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Abstract

Dependence measures and tests for independence have recently attracted a lot of attention, because they are the
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packages/knnIndep). In this paper we have benchmarked Pearson’s correlation, Hoeffding’s D, dcor, Kraskov’s estimator for
mutual information, maximal information criterion and our two tests. We conclude that no particular method is generally
superior to all other methods. However, dcor and Hoeffding’s D are the most powerful tests for many different types of
dependence.
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Introduction

Dependence measures and tests for independence have recently

attracted a lot of attention, because they are the cornerstone of

algorithms for network inference in probabilistic graphical models.

Pearson’s product moment correlation coefficient is still by far the

most widely used statistic in areas such as economy, biology and

the social sciences. Yet Pearson’s correlation is largely constrained

to detecting linear relationships. Spearman [1] and Kendall [2]

extended Pearson’s work to monotonic dependencies. In 1948,

Hoeffding [3] proposed a non parametric test for independence

that is suited for many different functional relationships. Székely

et al. [4] introduced the distance correlation (dcor) as a

generalization of Pearson’s correlation.

Other approaches build on mutual information (MI). MI

characterizes independence in the sense that the MI of a joint

distribution of two variables is zero if and only if these variables are

independent. However, MI is difficult to estimate from finite

samples. Kraskov et al. [5] proposed an accurate MI estimator

derived from nearest neighbor distances. Reshef et al. [6]

presented the maximal information coefficient (MIC), a measure

of dependence for two-variable relationships which was heavily

advertised [7] but lacks any statistical motivation.

dcor and Kraskov’s estimator use the pair-wise distances of the

points in a sample as a sufficient statistic. In this work we provide

an exact formula for the ith nearest neighbor distance distribution

of rank-transformed data (i~1,2,:::). Based on that, we propose

two novel tests for independence. An implementation of these

tests, together with a general benchmark framework for indepen-

dence testing, are freely available as a CRAN software package

(http://cran.r-project.org/web/packages/knnIndep). In this pa-

per we have benchmarked Pearson’s correlation, Hoeffding’s D,

dcor, Kraskov’s estimator for MI, MIC and our two tests. We

conclude that no particular method is generally superior to all

other methods. However, dcor and Hoeffding’s D are the most

powerful tests for many different types of dependence. Circular

dependencies are best recognized by our tests. This type of

dependence is fairly common, e.g., if two dependent periodic

processes are monitored. An example from biology is the

expression of a transcription factor and one of its target genes

during the cell cycle [8].

Exact distribution of the th nearest neighbour
distances

Consider a set of N§4 points that are distributed ‘randomly’ on

a surface. In what follows, we derive the distribution (conditional

distribution) of the (iz1)th nearest neighbor of a point (given the

distance to its previous neighbors). We assume the points drawn

from the following model: Let X~(xj)j~1,:::,N and Y~(yj)j~1,:::,N

be permutations of the numbers 0,:::,N{1 that are drawn

uniformly from the set of all permutations of f0,:::,N{1g. The
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points zj~(xj ,yj), j~1,:::,N, lie on a torus of size N which is

endowed with the maximum distance as a metric. I.e., the distance

between two points is given by

dist(z1,z2)~ max ( min (jx1{x2j,N{jx1{x2j),

min (jy1{y2j,N{jy1{y2j))

Fix a reference point z1. Let di, i~1,:::,N{1 denote the

distance of the i-th nearest neighbor of z1 to z1 and Di the random

variable associated with it. Since this distance measure is

translation invariant, let without loss z1~(x1,y1)~(0,0). Impor-

tantly, all points zj have pairwise different xj and yj . A point at

distance d~dist(z,(0,0)) to the origin must have at least one of its

coordinates equal to d or N{d . This implies that there are at

most 4 points exactly at distance d to the origin. Our target is the

calculation of the joint probability of observing the whole sequence

of nearest neighbor distances P(D0, D1, . . . , DN{1), of the

conditional probability P(Diz1D Di, . . . , D0) and the marginal

P(Di). The main work will be the calculation of the probability

P(Diz1§c, Di~a, . . . , Di{kz1~a, Di{kva) for given values

k, a and c. Once this is done, P(D0, D1, . . . , DN{1), P(Di) and

P(Diz1D Di, . . . , D0) can be derived by elementary calculations

(section S1 in Methods S1).

First we determine P(Diz1§c, Diƒa) by counting the number

of admissible point configurations and dividing through (N{1)!,
the number of all possible point configurations with z1~(0,0)
fixed. When counting configurations, we repeatedly exploit the

fact that each horizontal and each vertical grid line contains

exactly one point from the sample. In case of cwa, we split the

torus into 3 regions (Figure 1). Region I is a square of side length

2az1. It contains z1 and i additional points at arbitrary positions.

The number of possibilities to draw an i-tuple from 2a positions

(recall that one position is already taken by z1) without

replacement is (2a)!
(2a{i)!. Thus, there are (2a)!

(2a{i)!

� �2

i-tuples describing

an admissible configuration in region I. However, each configu-

ration is counted i! times, since the order of the points does not

matter. Hence, the number of unique configurations in region I

equals 1
i!

(2a)!
(2a{i)!

� �2

~
2a

i

� �2

i!. For the second region we have

N{2cz1 possible y-coordinates and 2c{1{(iz1)~2c{i{2
columns to be filled with sample points (note that the columns {c

and c belong to region III and that iz1 columns are already taken

by points in region I). This yields (N{2cz1)!
(N{4c{iz3)! unique configura-

tions for region II. There are N{2cz1 points remaining which

can be placed freely in the remaining N{2c columns/rows,

yielding (N{2cz1)! possibilities. Together we obtain:

P(Diz1§c, Diƒa)~

1

(N{1)!
:

2a

i

 !2

i!|fflfflfflfflfflffl{zfflfflfflfflfflffl}
region I

: (N{2cz1)!

(N{4cziz3)!|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
region II

:

(N{2cz1)!|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
region III

N§4

ð1Þ

In the case of c~a there is one more complication, because we

have a region R of points exactly at distance c, containing at least

the i-th and (iz1)-th neighbor of z1, where the region I overlaps

with regions IIa and IIb (Figure 1). Let r[f2,3,4g be the number

of points in region R and i0 the number of points strictly inside the

square of distance c. We derive a general formula for all admissible

configurations in the case of c~a, P(Di0zrz1wc, Di0zr~

� � �~Di0z1~c, Di0
vc). Denote by k(r,i0,c) the number of

admissible point configurations in region R (see section S2 in

Methods S1 for a derivation of k(r,i0,c)). Table 1 lists all possible

admissible combinations of points in region R. Counting the

admissible configurations strictly inside regions I, IIa, IIb and III is

similar to the above cases (Equation 1). This leads to the following

general formula for all admissible configurations:

P(Di0zrz1wc, Di0zr~ � � �~Di0z1~c, Di0
vc)~

2c{2

i0

� �2

i0!|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
region I

: k(r,i0,c)|fflfflfflffl{zfflfflfflffl}
region R

: (N{2c{1)!

(N{4czi0zr{1)!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
region IIazIIb

2
6664

3
7775

2

: (Nzi0zr{4c{1)!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
region III

ð2Þ

The sum over all possible tuple (r,i0) in Table 1 gives the

probability P(diz1~c, di~c) in the general case:

P(R)~

0P
(r,i0)

1
(N{1)! P(Di0zrz1wc, Di0zr~ � � �~Di0z1~c, Di0

vc)

if i0wN{r

else

( ð3Þ

The above calculations only hold if region R is a genuine

square, for large values of c R degenerates to a pair of lines (one

horizontal and one vertical line). These cases are covered in the

extended formula

P(Diz1~c, Di~c)~

i~1
c~1: P d3§2, d2ƒ1ð Þ

cw1: P Rð Þ, Equation 3ð Þ

(

1vivN{2
1vcƒtN

2
s: P(R), Equation(3)

else : 0

(

i~N{2
c~ N

2
, N even :

N{2

i{1

 !2

(i{1)!

else : P(R), Equation(3)

8>><
>>:

i~N{1
c~tN

2
s: 1

else: 0
:

(
ð4Þ

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

Analogously we can count the number of possible configurations

where Diz1wc, some k points Di, . . . , Di{kz1~a and all other

points Di{kva and deduce the following probability:

Tests for Independence Based on th Nearest Neighbours Distribution
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P(Diz1§c, Di~a, . . . , Di{kz1~a, Di{kva)

~ 1
(N{1)!

2a{2

i{k

� �2

(i{k)!|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
region I

: k(k,i{k,a)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
region R

: (N{2cz1)!

(N{4cziz3)!|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
region II

: (N{2cz1)!|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
region III

ð5Þ

Since the above formulas involve tedious calculations, we

validated the formulas for N~7 and N~8 by counting the

occurrence of each possible configuration among all N! configu-

rations. Additionally, we checked the validity of our formula for

larger N (N~20) by taking 106 random configurations and

comparing the empirical frequency h(di) with P(di) (section S3 in

Methods S1).

Figure 2 shows the distribution of P(diz1Ddi) and P(di). The

conditional distribution is shown for i~50. The marginal

distribution is highly peaked with a low variance that decreases

with increasing i (and reaches 0 for i~N).

The formulas have been implemented in the statistical language

R [9] with emphasis on a numerically stable implementation as we

deal with small numbers. The implementation is vectorized for

speed. Still there is a computational penalty through the many

factorials and logarithms that have to be calculated. For a sample

of size 320, calculating all P(diz1Ddi) takes 4.1 seconds on a single

workstation (single thread, Intel Core i5-2500 CPU @ 3.30GHz).

Runtime for larger samples is shown in Figure S1 in File S1 and

Figure 1. Diagrams explaining Equations 1 and 2 for N~7, a~1 and c~2 (panel A) and a~c~2 (panel B) with the reference point z1

at coordinates (0,0). A: We define 3 regions I, II and III (black, red and blue points respectively). Region I has the least number of constraints and the

number of admissible configurations is the number of possibilities to draw i points from 2a positions without replacement nor ordering:
2a

i

� �2

i!.

The number of admissible configurations for region II is given by the number of rows nr~N{2cz1 available and the number of columns which

remain to be filled nc~2c{i{2 according to nr !
(nr{nc)!. Region III has the remaining N{2cz1 points freely distributed, yielding (N{2cz1)!

admissible configurations. B: In the case a~c we add an additional region R of r points exactly at distance c (green points). There can be r~2, 3 or 4

such points. Region I has size (2(c{1))2 and
2c{2

i0

� �2

i0! admissible configurations with i0 the number of points strictly inside the square of

distance c. Region IIa and IIb are symmetric and handled analogous to region II in panel A with nr~N{2c{1 and nc~2c{i0{r. Region III has
(Nzi0zr{4c{1)! admissible configurations analogous to panel A.
doi:10.1371/journal.pone.0107955.g001

Table 1. Counts for points lying exactly on the border region R.

r i0 k(r,i0,c); let E~2c{2{i0 condition

1 i{1 4Ez4 if i0vN{r

2 i{1 2E(E{1)z4E2z8Ez2~6E2z6Ez2 if i0vN{r

3 i{1,i{2 4E2(E{1)z4E2~4E3 if i0vN{r

4 i{1,i{2,i{3 E2(E{1)2 if i0vN{r

For each possible number of points r~2,3,4 on the border region R and each possible number of points i0 strictly inside of region I, we give the the number of
admissible combinations of points in region R. The derivations of the number of admissible combinations is shown in the section S2 in Methods S1.
doi:10.1371/journal.pone.0107955.t001
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indicates a practical limit on the sample size of Nv3000 (which

takes up to 3 minutes) and a complexity of O(N2).

For practical reasons, we assumed that the points lie on a torus

(distances on the torus are translation-invariant and therefore our

formulas for P(diz1Ddi) and P(di) hold for all points in the sample).

This will bias results when applied to points on a plane, as points

on the border will have different nearest neighbors when projected

on the torus. The bias is less pronounced for close neighbors (i

small), thus we limit our statistics to imax~N=2. We do not expect

to lose statistical power, since the information content of P(di) for

large i approaches zero (see Figure 2).

The derivation of P(D0, D1, . . . , DN{1), P(Di) and

P(Diz1DDi, . . . , D0) is based on Equations (1–5), see section S1

in Methods S1.

Tests based on the th nearest neighbour
distribution

It has been shown that the distance of the ith nearest neighbour

of some point z can be used to estimate the local (log) density at z
[5]. Our idea is to use the full sequence of nearest neighbour

distances for assessing local density. For a sample point z, let

(D0~dz
0~0, D1~dz

1, D2~dz
2, . . . , DN{1~dz

N{1) the sequence

of neighbour distances. If z lies in a dense region, we expect this

sequence to increase slower than in a region with lower density.

Distributional tests
The sequence of nearest neighbor distances of a point z,

(D0~dz
0~0, D1~dz

1, D2~dz
2, . . . , DN{1~dz

N{1) is a 4th order

Markov chain, i.e.,

P(dz
0, dz

1, dz
2, . . . , dz

N{1)~ P
N{2

i~0
P(dz

iz1Dd
z
i , dz

i{1, dz
i{2, dz

i{3)

That way, taking z as the center point, the distances dz
iz1, given

the four previously observed distances (dz
i , dz

i{1, dz
i{2, dz

i{3), are

pairwise independent for all i. On the other hand this is not true

for the distances dz1

iz1 and dz2

iz1(not even if we condition the four

previously observed distances). This follows from the triangle

inequality in metric spaces, dist(z1,x)ƒdist(z2,x)zdist(z1,z2),
which implies that dz1

iz1ƒdz2

iz1zdist(z1,z2).

Let the random variable Ci be defined by the process of drawing

a point Z uniformly from 1,:::,N and then drawing Ci according

to the distribution P(Di DDi{1~dz
i{1, . . . , D0~dz

0). Let fi denote

the probability function of Ci, it is given by

fi(c) ~P(Ci~c)

~
XN

z~1

P(Ci~cjZ~z):P(Z~z)

~
XN

z~1

P(DijDi{1~dz
i{1, . . . , D0~dz

0):P(Z~z)

~
1

N

XN

z~1

P(DijDi{1~dz
i{1, . . . , D0~dz

0)

&
1

N

XN

z~1

P(DijDi{1~dz
i{1)

We consider the observed values dz
i , z~1,:::, N, as (not

necessarily independent) realizations of Di. Their empirical

frequency ei is

ei(c)~
1

N

XN

z~1

I ½dz
i ~c�

where I ½:� denotes the indicator function with values in f0,1g.
Pearson’s x2 test [10] can be used to test for the fit of fi to ei:

Xi~
XtN2 s
c~1

(ei(c){fi(c))2

fi(c)
*x2

wi{1

Xi is a x2-distributed test statistic with wi{1 degrees of freedom

where wi is the number distances c with fi(c) strictly positive. Our

final test statistic is:

XN{1

i

Xi*x2PN{1
i

(wi{1)

Alternatively the empirical and theoretical cumulative distribu-

tions corresponding to ei and fi can be compared by an Anderson-

Darling [11] or a Cramér-von Mises test, which proved inferior to

Pearson’s x2 test (section S4 in Methods S1).

Test for location
We have the idea to compare the distribution of the ith

neighbour distances observed in a sample with a suitable null

distribution by means of their location. The most robust measures

of location are mean or median, however in our studies of samples

taken from joint distributions with low mutual information, we

realized that many points do not show exceptional nearest

neighbour distances. The difference to a sample drawn from

independent X and Y distributions was made up by few points

that had extreme nearest neighbour distances. This lead us to use

extreme values as a test for location. The pvalue of a two-sided test

based on P(Dz
i Dd

z
i{1, . . . ) is pz

i ~2 min (uz
i , 1{uz

i ), with

uz
i ~P(Dz

i ƒdz
i Dd

z
i{1, . . . ). We summarize, for all ith neighbours,

the 2-sided pvalues by their minimum

Vi~ min (pz
i ; z~1,:::,N)

Our test statistic V is obtained by aggregating the Vi values:

V~{2
PN{1

i~1 ln Vi .

Construction of a benchmark set

Benchmarking was done on distributions (X ,Y ) given by

X*U ½0,1�, and Y*f (X )zN (0,s2). Here, U ½0,1� denotes a

uniform distribution on the interval ½0,1�, and N (0,s2) denotes a

Gaussian distribution with mean 0 and variance s2. The function

f was chosen as one of the following: linear, quadratic, cubic, sine

with period 0.5, circular, f (x)~x1=4 and a step function (see

Figure S2 in File S1). This choice was inspired by a comment by

Simon & Tibshirani (http://statweb.stanford.edu/tibs/reshef/

script.R, [12]) to the publication of the method MIC by Reshef

et al. [6]. The noise parameter s2 determines the degree of

dependence between X and Y , i.e., the mutual information

Tests for Independence Based on th Nearest Neighbours Distribution
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MI(X ,Y ; f ,s2). The latter was estimated using an approximation

qXY (X ,Y ) to the density p(X ,Y ) for which the mutual informa-

tion can easily be calculated. We make qXY a piecewise-constant

density on a sufficiently fine quadratic grid f(Ex,Ey,)Dx,y[Zg with

qXY (x,y)~p(Etx
E z0:5s,Ety

E z0:5s). In our case, E~0:01 yielded

sufficient precision. It is elementary to calculate the mutual

information of q by

MI~E2:
X
x,y[Z

qXY (Ex,Ey): log
qXY (Ex,Ey)

qX (Ex)qY (Ey)

Here, qX and qY denote the marginal densities with respect to x
and y.

To make the results comparable for different f , we fixed an MI

value M and chose s2
f ,M such that MI(X ,Y ; f ,s2

f ,M )~M. This

was done for 20 MI values, M ranging from 0.01 to 0.5. The noise

levels s2
f ,M are listed in section S5 in Methods S1. Samples from all

dependencies f with M~0:5 is shown in Figure S2 in File S1.

So far performance evaluation of measure of dependence was

only done on functional dependencies. Here we introduce

‘‘patchwork copulas’’ as a new non-functional dependence of x
and y. Fix a grid size B, say B~10. Our density q will be a piece-

wise constant function defined on a rectangular 2D grid on the

unit square (with uneven grid line spacing) such that its marginal

distributions are uniform (i.e., we will define a copula). The

parameters of our distribution are the values pij , i,j~1,:::,B, withPB
i,j~1 pij~1. Let pi�~

PB
j~1 pij and p�j~

PB
i~1 pij . Let (I ,J) be

a random variable which selects the grid rectangle (i,j) with

probability pij , i.e., P((I ,J)~(i,j))~pij , i,j~1,:::,B. Our distribu-

tion (X ,Y ) is then defined by X*
PI{1

i~1 pi�zUI , UI*U ½0,pI �,
and Y*

PJ{1
j~1 p�jzVJ , VJ*U ½0,pJ �. The density in the grid

rectangle (i,j) can be computed as qij~
pij

pi�p�j
. It is elementary to

verify that the marginals of q are uniform and that the mutual

information of (X ,Y ) is

MI(X ,Y ; (pij))~
XB

i,j~1

pij log
pij

pi�p�j

� �

To generate samples with a desired MI value, we choose

suitable values for a and b. We draw i.i.d. samples pij*Beta(a,b),

i,j~1,:::,B, and then rescale the pij by dividing them by their sum.

This process is repeated with different a, b until MI(X ,Y ; (pij)) is

close enough to the desired MI value. The resulting dependence

resembles a patchwork quilt of dense and spread out point clouds

(Figure S3 in File S1).

Typically the points are considered embedded in Euclidean

spaces [5], however the distance function can easily be adapted to

model the geometry of a torus. We benchmarked some methods

on both geometries (Euclidean plane and torus) and found that all

methods were sensitive to changes of geometry.

We made the benchmark framework publicly available under a

GPL3.0+ license. It is implemented in R [9] and contains code for

generating the dependence structures as well as plotting the results.

An example is given in section S6 in Methods S1.

Comparison of methods

We compared both our tests (based on x2 and extreme paths) to

Pearson’s product moment correlation coefficient, distance corre-

lation (dcor, [4]), Hoeffding’s D [3], Kraskov’s estimator for

mutual information [5] and MIC [6]. For each type of dependence

and each given value of MI, we generated a test set of 500 samples

each consisting of 320 points from the respective dependence type.

Test statistics were calculated for each sample. Additionally we

generated a reference set of 500 samples with x and y values

drawn independently which is used to calculate the cutoff value

corresponding to a significance level of 5%. The power of each

Figure 2. A: Conditional distribution pc~P(Diz1~diz1DDi~di) for i~2, N~21 (top) and the entropy {
PtN

2s
diz1~1 pc log pc (bottom). The probability

pc of observing large (diz1,di) is zero for distances larger than (6,6) when i~2. The lower triangle is empty because diz1§di and the entropy is
constantly decreasing for increasing values of di because the possible (diz1,di) decrease towards (6,6). B: Marginal distribution P(di) for N~21 (top)

and entropy {
PtN

2
s

di~1 P(di) log P(di) (bottom). With increasing i, the distribution becomes narrower and the entropy tends towards 0, as the number

of possible distances to the ith nearest neighbor decrease. The non-monotonic behavior of the entropy for large values of i is due to downstream
constraints imposed by the maximal distance N

2
. For testing independence, we advise using all P(Diz1DDi) until the value of i where the entropy starts

increasing again (i~9 in this example).
doi:10.1371/journal.pone.0107955.g002
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method was estimated as the fraction of samples that were called

significant according to the cutoff. Results are shown in Figure 3.

Additionally we generated receiver operating curves (ROC) for

each type of dependence and MI value (Figures S4–S9 in File S1).

The method of Hoeffding and dcor perform well throughout all

types of dependence considered except for the circular depen-

dence. Our methods have a performance that places them after

dcor and Hoeffding’s method and before MIC. In the case of the

circular dependence, our methods perform best, achieving

maximum power at mutual information of 0.03. We suspect that

is due to the fact that a circle geometrically resembles two crossing

lines when projected onto a torus (Figure S11 in File S1). To test

this hypothesis we projected all types of dependence onto the torus

and reran the whole benchmark (Figure S10 in File S1). We

observe that the cubic, sine and step functions are not detected by

any method, even at the same MI.

Figure 3. Benchmark of all methods. cor denotes Pearson’s product moment correlation coefficient, dcor distance covariance, hoeffd Hoeffding’s
D, MIC denotes MIC, novelTest.chisq is our test based on Pearson’s x2 test and novelTest.ext is our test based on extreme paths. Each plot shows the

power (on the y-axis) against the MI (x-axis). We examine 8 different types of dependence: linear, quadratic, cubic, sine with period 4p, x1=4 , circle,
step function and the dependence called "patchwork copula’’ (A–H)
doi:10.1371/journal.pone.0107955.g003

Figure 4. Performance on WHO data. novelTest.ext denotes our test based on extreme paths, dcor distance covariance and hoeffd Hoeffding’s D.
All methods were applied to all comparison between pairwise variables which had Pearson’s product moment correlation coefficient near zero to
exclude linear relationships. Only pairwise complete observations were used as most methods cannot handle missing vallues. All comparisons include
ate least 81 datapoints. In total we compare all 3 methods on 2971 variable pairs.
doi:10.1371/journal.pone.0107955.g004

Tests for Independence Based on th Nearest Neighbours Distribution

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e107955



The scaling of the plots in Figure 3 to the MI of the underlying

joint distribution, enables the direct visual comparison of different

dependence types. On the one hand this reveals that some types of

dependence seem to be more difficult to detect for all methods

(step function, sine curve and the ’’patchwork copula"). On the

other hand each method performs best on different types of

dependence.

We compared method of Hoeffding, dcor and our test based on

extreme paths on a dataset from the World Health Organization

and partner organizations. This dataset is available at http://

www.exploredata.net/ftp/WHO.csv. We ran the methods on all

pairwise comparisons that have a squared Pearson’s product

moment correlation coefficient lower than 0.001 to exclude any

linear relationships. As most method cannot handle missing values,

we further restricted the comparisons to have at least 81 pairwise

complete observations. This leads to 2971 pairwise comparison

shown in Figure 4. All test statistics are uncorrelated for the pairs

in which no linear dependency was detected leading again to the

conclusion that no method is uniformly more powerful.

Discussion

We have derived an exact formula for the distribution of the

distances of the i th nearest neighbour of a given point. This

distribution assumes rank transformed bivariate data from two

independent variables. While this result is of independent interest,

we used it to construct two non-parametric tests of independence

for bivariate data. Similar to Kraskov’s estimator, our test statistic

is purely based on nearest neighbour distances. In contrast to

Kraskov’s estimator which requires an arbitrarily fixed i, we

simultaneously take into account the whole sequence of ith nearest

neighbours (i~1,2,:::). This improves on Kraskov’s estimator, if

used as a score for independence testing. Our tests use rank

transformed data, because this is a prerequisite for applying the

exact nearest neighbour distributions derived in this paper. The

rank transformation is often used as a primary step to estimating

mutual information, therefore we consider it an uncritical step in

our procedure. Our tests perform almost as well as the best

competitors dcor and Hoeffding’s D and they perform better than

the recently proposed MIC statistic. We believe that the power of

our method could be further improved in the Euclidean plane if

our ith neighbour statistic would be adapted to account for

boundary effects in the Euclidean plane. Although our methods try

to account for the dependence of the variables Dz
i , z~1,:::,N , we

necessarily lose power because their exact dependence structure is

not known. Alternatively we propose to take all distances dz
i for a

point z and apply a sequential testing approach for calling points

that are located in dense regions. The number of these points

could serve as a test statistic. The rationale is that under the null

hypothesis of independence there should be fewer points z
considered significant in the sequential test than for dependent

samples.

Next we reviewed competing methods and presented a

benchmark framework for performance testing on different types

of dependence structures and topologies (Euclidean and toroidal).

The benchmark framework and our novel tests for independence

are publicly available as an R [9] package on CRAN (http://cran.

r-project.org/web/packages/knnIndep). By scaling each type of

dependence to a common set of mutual information values we

allow comparison between all dependence types. Remarkably,

when benchmarked on patchwork copulas, all methods fail. This is

particularly intriguing for MIC as by design it should detect the

grid structure of the data. In the case of the circular dependence,

our methods perform best, while the method of Hoeffding and

dcor perform well throughout all types of dependence considered.

This in turn shows, that all tests we investigated are biased towards

the detection of certain types of dependence structures.
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4. Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence

by correlation of distances. The Annals of Statistics 35: 2769–2794.
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