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Abstract

Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal
lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues
are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place
cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of
different spatial environments that can be represented. The codes for different environments arise from phase shifts of the
periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random
assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at
high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via
remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and
by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We
find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code.
Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not
using its full capacity to transfer space information. Both populations may encode different aspects of space.
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Introduction

The neuronal representation of space that is necessary for

navigation and orientation has been traditionally assigned to the

hippocampal place cell system [1], where cells fire only at few

distinct locations and are silent elsewhere. Since the discovery of

grid cells in the medial entorhinal cortex (MEC) [2,3], which fire

on a hexagonal spatial lattice, a second space representation is now

known and it has become unclear what the functional differences

of the two are. It is speculated that the MEC grid cells are

predominantly used in path integration, whereas the place cells

may connect position and context information [4]. From the

coding perspective it is remarkable that the hippocampal place

fields are considerably sparse, whereas the grid fields generate a

much denser code with approximately one third of all grid cells

active at any one time [3]. Since both networks are reciprocally

connected anatomically [5,6] and functionally [7,8], the two space

representations have to be synchronized. Understanding the

interplay of both codes thus leads to the more general question

of how a dense neuronal code can be efficiently transferred into a

sparse code and vice versa.

In this paper, we focus on the mapping from grid to place cells.

This extends previous coding approaches in so far as they studied

the isolated grid cell system from a mainly information theoretic

perspective [9,10]. Here, we discuss a coding theory by including

the further constraint that the grid code has to be readable by the

place code at a similar and behaviorally relevant resolution, since

we assume that space information is only relevant for the brain if it

can be read out by other neurons. Employing two population

models, for grid cells and place cells, we show that a relevant

resolution of the order of centimeters can be easily transferred

from a relatively small grid-cell to a relatively small place-cell

population. Larger numbers (particularly of place cells) can thus be

used to encode multiple environments [11] at a similar spatial

resolution. Our model also shows that may interference owing to

multiple environments reduces the sparseness of the hippocampal

code much faster than it reduces the space information of the

population patterns measured by the number of different

environments that can be encoded at a given spatial resolution.

These findings argue against a pure feed-forward model of place

field formation from grid cells, consistent with recent experimental

findings [7,12–16].

Results

Here we briefly summarize the general structure of our model,

whereas a detailed account is provided in the Materials and

Methods Section. A population of Ng grid cells is connected to Np
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place cells via a feed-forward synaptic matrix. The grid cells are

organized in four modules that differ in the spatial period (or grid

spacing) of the periodic hexagonal firing patterns [17]. The

neuronal activities of the MEC and hippocampal populations are

assumed to encode either linear tracks or square boxes both of

length 1 m (Figs. 1 and 2). Different environments are represented

by phase shifts of the grid fields that are identical for all cells in a

module [18] but random between modules [19].

The spike count of the grid cells is assumed to follow Poisson

statistics. For the place cells we first define place fields that

optimally cover the whole environment but are only used as

teacher patterns in a training step in which we construct synaptic

weights between grid cells and place cells by supervised Hebbian

learning. The teacher place fields are randomly assigned in each

environment (shuffling of place cells) resembling the global

remapping [20] of hippocampal place fields found in experiments.

For each such remapping synaptic weights are incremented

according to the Hebb rule such that all shifted grid patterns

activate the corresponding remapped place code.

Realizations of grid field spikes are projected via the learned

feed-forward connections to the place field population that

employs a soft winner-take-all mechanism (E%-MAX rule) to

emulate recurrent inhibition [21]. The activity from these

simulations determines the actual firing fields and spike statistics

of the place cells. The spatial acuity of both codes is measured by

the empirical minimum mean square decoding error of single trial

activity. The simulations are evaluated by a variety of measures

including sparseness and the similarity between the place fields

used during training and those obtained in the simulation.

The capacity of a spatial code consists of two components. First,

the spatial resolution [9], or how precisely one can infer a spatial

position. Second, how many different environments can be

represented. Since different environments are obtained by MEC

phase shifts and hippocampal remapping, all spatial information is

conveyed by the same synaptic connections. Thus the multiple

stored environments interfere at the cost of spatial resolution.

Resolution of the grid code
To assess the ground truth of our model, we first evaluate the

coding capacity of the grid cell population on a one-dimensional

linear track (Fig. 3). The spatial resolution (denoted as root-mean

square estimation error; RMSE) non-trivially depends on the

tuning width sg of the grid code and the number Ng of neurons

[9,22]. Three examples of grid codes are shown in Fig. 3A–C for

three different values of sg. Grids as usually observed in MEC are

most similar to the situation in Fig. 3B, whereas Fig. 3A and C

illustrate settings with extremely thin and broad tuning curves,

respectively. Thus, the biological value of sg is about 1, which

corresponds to a ratio between tuning width and spatial period of

about 0:3 (see Fig. S4 of [3]). However, the RMSE non-

monotonically depends on sg [22] with a minimum at rather thin

tuning curves (Fig. 3D).

The resolution (RMSE) improves with Ng such that even for

moderate cell numbers (several hundreds) it is easy to obtain

spatial resolutions in the range of 1 mm and below. From a

behavioral perspective, however, one may ask whether such a

resolution is actually psychophysically reasonable, or even useful.

We thus suggest that resolution is probably not the major objective

of the grid code and test the alternative possibility that the grid

Fig. 1. Hebbian learning of multiple linear tracks. (A) Grid cell
firing maps for 400 grid cells with width constant s~1 on a 1 meter
linear track (Sg~1:5, Sp~2:56, sp~0:05 m, Np~500). The cells are
organized in 4 modules, with a period ratio of 1.67 to achieve a spatial
period of 30 cm in the lowest module. The numbers at top right corners
indicate the maximal spike count Cg as a proxy for peak firing rate (see
Materials and Methods). (B) Firing rates of place cells which received the
grid field activity from A as an input. The corresponding synaptic
connections were obtained from an Hebbian outer product rule based
on the rate maps of the grid population in A and the ideal place field
population (C). (D) To represent a second environment, the grid code
from A is shifted by module-specific phases. (E) Globally remapped
place code that is learned from the remapped rate maps in D and F. (F)
Ideal place code in the second environment.
doi:10.1371/journal.pcbi.1003986.g001

Author Summary

The mammalian brain represents space in the population
of hippocampal place cells as well as in the population of
medial entorhinal cortex grid cells. Since both populations
are active at the same time, space information has to be
synchronized between the two. Both brain areas are
reciprocally connected, and it is unclear how the two
codes influence each other. In this paper, we analyze a
theoretical model of how a place code processes inputs
from the grid cell population. The model shows that the
sparseness of the place code poses a much stronger
constraint than maximal information transfer. We thus
conclude that the potentially high spatial acuity of the grid
code cannot be efficiently conveyed to a sparse place cell
population and thus propose that sparseness and spatial
acuity are two independent objectives of the neuronal
place representation.

Capacity of Hippocampal Remapping
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code may be designed to display a reasonable spatial resolution in

as many environments as possible. As a lower bound for such a

reasonable resolution we postulate an RMSE of 0.5 cm (dashed

line in Fig. 3D) and ask the question, which parameter setting in

Ng,sg-space would actually result in this behaviorally relevant

RMSE (Fig. 3E). The minimum Ng scales supra-linearly with sg,

i.e. it flattens out for smaller sg. We thus argue that sg&1 is a

good choice because it still is in the super-linear regime requiring

only relatively small cell numbers and at the same time results in

tuning widths that are similar to biology (like Fig. 3B). For further

analysis we thus fix the grid code to sg~1 and Ng~400.

Resolution of the place code in a single environment
The spatial acuity of the population code of grid cells can only

be made use of if it can be read out by downstream centers. We

therefore asked under which conditions the resolution of grid cell

network from the previous subsection can be preserved in the

place cell network under the ideal conditions that only one

environment has to be represented (number of environments

Ne~1); Fig. 4.

Since the tuning curves are actually learned there exists a clear

lower bound for the tuning widths that reflects the minimal width

of the grid cell population (Fig. 4A–F). Narrower place fields

cannot be achieved by the present model even if the fields used

during training are much narrower than the smallest grid fields.

Similar as for the grid cell code, a reduction in the place field width

effectively improves the RMSE, however, the resolution is limited

by that of the grid code (0.5 cm). Therefore an increase in the

number Np of place cells reduces the RMSE and the performance

quickly converges to the minimum for Np&
> 100; Fig. 4G. Only

relatively few neurons are needed to achieve such a behaviorally

relevant resolution, and thus we next asked how many different

environments can be represented at this resolution.

Multiple environments
Storing multiple environments generates interferences of the

place codes since each remapping taxes synaptic resources. Thus

the spatial resolution of the place code is getting worse when

storing multiple environments (Fig. 5). However, even for 21

remappings in our parameter regime (Np~500) the decoding

error is still relatively low (v5%). Also the number Ne of

remapped environments for which decoding is possible increases

with the number of place cells (Fig. 6A), such that even for

moderate place cell numbers Np many environments can be easily

decoded at physiological resolution.

Although space information is retained for considerably large

values of Ne, the place code degenerates already for much smaller

Ne. This degeneration is best described by a loss of sparseness

(Fig. 6B, [23]) resulting from less localized firing fields, while the

Fig. 2. Two-dimensional rate maps for grid cells and place
fields in two environments (Ne~2). (A, D) Grid rates differ by
module-specific phase shifts. Four example cells are shown, two from
the first module (top) and two from the second (bottom). A total of four
modules was used. Maximum spike counts Cg shown above each plot.
(B, E) place cell rate maps for both remappings. Positions of place fields
are set by Hebbian learning. (C, F) Desired place fields as used for
Hebbian learning. Firing fields in C are distributed in a square lattice
equidistantly across the environment. Fields in F are obtained by
shuffling cell identities from C, which ensures equal coverage.
Parameters are Np~500 place cells and Ng~400 grid cells and
sp~0:05 m, sg~0:3, Sp~2:56, Sg~1:5. All other parameters are as for
the one-dimensional case.
doi:10.1371/journal.pcbi.1003986.g002

Fig. 3. Root mean square error of grid cells (RMSEgrid) on the
linear track. (A–C) Example tuning curves for 4 cells from different
modules and three choices of width constant sg . (D) RMSEgrid as a
function of cell number Ng and tuning width sg . (E) Scaling of Ng with
sg for fixed RMSEgrid~0:5 cm. Parameters are M~4, lmax~(1z0:4sg)
m, Sg~1:5.
doi:10.1371/journal.pcbi.1003986.g003

Capacity of Hippocampal Remapping
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average spike count Cp remains constant (see Materials and

Methods). This delocalization results in a reduction of the number

of proper place cells (Fig. 6C) which exhibit an increased number

of regular-sized firing fields (Fig. 6D, E) before they cease to be

place cells and are active over almost the whole track as indicated

by a mean population sparseness (average fraction of active cells at

a position) close to 1 (Fig. 6F). Also the firing fields quickly loose

their similarity to the trained firing fields (Fig. 6G). From these

observations we conclude that although a large number Np of

putative place cells allow to reliably decode a large number of

environments by remapping, the place field quality (i.e. the

sparseness) of the encoding neurons disappears. Thus the

observation of a sparse place code in the hippocampus must

result from further objectives beyond decoding quality and

remapping capacity.

Generalization to open fields
To test whether these observations are specific to the one-

dimensional paradigm, we repeated the same simulations and

analysis for a two-dimensional enclosure (see Materials and

Methods and Fig. 2). As in the one-dimensional case, inspection

of single examples for high numbers Ne of remappings reveals that

the place-selectivity of the readout neurons (the putative place

cells) deteriorates much faster than the decoding quality (Fig. 7).

Even random spatial patches (for Ne~30; Fig. 7 B) allow for

almost perfect decoding (Fig. 7 E). Spatial estimation only breaks

down, if hardly any space modulation is observable in the firing

patterns (Fig. 7 C, F). These exemplary observations are

corroborated by a systematic quantitative assessment of the code

and the firing fields in Fig. 8.

In analogy to the one-dimensional case, decoding quality

increases with the number Np of putative place cells and remains

in the centimeter range for 40 and more remappings if Np§500

(Fig. 8A). At the same time, the place field characteristics

deteriorate with increasing Ne as was described in the one-

dimensional case (Fig. 6): sparseness decreases (Fig. 8B, F), place

field number increases before no clear place fields are visible

anymore (Fig. 8C, D, E), place fields loose their similarity to the

trained patterns (Fig. 8G).

In the two-dimensional case for few place cells Np~50, we

observe an improvement in resolution when going from one to

Fig. 4. Root mean square error of place cells RMSEplace on
linear track. (A–F) Place cell tuning functions (spike counts Cp as a
function of space x). Dashed lines: teacher tuning curves used for
training. Solid lines: tuning curves after learning averaged over 800 trials
(sp is the width of the teacher curves). (G) Place cell resolution RMSEplace

as function of sp and Np . Grid cell resolution is shown as dashed line.
Parameters used were Ng~400, sg~1:038, Sp~2:56, other parameters
were as in Fig. 3.
doi:10.1371/journal.pcbi.1003986.g004

Fig. 5. Quality of 1-d place code for increasing number of maps
in a network with Np~500 place cells and Ng~400 grid cells
and sp~0:01 m, sg~1:038, Sp~2:56, Sg~1:5. Left column: Rate map
for environment 1. Right column: Position estimates from the place
code as a function of real position.
doi:10.1371/journal.pcbi.1003986.g005
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about 10 remappings before the decoding error again increases

with Ne. Although counter-intuitive, this effect reflects that an

increase in mean population sparseness at first provides a better

coverage of the square box. To make the model work also for

small Ne, the number Np of place cells has to be large to overcome

this finite size effect. It therefore imposes a constraint on a

minimum number of Np. This effect also exemplifies that decoding

RMSE depends on many different aspects and thus it is generally

difficult to use it as a single measure for comparing the "quality" of

a population code.

We also assessed the robustness of our findings with respect to

essential model parameters. We evaluated the place code for

Fig. 6. Capacity for storing remappings on the linear track.
Place cell resolution and further measures as functions of the number
Ne of remappings stored. (A) Root mean square error (RMSE) of place
cells. Blue and green solid lines: Mean over realizations. Dashed lines:
99% quantiles. Red line RMSE of the grid cell input. (B) Mean single cell
sparseness. (C) Ratio of proper place cells. (D) Mean number of place
fields for proper place cells. (E) Mean size of place fields for proper place
cells. (F) Mean population sparseness. (G) Ratio of cells for which
Hebbian learning was successful (according to the three similarity
criteria defined in the Materials and Methods section). Parameters were
Ng~400, sp~0:01 m, sg~1:038, Sp~2:56, Sg~1:5, 4 modules, 20
realizations.
doi:10.1371/journal.pcbi.1003986.g006

Fig. 7. Quality of 2-d place code, for increasing number of
stored environments Ne. (A–C) Rate maps of four example cells for
15, 30, and 90 stored remappings. The desired place field positions (not
shown) are identical to Fig. 2 C, but in this case are hardly achieved. (D–
F): Minimum mean squared error estimates of position plotted against
true position for 500 trials, again for Ne~15, 30 and 90. Parameters as in
Fig. 2.
doi:10.1371/journal.pcbi.1003986.g007

Capacity of Hippocampal Remapping

PLOS Computational Biology | www.ploscompbiol.org 5 December 2014 | Volume 10 | Issue 12 | e1003986



different number of grid cells Ng, while keeping a constant total

number Sg Ng of input spikes and found essentially no difference

(S1 Figure). Also, a mere increase in the number Sp of place field

spikes only improves the spatial resolution but does not alter any of

the other place field characteristics (S2 Figure).

Direct control of sparseness
A substantial effect on the population code can be observed by

altering the strength of feedback inhibition in the place field

population by means of the E% value (Fig. 9). This parameter

determines the firing threshold as the input strength E% below the

maximum (see Methods and [21]). The E% value directly controls

the sparseness of the code (Fig. 9B–G). For low E% values (sparse

codes) and low numbers Ne of environments, we again observe the

finite size effect of high RMSE, which then improves with

increasing Ne (Fig. 9A). This initially high RMSE, however, can

again be compensated for by using larger numbers Np of place

cells (as in Fig. 8 A). As a result, the decreasing E% generally

allows to store more environments, however, at the cost of high Np

to achieve a sufficiently small RMSE for low Ne.

Partial learning
If one constrains the parameter space to biologically realistic

mean population sparseness values for the hippocampal place

fields about 0:1 to 0:2 (Supporting Information of [24] and [25],

see Discussion) our simulations of the standard parameter regime

(Fig. 8) show that such a regular place code can only be observed

for up to about ten environments. Also for increased E% value the

number of sparsely encoded environments is only increased to

several tens (Fig. 9). A major factor limiting the number Ne of

environments is that in our model the synapses to the place cells

are updated in each remapping, i.e., the place cells experience

maximal interference. One can considerably extend the number of

remappings for a given sparseness if the synaptic changes from

different remappings are distributed to varying subsets of place

cells, thereby increasing the overall number of putative place cells

(partial learning). This strategy is motivated by an experimental

report showing that only a small subset of CA1 pyramidal cells

shows intracellular determinants for being recruited as a place cell

in a novel environment [26]. We illustrate the benefits of partial

learning by a further set of simulations in which the synaptic

weights to only a fraction f of the place cells are updated in each

individual remapping (partial learning; Fig. 10). Using mean

population sparseness as a criterion for the breakdown of the place

code, partial learning increases the number of possible remappings

(Fig. 10A) to over a hundred. As a measure for capacity, one can

define a critical number of environments at which the mean

population sparseness exceeds a (biologically motivated) threshold

value of 0:12 (see Discussion). This critical Ne only weakly

increases with the number Np of place fields but strongly decreases

with increasing fraction f of partial learning (Fig. 10B, C).

In rat hippocampus the number Np of CA1 neurons is in the

order of several 100 thousands and thus according to Fig. 10B, a

sparse place representation may still be consistent with storing

hundreds to thousands of remappings if each place cell is involved

in only a small fraction of environments.

The encoding acuity (RMSE) is generally not affected by partial

learning as long as Np is not too small (Fig. 10D). Only for very

small values of f , when a winner-take-all effect of the E%-MAX

rule decreases sparseness for Ne??, spatial acuity deteriorates.

However, this regime is biologically unrealistic, since there the

number Np f of neurons encoding an environment tends to zero.

The geometry of the spatial firing patterns (place field size and

number), is virtually unaffected by f (Fig. 10 D, E). The place field

sizes we find in the model (up to 0.05 m2) are within the range

reported in the experimental literature [25,27], the mean number

Fig. 8. Capacity for storing remappings in a square box. Place
cell resolution and further measures as functions of the number Ne of
remappings stored. (A) Root mean square error (RMSE) of place cells.
Blue and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single cell
sparseness. (C) Ratio of proper place cells. (D) Mean number of place
fields for the proper place cells. (E) Mean size of place fields for the
proper place cells. (F) Mean population sparseness. (G) Ratio of cells for
which Hebbian learning of place fields was successful (according to the
three similarity criteria defined in the Materials and Methods section).
Parameter used as before Ng~400, sp~0:01 m, sg~0:3, Sp~2:56,
Sg~1:5, 4 modules, 15 realizations.
doi:10.1371/journal.pcbi.1003986.g008
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of place fields (about 3) is at the upper bound of the 1{3 fields per

m2 experimentally found in the hippocampus and dentate gyrus

[24,27], which indicates that the place code might in fact even be

sparser than than the 0:12 threshold motivated by current

experimental data (see Discussion).

Discussion

The hippocampal formation hosts two space representations. A

sparse one in the hippocampus proper, in which the neurons have

a limited number of distinct firing fields (place fields) and a dense

one in the MEC, where grid cells exhibit multiple firing fields

located on the nodes of a hexagonal lattice. If both brain regions

encode the unique physical spatial position of the animal, the two

codes have to be coherent. Anatomically both brain areas are

reciprocally connected [5–8] and thus place cell activity will

influence grid cell activity and vice versa.

In this paper, we focus on the connections from the medial

entorhinal grid cells to the hippocampus, which anatomically

correspond to the perforant pathway and the temporo-ammonic

pathway. These pathways have initially been thought to predom-

inantly underly the transformation from grid to place cells [19,28–

32]. More recently, developmental studies [12,13] and pharma-

cological interventions that block grid cell firing [7,14–16], have

shown that place cells can also be observed independently of grid-

field firing (but see [33]). Thus, while the MEC-to-hippocampus

connections seem to be unnecessary to generate place fields, they

are likely important in synchronizing both codes. This view is

further corroborated by the observation that place cell firing is less

stable if MEC input is eliminated [34].

Although it is known from information theory that capacity and

sparseness cannot be maximized simultaneously [35,36], our

paper exemplifies this rule for a specific neuronal network

example, in that it shows that maximization of capacity of

MEC-to-hippocampal connections destroys the sparseness of the

hippocampal place code.

From the theoretical perspective, if the synaptic matrix is know

that transforms one code into another, reading out a dense code is

more difficult than reading out a sparse code. This is because the

synaptic matrix gives rise to a much noisier postsynaptic signal for

dense input patterns [37]. Therefore the transformation from

place cells to grid cells is less problematic than the other way

round. The grid to place transformation provides an interesting

test case to study information transfer between different brain

areas in general.

Our model is largely based on experimental reports of grid and

place cell remapping [18,20,38–40]. While place cells turn on,

turn off, or show random relocation during global remapping [40],

grid fields shift and rotate. In our model, we consider only shifts,

since rotations were shown to be less efficient for remapping

previously [19]. Although the grid modules seem to operate

functionally independent [17], it is not yet clear whether the

modules remap independently as proposed in [19]. A further

finding from [19] was that a few (&> 2) modules suffice for strong

remapping and data [17] suggest that MEC has only about 5 to 9

modules. Only a part of these modules innervate any one place

cell, owing to the dorso-ventrally ordered topography of the input

fibers. We therefore concluded that a biologically reasonable

number of modules influencing any single place cell is about 4. We

further assume that the number of cells per module is constant,

which is optimal from a theoretical perspective [9] but might not

necessarily be the case [17].

To connect our simulations to hippocampal physiology, we

assume a population sparseness value of 0:12. This value can be

estimated by combining data from the supporting information

(Table S1 of [24]) (mean number of place cells: 1.1/(0.8 m)2 for

CA3, 2/(0.8 m)2 for DG; percentage of place fields: 62/71 for

Fig. 9. Effect of the E% parameter on the capacity for storing
remappings in a square box for Np~500 place cells. Place cell
resolution and further measures as functions of the number Ne of
remappings stored. (A) Root mean square error (RMSE) of place cells.
Blue and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single cell
sparseness. (C) Ratio of proper place cells. (D) Mean number of place
fields for the proper place cells. (E) Mean size of place fields for the
proper place cells. (F) Mean population sparseness. (G) Ratio of cells for
which Hebbian learning of place fields was successful (according to the
three similarity criteria defined in the Materials and Methods section).
Parameter used as before Ng~400, sp~0:01 m, sg~0:3, Sp~2:56,
Sg~1:5, 4 modules, 8 realizations. The curve for E%~0:1 is taken from
Figure 8 and has 15 realizations.
doi:10.1371/journal.pcbi.1003986.g009
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CA3, 41/44 for DG) and place field areas measured in [25] in a

circular enclosure of diameter 76 cm (field area: 0.08 m2 for CA3,

0.06 m2 for DG). The estimate of the population sparseness for a

1 m2 enclosure (as in our simulations) thus follows from the

product of these three values, i.e., we obtain about 0.12 for CA3

and 0:17 for DG. However, in our simulations, a sparseness value

of 0:12 yields a number of place fields per place cell that is slightly

higher than observed in experiments, and thus the above numbers

may over-estimate the sparseness values in the real rodent brain.

Previous coding theories of MEC grid cells have extensively

investigated spatial resolution. According to [9,41], hierarchical

grid codes outperform place codes by far in terms of their scaling

behavior. A main reason is that for a constant resolution, the

number of place cells scales with area, whereas for grid cells only

those with larger period have to be scaled up with area for

disambiguation, however, the resolution mostly rests on the

smallest grid periodicity and thus the size of the population with

small periodicity is independent of spatial range to be encoded.

The parameter regimes in which grid codes are particularly

superior to place codes provide relative root mean square errors in

the range of 10{3 and even far below [9]. For a one meter

environment, this would correspond to (sub-)millimeter resolution

which is biologically irrelevant for encoding but might be

important for MEC models of path integration [42,43] where

errors can accumulate over time. In the regime used for the

present model (Figs. 3 and 4), the surplus in resolution of the grid

Fig. 10. Partial learning. Effect of place cell number Np and of the fraction f that are trained to encode one environment on the number of
environments Ne . (A) Population sparseness as function of environments Ne stored, for Np~500 place cells. Different colors represent different
fractions for partial learning, see legend in B. The critical value Ne at which sparseness reaches a biologically realistic value of 0:12 is obtained by
interpolation. (B) Critical values of Ne as function of place cell number Np and partial learning fraction f . Data can be fitted by simple logarithmic
functions Ne~cNa

p . (C) Exponent a and coefficient c of fit from B. (D) Root mean square errors (RMSE) at the critical Ne for the Np and f in B. (E) and

(F): Mean place field size (E) and number (F) at the critical Ne for the Np and f in B. Averages are over proper place cells.
doi:10.1371/journal.pcbi.1003986.g010
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code is relatively small, consistent with a biologically relevant

decoding situation of high noise and few modules [44].

A further noteworthy result of our simulations is that a

population code still contains almost maximal space information

(in terms of minimal RMSE), even if no clear spatial firing fields

can be delineated anymore. On the one hand this shows that also

brain areas like the lateral entorhinal cortex [45] and the

subiculum [46] with only weakly space-modulated individual

neurons can provide high-resolution space information on the

population level and thus a superposition of such weakly

modulated firing fields via synaptic inputs is sufficient to provide

place information to any downstream structure. This means that

also the hippocampus and the MEC may not generate their

strongly spatially modulated firing fields de-novo but inherit them

from weakly modulated populations as e.g. the lateral entorhinal

cortex. On the other hand our findings show that sparseness of

the hippocampal place representation is not due to coding

precision requirements but must serve other purposes. Manifold

advantages of sparseness have been proposed [47] including

energy efficiency [48]. A further classical benefit of sparse

representations arises for auto-associative memory networks,

where it facilitates memory retrieval due to reduced interference

[37,49–52].

Although our model includes lateral inhibition via the E% rule

to limit the overall network activity the network cannot enforce

sparseness except for unrealistically low values of f . So it is still

possible that other assumptions about the recurrent connections

may enforce sparseness more effectively, while allowing remap-

pings. For example, in a model using a combination of recurrent

excitation and inhibition [53,54] place fields arise from stable

attractor states, where each attractor reflects the topology of place

field positions for one remapping. The capacity (number of

remappings per neuron) of this autoassociator is in the range of few

percent and, thus for Np~1000 may end up slightly above the

capacity derived from our model (&10) (for fixed realistic

sparseness). So, recurrent excitatory connections between place

cells can potentially help to keep the place fields compact. The

disadvantage of attractor-like solutions is that they show

catastrophic forgetting, whereas our model exhibits a gradual

decline of the order parameters (Figs. 6, 8 and 9).

The view on how space information is communicated between

the reciprocally connected brain areas hippocampus and MEC has

recently undergone a dramatic change from a completely feed-

forward grid-to-place dogma [19,28–32] to an almost reversed

place-to-grid picture [7,12–16]. We started out under the

assumption that the spatial precision in the hippocampus mostly

relies on inputs from MEC grid cells and remapping the MEC

triggers remapping on the hippocampus. If this was the only

function of the MEC-to-hippocampus connections, they should be

filled with as much space information as possible and the

representation would no longer be sparse. Our results thus show

that functionally the classical pure grid-to-place hypothesis would

only suboptimally use the coding resources. The required compact

place fields and the MEC-to-hippocampus synapses thus do not

seem to be optimized to transfer space information.

Since new experimental data [7,12–16] show that MEC is

actually not essential for generating place cells, our findings suggest

the possibility that hippocampal space information might actually

primarily stem from other regions than the MEC. The grid field

input to place fields thus likely imposes only modulatory or

stabilizing effects. Conversely, no grid cells have been so far

observed without place cell activity, and thus the place-to-grid

hypothesis is still a possible candidate. However, it is unclear why

hexagonal symmetry might emerge from the perspective of a

transformation of a sparse place code to a dense code, and thus it

might as well be that the two codes are generated independently

for different computational purposes and the reciprocal connec-

tions are only required for synchronization and stabilization.

Materials and Methods

Grid cell firing rate maps in one dimension
The Ng grid cells are modeled as Poisson spikers with firing

maps Ri xð Þ that denote the mean spike count of cell i~1 . . . Ng

conditioned on the position x[ 0,1½ � on a 1 meter track. All cells

have the same maximal spike count Cg and the same field width

parameter sg. The cells differ in their spatial periods li and grid

phases Qi. The specific model for the cells’ Poisson spike counts

follows a von Mises function:

Ri xð Þ~Cgexp
cos 2p=li x{Qið Þð Þ{1

s2
g

 !
:

Each cell belongs to one of M modules. Cells in a module share

a spatial period li. The phases Qi in each module are chosen

equidistantly such that the firing fields cover the linear track;

Fig. 1A.

Though we have only one width parameter sg for all cells, the

tuning width sg li=(2p) for the cells in one specific module scales

with the period li, as can be seen from expanding the cosine term

in Ri xð Þ.
The spike count Cg is adjusted such that the whole grid cell

population generates a constant given number S of spikes

averaged over all positions x and cells i, i.e.,

S~Spoiss Ri xð Þð ÞTi[ 1,...,Ngf g;x[ 0,1½ �&

P
i,b Ri xbð Þ
Ng B

ð1Þ

Here, the locations x are discretized in B~104 bins xb. The

value used for S is 1.5 spikes per cell. Since for Poisson spikers the

spike count is a product of averaging duration, firing rate and

number of cells with the same rate function Ri, the three factors

cannot be distinguished. Although, for simplicity, we call Ng the

number of grid cells, it is more correctly referred to as the number

of grid cell channels (different rate functions Ri).

The different modules are defined by their grid period li. In our

grid cell population, the first module is assigned the largest spatial

period, which we take l1~(1z0:4sg) m such that each cell in this

module only has one unique firing field on the track. The smaller

periods of the other modules are obtained via geometric progres-

sion, lmz1~
lm

rl
, with a period ratio rl, and m~1, . . . M. The

period ratio rl~(l1=lM )1=(M{1) is defined via the number M of

modules and the smallest period lM , which is set to 30 cm, a lower

bound suggested by experiments [3,17]. Thus the only remaining

degrees of freedom for the grid code are the number M of modules,

the width constant sg and the mean spike count per length S. We

choose sg~1, M~4 and Sg~1:5 unless otherwise mentioned.

Hebbian learning of place cells
The synaptic weights wij of the feed forward connections from

grid to place cells are set by Hebbian learning based on the rate

maps Ri(x) of the grid cells from eq. (1) and the desired rate maps
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Di xð Þ~ exp {
x{cið Þ2

2s2
p

 !
ð2Þ

of the place cells with width sp and centers ci that uniformly cover

the interval ½{sp,1mzsp�; Fig. 1C.

With these idealized place fields, the weights are calculated

according to outer product (Hebbian) rule: using discretized

locations xb, b~1, . . . ,B we define

wij~
S
B

b~1
Di xbð ÞRj xbð Þ

S
B

b~1
Di xbð Þ

: ð3Þ

The denominator ensures that connections to place cells with

fields at the borders are as strong as the ones to centered place

fields.

Remapping
The two networks (grid and place cells) are supposed to encode

Ne environments. Each environment has a new grid code

generated by shifting each module’s phases by a constant

sm,[ 0,lm½ �, m~1,:::,M. These shifts have experimentally been

shown to be coherent within one module [18] and have been

theoretically proposed to be uncorrelated between modules [19].

The shifted grid field patterns are denoted by R
eð Þ

i xð Þ. A new place

code D
eð Þ

i xð Þ is generated by randomly choosing the place field

centers ci. Hebbian learning as in eq. 3 is repeated Ne times and

weights are added.

Place cell spikes and position decoding
The place cell spikes for cell i at a position x are produced by

drawing Poisson spikes kj~poisson Rj xð Þ
� �

for the grid cells, then

taking the weighted sum

Ui~
XNg

j~1

wij kj

of those, to yield a membrane potential of the place cells. The activity

is then generated following the E%-MAX rule [21], that emulates the

effect of recurrent inhibition: after finding the maximum membrane

potential Umax~ maxi (Ui), all Uiv0:9Umax are set to zero and the

ones above this threshold are multiplied with a constant Cp, and used

as place cell firing rate from which spike counts qi are derived

according to Poisson statistics.

Decoding the place code via a minimum mean square estimator

[55]

x̂x~SxTfqig~

ð
dxxp(xDfqig) ð4Þ

requires a statistical model p(xDfqig) of place cell firing. Since in

the model the single trial spike counts qi are statistically

independent the posterior can be obtained using Bayes’ rule,

p(xDfqig)~
Pi p(qi Dx)p(x)

Pi

Ð
dxp(qi Dx)p(x)

:

The prior is taken as constant, p(x)~1=m. The individual

likelihoods p(qi Dx) are obtained by repeating the above stochastic

process 800 times for each cell and each sampled position and

sampling the relative frequencies of spike counts qi. This

distribution is then fitted with a bimodal model function consisting

of a probability Ai of cell i not firing, and probability of firing qi

spikes following a normal distribution with fit parameters mean

mi xð Þ and variance si xð Þ:

p qi Dxð Þ~Ai(x)d qið Þz 1{Ai xð Þð Þnorm qi,mi xð Þ,si xð Þð Þ : ð5Þ

Examples for such fits are shown in Fig. 11. Again, the constant

Cp is obtained by fixing the number S of spikes per centimeter per

cell in an iterative fashion. The resulting value is S~2:56 unless

otherwise mentioned.

Two-dimensional place code
For comparison we also implemented the model in two spatial

dimensions~xx[½0,1�2. There, the grid cell’s firing maps are set as in

[31]

Ri(~xx,l,h,~cci)~Cg g
X3

k~1

cos
4p~uu(hkzh):(~xx{~cci)ffiffiffi

3
p

lm

� � !
,

with u(hk)~( cos (hk), sin (hk)) being a unitary vector pointing

into direction hk. Using h1~{30, h2~z30 and h3~z90, the

three spatial waves add up to a hexagonal firing pattern with

spatial period lm, a maximum at ~cci, and orientation h (Fig. 2A).

The nonlinearity g(y)~ exp (0:3(yz1:5)){1 both adjusts the

minimal firing rate to zero and matches the spatial decay of the

firing rate peaks to experiments [31]. Like for the one-dimensional

simulations we use four modules. Cells in one module share spatial

Fig. 11. Spike count likelihood of place cells. (A) Firing rates (gray
code) of model place cells as a function of position. (B–D) Simulated
spike counts and fits of the model function eq. (5) for examples
indicated in A.
doi:10.1371/journal.pcbi.1003986.g011
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period and orientation. The period for the first module is l1~1:42
m (larger than the box). The smallest period is set to 0:3 m. The

two intermediate periods are again obtained by geometric

progression lmz1~
lm

rl
. Orientation h for each module is drawn

at random. The "centers" ~cci are uniformly distributed over the

Wigner cell of size l. For all computational purposes, we used

100|100 spatial bins to discretize the box.

To generate two-dimensional place fields we set feed-forward

weights by Hebbian learning, using Gaussian tuning curves as

firing maps for place fields as in eq. (2), but with x and ci replaced

by their two-dimensional counterparts (Fig. 2 B, C). The centers~cci

cover the box uniformly on a square grid. Centers of teacher place

fields for cell exceeding the number of nodes on the square lattice

were distributed randomly. Weights are then calculated using eq.

(3).

The spikes are produced as in the one-dimensional case.

Decoding follows eq. (4) with one-dimensional quantities replaced

by their two-dimensional counterparts.

For a remapping, each grid cell module is assigned one random

spatial shift vector, added to all~cci from that module. The shift is

obtained by drawing a vector from the Wigner cell of that module

using a uniform distribution (Fig. 2 D). For remapping, the place

cells are assigned new centers at random, which again cover the

box equidistantly. Then Hebbian learning is repeated, adding to

the existing weights (Fig. 2 E, F).

Partial learning
Partial learning as used in the simulations of Fig. 10 was

implemented as follows. For each environment we selected a

random set of f Np cells such that each cell is selected

approximately the same amount of times across environments.

This was achieved via random permutations of the cell indices.

The sets of f Np cells were taken from such a random index

sequence one after the other, and only if less than f Np items were

left in the index sequence, a new random permutation was

generated.

For each set of f Np selected cells we defined teacher place fields

that cover the whole environment as uniformly as possible on a

square grid with t
ffiffi
(

p
Np f )s2 nodes (see previous section). Hebbian

learning according to eq. (3) was applied to only the synapses

between the grid field population and the selected set of

postsynaptic cells.

By construction, some place cells will be used in more

environments than others. We normalize the rows of wij after all

environments have been learned to avoid that the cells that are

involved in more environments (and thus have larger weights) are

overly excited and exert too much inhibition on the remaining

cells via the E%-MAX rule.

Single cell sparseness
According to [23], single cell sparseness is defined as

SRT2=SR2T, where R(x) denotes the firing rate of the specific

cell as a function of position x and S:T indicates the average over

space.

Population sparseness
Population sparseness is defined as the percentage of place cells

firing above a threshold of 20% of the maximum firing rate at any

position.

Detection of (proper) place fields
The number and size of place fields was found by first

thresholding the rate maps, discarding all bins below 20% of the

maximal rate, and then applying the algorithm by Hoshen and

Kopelman [56]. Bins were considered neighboring if they share an

edge, hence diagonal bins were not neighbors. Place fields were only

included in the analysis (proper place fields) if they were larger than

50 cm2 and smaller than 60% of the total environment.

Success of Hebbian learning by similarity
Learning of place fields was considered successful in a cell if the

learned field showed sufficient similarity to the training field

according to three criteria: 1) the total area above a threshold of

20% peak rate has to be smaller than 0:6m2, 2) the place field

center has to be detected close to the desired location, i.e., no

further away than the place field radius (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=p

p
), and 3) the

desired place field has to have an area at least twice the size of all

other place fields.

Supporting Information

S1 Figure Effect of the place cell spike number Sp on the

capacity for storing remappings in a square box. Place cell

resolution and further measures as functions of the number Ne of

remappings stored for Np~500. (A) Root mean square error

(RMSE) of place cells. Blue and green solid lines: Mean over

realizations. Dashed lines: 99% quantiles. Red line RMSE of the

grid cell input. (B) Mean single cell sparseness. (C) Ratio of proper

place cells. (D) Mean number of place fields for the proper place

cells. (E) Mean size of place fields for the proper place cells. (F)

Mean population sparseness. (G) Ratio of cells for which Hebbian

learning of place fields was successful (according to the three

similarity criteria defined in the Materials and Methods section).

Parameter used as before Ng~400, sp~0:01 m, sg~0:3,

Sp~2:56, Sg~1:5, 4 modules, 15 realizations, 10 for Sp~0:64.

(EPS)

S2 Figure Effect of varying grid cell number Ng and grid cell

spike count Sg with constant NgSg on the capacity for storing

remappings in a square box. Place cell resolution and further

measures as functions of the number Ne of remappings stored for

Np~500. (A) Root mean square error (RMSE) of place cells. Blue

and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single

cell sparseness. (C) Ratio of proper place cells. (D) Mean number

of place fields for the proper place cells. (E) Mean size of place

fields for the proper place cells. (F) Mean population sparseness.

(G) Ratio of cells for which Hebbian learning of place fields was

successful (according to the three similarity criteria defined in the

Materials and Methods section). Parameters used are as before

Ng~400, sp~0:01 m, sg~0:3, Sp~2:56, Sg~1:5, 4 modules, 7

realizations, 15 for Ng~400, Sg~1:5, data from Fig. 8.

(EPS)
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