
Abstract

We present a novel approach for the flexible modeling of exposure-
lag-response associations, i.e., time-to-event data where multiple past
exposures are cumulatively associated with the hazard after a cer-
tain temporal delay. Our method is based on piece-wise exponential
models and allows estimation of a wide variety of effects, including
potentially smooth and time-varying effects as well as cumulative ef-
fects with leads and lags, taking advantage of the advanced inference
methods that have recently been developed for generalized additive
mixed models.



1 Introduction

In many applications of survival analysis, study objects are exposed to dif-
ferent levels of an external covariate over the course of the follow up, for
example different amounts of caloric intake received by critically ill patients
during their stay on the intensive care unit. Modeling the association be-
tween such protracted exposures and outcome is difficult as, for each subject,
the level of exposure may vary over time. Moreover, the effect of exposure
on outcome is also likely to vary over the course of the follow up, and hazard
rates at a particular point in time may depend on multiple past exposures.
Lastly, the impact of a concrete exposure may have a delayed impact on the
outcome and decline depending on the gap between time of exposure and
evaluation time.

In more technical terms, such complex exposures imply the need for an
approach that can incorporate time-dependent covariates (TDC) and model
their possibly non-linear, possibly time-varying, cumulative effects on sur-
vival with lead and lag times. Additionally, we need to adjust for cluster or
individual specific heterogeneity (frailty) and other possibly non-linear, pos-
sibly smoothly time-varying effects of confounders recorded at baseline. In
previous work in this field, Berhane et al. (2008) used tensor product smooths
to model the association between survival and protracted exposure to radia-
tion. Sylvestre and Abrahamowicz (2009) presented the weighted cumulative
exposure (WCE) model, where the effect of exposure at time t is the sum of
weighted past exposures and the weight function is estimated smoothly using
B-Splines. Smoothness is controlled through comparison of models based on
different number of interior knots with respect to the BIC. Xiao et al. (2014)
extended the WCE approach to marginal structural Cox models. Gasparrini
(2014) introduced an approach based on distributed lag non-linear models
and coined the term exposure-lag-response associations (ELRA) for the type
of relationship described above, which we will adopt in this article.

We propose a flexible, novel approach for the modeling of the aforemen-
tioned exposure-lag-response associations. The method, an extension of the
piece-wise exponential model (PEM), is described in detail in section 2. By
embedding the concept of PEMs into the framework of generalized additive
mixed models (GAMM) (cf. section 2.2), we can define a flexible model
class for survival analysis and ELRA in particular, that inherits most of the
flexible tools for modeling, estimation and validation of GAMMs. Practical
usefulness of this approach is further increased due to readily available, ro-
bust and efficient implementations of these methods (Wood, 2006, 2011). We
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extend existing methodology regarding confidence intervals and testing pro-
cedures for smooth terms, to derive respective measures and test statistics
for ELRAs and particularly for the comparison of hazard differences result-
ing from different patterns of a TDC. In section 3, we review the proposed
method and discuss advantages as well as disadvantages of the approach.

2 Methods and Model

2.1 Piece-wise Exponential Models

We define
λi(t|xi) = λ0(t) exp(x′iβ), (1)

a general proportional hazards model with i = 1, . . . , n, n the number of
subjects under study and x′i = (x1i , . . . , x

P
i ) the row-vector of time-constant

covariates xp, p = 1, . . . P .
A piece-wise exponential model (PEM) is obtained by partitioning the follow
up period (0, tmax] into J intervals with J+1 cut-points 0 = κ0 < . . . < κJ =
tmax. The j-th interval is given by (κj−1, κj], where tmax is the maximal
follow up time. Assuming the hazard rate in each interval j to be constant,
such that λ0(t) = λj,∀t ∈ (κj−1, κj], t > 0, equation (1), in log-linear form,
simplifies to

log(λi(t|xi)) = log(λj) + x′iβ ∀ t ∈ (κj−1, κj]. (2)

Let ti = min(Ti, Ci) the right-censored time under risk for subject i.
Given intervals 1, . . . , J , Holford (1980) and Laird and Olivier (1981) first
established the link between the likelihood of the model in (2) and the like-
lihood of the Poisson GLM (3) with
(a) one observation for each interval j under risk for each subject i,
(b) responses yij = 1 if ti ∈ (κj−1, κj]∧ti = Ti, else yij = 0 as event indicators
for subject i for interval j, and
(c) offsets tij = min(ti − κj−1, κj − κj−1), the time subject i spends under
risk in interval j (Friedman, 1982):

log(E(yij|xi)) = log(λijtij) = log(λj) + x′iβ + log(tij), (3)

or, with λi(t|xi) := λij,

log(λi(t|xi)) = log

(
λijtij
tij

)
= log(λj) + x′iβ. (4)
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The likelihood of model (3) is proportional to the likelihood of the PEM
(2), thus the two models are equivalent with respect to the ML estimation
of the model parameters β. In practice, when fitting the according Poisson
regression, log(λj) is incorporated in the linear predictor x′iβ and log(tij)
enters as an offset.

A major advantage of this model structure is that it lends itself easily
to include TDC, as a covariate can change its value in each interval. Al-
ternatively, the interval cut-points could be chosen as the time-points at
which a change in the TDC is recorded. Then (4) can be extended to
log(λi(t|xij)) = log(λj) + x′ijβ. Additionally, time-varying effects can be
incorporated by creating a TDC for time itself, e.g. by using the interval
midpoints t̃ := (κj − κj−1)/2, and including interaction terms of selected
covariates with time t̃ in the linear predictor.

2.2 Piece-wise Exponential Additive Model

Transitioning from the framework of GLMs to the framework of general-
ized additive mixed models (GAMM), model (4) can be further extended to
include smoothly time-varying effects of time-constant and time-dependent
covariates. For the sake of notational simplicity, here we present a model
with one TDC. An extension to multiple ELRAs, however, is straight for-
ward. In reference to the idioms known for piece-wise exponential models
(PEM) and generalized additive models (GAM), we will refer to this model
class as PAM. We first present the general model specification and discuss
individual terms in subsequent sections.

Let Zi(t) denote a subset of past exposures that affect the hazard at time
t (cf. section 2.2.3 for more details), ` = 1, . . . , L the index for different
clusters and `i the cluster associated with subject i.

We model the hazard rate λ at time t for individual i from cluster ` as:

log (λi(t|xi, zi, `i)) = f0(t) +
P∑

p=1

fp(x
p
i , t) + g(Zi(t), t) + b`i (5)

where

• f0(t) represents the baseline hazard rate (cf. section 2.2.1),

• fp(xpi , t), p = 1, . . . , P , are potentially smooth, smoothly time-varying
effects (cf. section 2.2.2) of time-constant confounders xp,

• g(Zi(t), t) denotes the exposure-lag-response association and will be
discussed in detail in section 2.2.3.
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• b`i is a Gaussian random effect (frailty) for subject i.

2.2.1 Baseline hazard

In the original definition of PEMs (4), the baseline hazard is a step function
and interval-specific hazards λj are estimated by including dummy variables
for the individual intervals in the model matrix. One problem with this ap-
proach is the, more or less, arbitrary choice of interval cut-points (Demarqui
et al., 2008), which affects the estimation of interval-specific baseline haz-
ards λj. By representing the baseline hazard as a regression spline over the
interval mid-points t̃, we can ameliorate this issue. Given a sufficiently large
number of knots, the hazard can be estimated flexibly, while overfitting is
avoided due to penalization (cf. section 2.3). As hazards in clinical studies
tend to change quickly in the beginning of the follow up and become more
stable towards the end of the observation period, adaptive spline smooths
(Wood, 2011, section 5.1) can be employed to allow the smoothness of the
function to vary over time.

2.2.2 Smooth, smoothly time-varying effects

The summands fp(x
p
i , t) in the second term in (5) represent possibly non-

linear, possibly time-varying effects of time-constant covariates. In the sim-
plest case, when effects are assumed to be linear and not time-varying, this
would reduce to a linear effect xpiβp. Time-varying effects are modeled as in-
teraction terms between the variable of interest xp and time t. Table 1 shows
possible representations of time-varying effects. Depending on the specifica-
tion of the interaction term, flexibility can increase from linear effects with
linear time-variation βpx

p
i +βp:t(x

p
i ·t), to varying coefficients xpi fp(t) or fp(x

p
i )t

(Hastie and Tibshirani, 1993), to nonlinear, smoothly time-varying covariate
effects fp(x

p
i , t) modeled as bivariate function surfaces, e.g. tensor product

smooths (Wood et al., 2012). The smooth functions fp(·) can be represented

as splines of the form
∑M

m=1 γ
p
mB

p
m(·), where Bp

m are covariate specific basis
functions. The specification xpi fp(t) is particularly useful when xp is a dummy
variable coding for a certain level of a categorical variable, in which case a
smoothly time-varying effect fp(t) is estimated for each category. One pos-
sible application is the evaluation of the effects of different treatment arms
in clinical trials, when the proportional hazards assumption is not fulfilled.
Specification fp(x

p
i , t) is the most flexible and should be employed whenever

prior information or domain specific knowledge regarding the relationship is
absent.

However, this latter option is also the most computationally demanding.
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Effect specification Description

βpx
p
i + βp:t(x

p
i · t): Linear, linearly time-varying effect

fp(x
p
i ) · t : Smooth, linearly time-varying effect

xpi · fp(t) : Linear, smoothly time-varying effect
fp(x

p
i , t) : Smooth, smoothly time-varying effect

Table 1: Overview of possible time-varying effect specifications.

In general, due to the model definition and respective estimation routine, the
number of parameters to be estimated needs to be considerably lower than
the number of subjects n under study. In addition, depending on the number
of such components and their specification, identifiability issues may arise,
especially since, in contrast to “standard” additive regression models, time t
will typically appear in multiple model terms in PAMs (5).

2.2.3 Exposure-lag-response Associations

For the specification of the ELRA g(Zi(t), t) in (5) it is important to dis-
tinguish between time at risk t and time of exposure te, i.e. the time at
which the hazard is evaluated and the time at which the value of the TDC
is observed, respectively.

Let zi(te) denote the value of the TDC at exposure-time te. To model the
time-varying, cumulative effects of exposure histories Zi(t), we:

1. Define a time window T (j) of exposure-times te for which the time-
dependent covariate z(te) is assumed to affect survival in interval j,
such that the exposure-history affecting the hazard at time t is defined
by

Zi(t) := {zi(te) : te ∈ T (j)}. (6)

This window can be specified by setting variables tlag (delay before
exposure at time te can affect hazard) and tlead (maximal time after
te + tlag after which the exposure still affects the hazard), such that
te ∈ T (j) if κj−1 < te + tlag + tlead and κj ≥ te + tlag.

2. Specify the shape of partial effects g(zi(te), t) representing the ELRA

g(Zi(t), t) =

∫

te∈T (j)
g(zi(u), t)du ≈

∑

k:tek∈T (j)
∆kg(zi(tek), t), (7)

with ∆k = tek − te(k−1) the time between two consecutive exposures.
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We represent the relationship as a bivariate smooth function in te and
t

g(zi(te), t) = f(te, t) · wij, (8)

where

wij =

{
zi(te) if te ∈ T (j)

0 else,
(9)

and

f(te, t) =
M∑

m=1

K∑

k=1

γmkBm(te)Bk(t) =
∑

m,k

γmkBmk(te, t) (10)

is modeled as a tensor product spline smooth, with marginal bases
Bm(·), Bk(·) evaluated at the respective values of te and t, Bmk(·, ·) =
Bm(·)Bk(·), and spline coefficients γmk controlling the shape of f(te, t).
The penalized estimation of the smooth terms (cf. section 2.3) implies
the assumption of smoothness for f(te, t), which ensures that effects of
exposures on consecutive time points te, t

′
e are similar and that effects

of exposure z(te) on the hazards in neighboring intervals j, j′ are similar
as well.

Note that the information regarding the amount of exposure zi(te) is
not included in the construction of the marginal bases B(·). This infor-
mation is added to the design matrix through weights (9) wij, specified
beforehand (and therefore known). The leads and lags are also speci-
fied using these weights, setting the partial effects for exposures outside
the relevant window T (j) to zero.

The above specification of the ELRA implies that effects of the TDC are
smooth regarding the timing of exposure te and their effect over time t but
not with respect to the value of zi(te), which enters linearly. An extension of
the presented framework to non-linear ELRAs via three-dimensional smooths
of the form f(te, t, zi(te)) is straight forward (Wood, 2006, sec. 4.1.8), but
was not pursued in this work.

2.3 Estimation and Inference

Stable likelihood-based methods for the parameter estimation of the pro-
posed model have been recently developed in Wood (2011) in the context
of penalized models of the form D(γ) +

∑
p λpγ

′Kpγ, where D(γ) is the
model deviance, γ contains all spline basis coefficients representing model
(5), and λp and Kp are the smoothing parameters and penalty matrices for
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the individual smooths fp(·), respectively. Given λ = (λ1, . . . , λp), parameter
estimates can be obtained by penalized iteratively reweighted least squares
(P-IRLS). To guarantee convergence, Wood (2011) employs P-IRLS based
on nested iterations, i.e. after each P-IRLS step, estimation of λ is updated
given the current γ estimates.

In subsequent papers Marra and Wood (2011, 2012), Wood (2013) develop
shrinkage based procedures for simultaneous smoothness and variable selec-
tion and methods for confidence intervals and significance tests for smooth
components, which can largely be applied to the context of PAM.

For example, confidence intervals (CI) with good coverage properties for
smooth terms are developed in Marra and Wood (2012) and are applicable
to the smooth components in (5) and particularly the ELRA (7). Let γ̂q the
vector of parameter estimates associated with f(te, t) in (10), and Vγ̂q the
empirical Bayesian covariance matrix of the estimated parameters γ̂q. Let
further Xq the nJ × ne design matrix for a specific exposure history Z(t),
where nJ is the number of intervals in which the follow up period has been
partitioned, and ne is the number of columns associated with the tensor-
product smooth of the ELRA term. The confidence intervals are given by

Xqγ̂q ± z1−α/2
√

diag(XqVγ̂qX
qT ) = f̂q ± z1−α/2ŜEq (11)

In (11), f̂q as well as ŜEq are vectors of length nJ , representing the estimated
cumulative effect and standard errors in intervals j = 1, . . . , J . By defining
Xq := Xq2 −Xq1 in (11) we can obtain estimated differences in cumulative
effects (and a respective CI) given different exposure histories Z2(t) and
Z1(t).

3 Summary

By embedding the concept of PEMs into the framework of penalized GAMMs
(cf. section 2.2), we were able to establish a very flexible model class for sur-
vival analysis in general and exposure-lag-response associations (ELRA) in
particular. This model class inherits the robust and flexible tools for mod-
eling, estimation and validation of the penalized GAMMs, as discussed in
section 2. In comparison to the classical PEM, major advantages include the
semi-parametric, possibly adaptive, estimation of the baseline hazard, which
ameliorates the problem of arbitrary choice of cut-points (cf. section 2.2.1),
and the smooth, penalized estimation of time-varying effects.
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