncertainty is substantial.

Within the savanna biome GFED3 overestimated the FC

by 72 % compared to the measurements, and this over-

estimation was even higher for grassland regions (78 %).

A possible cause of these discrepancies is that field cam-

paigns tend to focus on frequently burning areas, so fu-

els do not have the time to build up and increase their FL

(van der Werf et al., 2010). Because of the relatively coarse

0.5◦ resolution of GFED3, the fire frequency in GFED is the

average of more and less frequently burning patches and thus

potentially longer than in field sampling sites. On the other

hand, only a very small portion of the land’s surface burns an-

nually (van der Werf et al., 2013). Improved resolution for the

models may help to alleviate this problem and bring model

values closer to the field measurements, although it is very

unlikely that this is the only reason for the noted discrepancy.

For tropical forests, an important biome due to large-scale

deforestation emissions, substantial differences were found

as well: GFED3 overestimated FC by 71 % compared to the

field measurement average for collocated grid cells. This dis-

crepancy may be partly explained by the fact that repeated

fires in the tropical forest domain (when forest slash that did

not burn in a first fire is subject to additional fires during the

same dry season) are not always included in the field mea-

surements. Within GFED3, on the other hand, these repeated

fires were modeled by the number of active fires observed in

the same grid cell (fire persistence), which yields information

on the fuel load and type of burning (Morton et al., 2008; van

der Werf et al., 2010). Regional differences within the biome,

as discussed in Sect. 3.1, will also contribute to the differ-

ences found: in our case, the field measurement average was

biased towards evergreen tropical forest fires, but when the

emphasis is put on fires in secondary or tropical dry forests

this average value could change significantly (Fig. 3). It is

likely that grid cell heterogeneity in tropical deforestation

regions explains the large discrepancy found for the pasture

biome, where GFED3 FC overestimated the field measure-

ments by almost 500 %. For these specific pasture grid cells,

GFED3 may have been biased towards tropical evergreen de-

forestation fires, thereby increasing the average FC.

In the temperate forest biome FC was underestimated in

GFED3 by 74 % compared to the field measurement aver-

age for collocated grid cells. In our averaged field measure-

ment estimate we included all measurements presented in

Table 1c. As noticed in Sect. 2.3, it is likely though that

studies that provided a total FC (i.e., the FC of ground, sur-

face and/or crown fuels) are more representative of wildfires.

Prescribed burns, on the other hand, tend to burn less fuel

and therefore the studies that only include ground or sur-

face fuels were probably more representative for this fire

type. When focusing on studies that provide information on

one specific fuel class only, the field average for the tem-

perate forest would be significantly lower (13± 12 t ha−1)

as well as the discrepancy with GFED3 (+14 %). This FC

value of 13 t ha−1 may be more realistic for prescribed fires,

which contribute to roughly 50 % of all temperate forest fire

emissions in the contiguous United States (CONUS). Still, it

remains very uncertain how well FC measured for specific

fuel classes is representative for prescribed fires and wild-

fires. This issue also counts for boreal forests, where GFED3

overestimated the field measurements by almost 80 %. When

only including studies that provided a total FC (i.e., the FC of

ground, surface and/or crown fuels), the field average for the

boreal forest would increase from 35± 24 to 39± 19 t ha−1

and the discrepancy with GFED3 would decrease (from +79

to +60 %). This value of 39± 19 t ha−1 may be more rep-

resentative of boreal wildfires. Note that for temperate and

boreal forest measurements sometimes the more restrictive

definition of FL (as presented in Sect. 1) was used, and this
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Table 3. Biome-averaged values for fuel load (FL), combustion completeness (CC), and fuel consumption (FC) field measurements. Col-

umn 5 shows the FC per unit burned area as used in GFED3 (FCGFED3) and in column 6 the difference (%) in FCGFED3 compared to the

average FC of field measurements is given. Standard deviation (SD) is shown in parentheses.

Biome FL CC FC FCGFED3 Difference

(t ha−1) (%) (t ha−1)a (t ha−1)b (%)c

Savanna 7.6 (6.5) 71 (26) 4.6 (2.2) 7.9 +72

Grassland savanna 5.3 (2.0) 81 (16) 4.3 (2.2) 7.7 +78

Wooded savanna 11 (9.1) 58 (32) 5.1 (2.2) 8.1 +59

Tropical forest 285 (137) 49 (22) 126 (77) 215 +71

Temperate forest 115 (144) 61 (18) 58 (72) 15 −74

Boreal forest 69 (61) 51 (17) 35 (24) 62 +79

Pasture 74 (34) 47 (27) 28 (9.3) 168 +491

Shifting cultivation 44 (–) 47 (–) 23 (–) 6.5 −72

Crop residue 8.3 (9.9)d 75 (21) 6.5 (9.0) 5.6 −13

Chaparral 35 (23)e 76 (6.2) 27 (19) 3.5 −87

Tropical peatland 1056 (876)f 27 (–) 314 (196) 228 −27

Boreal peatland – – 42 (–) 25 −40

Tundrag 165 (15) 24 (5.0) 40 (–) – –

a For biomes where only one or two measurements are available, no uncertainty estimate is given.
b FC per unit area burned according to GFED3, averaged over 1997–2009. The number represents the FC rate for

the collocated grid cells, i.e., grid cells in which field measurements were taken. Note that for this calculation the

assumption was made that GFED burned area is equally divided over different fire types in one grid cell, which

may influence average FCGFED3 values.
c FCGFED3 compared to the average FC of field measurements for collocated grid cells. Positive numbers indicate

that FCGFED3 is higher than the average FC of field measurements.
d We assumed an average CC of 88 % as reported in McCarty et al. (2011) to estimate FL for the study of

Lara et al. (2005).
e We assumed a CC of 76 % (average CC for the studies of Hardy et al., 1996 and Yokelson et al., 2013) to

estimate FL for the study of Cofer III et al. (1988).
f We assumed an average CC of 27.2 %, as reported in Usup et al. (2004), to estimate FL for the studies of

Page et al. (2002) and Ballhorn et al. (2009).
g For the measurement location in the tundra biome no area burned was detected by GFED, and therefore no

comparison with GFED3 estimates was made.

can have an impact on FC values as well; if one applies a CC

calculated with respect to a restrictive pre-fire FL to the total

biomass available, the overall FC that was estimated can be

too high.

For most biomes, a few field measurements had an FC that

was 1 order of magnitude larger than the other values listed

in Table 1, which explains the discrepancy between the me-

dian and average FC values that was sometimes found (e.g.,

the “Australia and Tasmania” region in Fig. 4). By neglect-

ing these “outliers” the biome-averaged values may change

significantly, but this could lead to erroneously low or high

estimates as well. In general, FC shows large variability be-

tween biomes, within biomes, and even within a specific fuel

type. FC is often hard to measure, and since only a few

measurements are available for some biomes, care should

be taken when using the biome-averaged values presented

in this paper.

3.3 Field measurement averages and comparison with

FRE derived FC estimates

Besides a comparison with GFED3 data, we performed a

comparison of field measurement averages with fire radia-

tive energy (FRE, time-integrated FRP) derived estimates

as well. The basis of the FRE approach for estimating FC

is that the heat content of vegetation is more or less con-

stant, and that the FRE released and observed through a sen-

sor can be converted to FC by the use of a constant factor,

which was found to be 0.368± 0.015 kg MJ−1 across of a

range of fuels burned under laboratory conditions (Wooster

et al., 2005). More recent field experiments, however, indi-

cated that the conversion factor might be slightly lower for

grasslands in North America (Kumar et al., 2011; Schroeder

et al., 2014). Smith et al. (2013) investigated the relation-

ship between FC and FRE for pine needles with different fuel

moisture contents, and found that FRE released per kilogram

biomass consumed decreased with fuel moisture content due

to the energy required to evaporate and desorb the water con-

tained in the fuel. Thus, corrections for FRE based FC as-

sessments may be needed for fuels that burn at higher fuel

moisture contents. Differences in heat content of fuel may

introduce additional variation: for example, a clear relation-

ship between FRE and FC has not yet been demonstrated

for fires that burn mostly in the smoldering stage, like or-

ganic soils in boreal forests or large woody debris and trunks

in tropical deforestation regions. Another potential source of

uncertainty in the relation between satellite-derived FRE and
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FC is the correction for atmospheric disturbances, which may

significantly alter FRP retrievals and hence estimates of FC

(Schroeder et al., 2014). Note that, currently, atmospheric

correction is not performed for the standard fire products de-

rived from MODIS. Moreover, Schroeder et al. (2014) also

indicate that cloud masking in the MODIS FRP product may

lead to FRP underestimates as hotspots under thick smoke

may erroneously be masked out.

Despite all these uncertainties this approach is promising

and there are a number of studies that relate FRE to FC

on regional (Roberts et al., 2011; Freeborn et al., 2011) to

global scales (Vermote et al., 2009; Ellicott et al., 2009), and

Kaiser et al. (2012) used FRE to represent biomass burn-

ing in an operational chemical weather forecast framework.

However, since such estimates can be derived independently

of burned area, only a limited number of studies allow a

straightforward comparison to the FC values given in mass

units per area burned from the field experiments used in this

study.

A common finding of FRE-based estimates is that FC is

generally lower than GFED estimates, as shown by Roberts

et al. (2011) who estimated FC for Africa through an inte-

gration of MODIS burned area and Meteosat Spinning En-

hanced Visible and Infrared Imager (SEVIRI) derived FRP

and found values that were about 35 % lower than GFED.

For the savanna biome a median FC of ∼ 4 t ha−1 was found

for grassland and shrubland. This corresponds relatively well

to the mean of 4.3± 2.2 and 5.1± 2.2 t ha−1 found in the

grassland savanna and wooded savanna field studies we com-

piled, respectively. Boschetti and Roy (2009) explored tem-

poral integration and spatial extrapolation strategies for fus-

ing MODIS FRP and MODIS burned area data over a single

large fire in a grassland dominated area with sparse euca-

lypt trees in northern Australia. They estimated an FC range

of 3.97–4.13 t ha−1, which is well within the range found in

the Australian FC studies summarized in Table 1. Kumar et

al. (2011) exploited properties of the power law distribution

to estimate FC from FRP for an Australian savanna and a

study area in the Brazilian Amazon. While their FC estimate

of 4.6 t ha−1 of the Australian site is similar to the tempo-

ral integration results of Boschetti and Roy (2009), the esti-

mate for the Brazilian site is above 250 t ha−1 and thus sub-

stantially higher than the biome-averaged value for Brazilian

tropical forest (117± 56 t ha−1).

In general, realistic values are often obtained for well-

observed fires, but unrealistically low or high values can of-

ten occur especially for smaller fires due to the sparseness

of FRP observations and inaccuracies in the temporal inter-

polation and the burned area estimates. While FRE seems to

provide realistic estimates under a range of conditions, issues

of undersampling of FRE and – maybe less importantly – the

conversion of FRE to FC still remain to be addressed more

completely in order to derive spatially explicit FC estimates

using the FRP approach.

3.4 Fuel consumption for different fuel categories

As discussed in Sect. 3.1, the interpretation of average FC

values for each biome should be done carefully. As an al-

ternative to biome-averaged values, we also provided FC for

specific fuel categories, which may be more useful for cer-

tain research areas or modeling communities. In Table 2 fuel

category information was presented for the savanna, tropical

forest, temperate forest and boreal forest biomes. We focused

on the main fuel categories found in the literature, and clas-

sified these according to the US classification system. Most

of these fuel categories were similarly defined in different

studies and biomes; the woody debris classes for example

were systematically based on their time lag. However, for

measurements conducted in boreal forests the definition of

woody fuel classes was less consistent, mainly due to dif-

ferences between Canadian and American sampling method-

ologies (Keane, 2012). The difference between surface and

ground fuels can therefore be especially vague: e.g., litter is

classified as surface fuel according to the US fire manage-

ment standards, while many Canadian studies define litter

and organic soils as the forest floor and thus as the ground

fuel class. Obviously, this can cause problems when com-

paring studies, and therefore we recommend a more uniform

measurement protocol for this fuel type and biome.

Certain fuel type averages presented in this paper were

based on a minimum of three different studies. For these fuel

categories specifically, more field measurements are needed

to decrease the uncertainty and better understand the vari-

ations found, especially within the boreal and tropical forest

biomes. Measurements in the boreal and tropical peat biomes

deserve specific attention in future measurement campaigns:

although peat fires have been studied in several field cam-

paigns, they still remain one of the least understood fire types

due to poor knowledge of the depth of the burning and the

complex mix of trace gases emitted in these fires as a con-

sequence of the below-ground combustion that is less effi-

cient than during surface or crown fires. Additional studies

are needed in order to capture fully the variability and pro-

cesses occurring in these biomes, especially considering their

large FL and FC. Another biome that deserves more attention

in future studies is crop residue, since our understanding of

FC variability for different crop types is still poor.

4 Summary

This study aimed to compile peer-reviewed literature on mea-

sured fuel consumption in landscape fires. The field measure-

ments were partitioned into 11 different biomes, and for each

biome we have reported biome averages and other statistics.

For some biomes, we provided information on different fuel

categories as well. The number of study sites varied from

1 for the tundra biome to 39 different measurement sites in

the boreal forest biome. In total, we compiled 124 unique
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measurement locations. The biome-averages and fuel-type-

specific data of fuel load and fuel consumption can be used to

constrain models, or can be used as an input parameter in cal-

culating emissions. Care should be taken though with using

biome-averaged values because it is unclear whether these

are representative and because there is substantial variability

within biomes, as indicated by the large standard deviations

found.

Modeled values from GFED3 corresponded reasonably

well to the co-located measured values for all biomes except

for the savanna and tropical forest, where GFED-derived val-

ues were over a factor 2 too high. In tropical forests, part

of this discrepancy can be explained because field measure-

ments only take one fire into account, while GFED also ac-

counts for consecutive fires that boost fuel consumption.

Although the overall spatial representativeness of the

fuel consumption field measurements was reasonable for

most fire-prone regions, several important regions from a

fire emissions perspective – including Southeast Asia, east-

ern Siberia, and central Africa – were severely under-

represented. When new information on fuel consumption be-

comes available, the field measurement database will be up-

dated. The most up-to-date version can be retrieved from

http://www.falw.vu/~gwerf/FC. As a next step, we aim to im-

prove our understanding of the drivers of regional and tem-

poral variability within biomes, as well as for different fuel

categories.
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